NORTH LONDON WASTE AUTHORITY

NORTH LONDON HEAT AND POWER PROJECT

ENVIRONMENTAL STATEMENT: VOLUME 2 APPENDICES 7.1 TO 7.3

AD06.02

NORTH LONDON WASTE AUTHORITY

NORTH LONDON HEAT AND POWER PROJECT

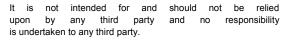
ENVIRONMENTAL STATEMENT: VOLUME 2 APPENDIX 7.1 GROUND CONDITIONS AND CONTAMINATION ASSESSMENT METHODOLOGY

AD06.02

North London Waste Authority North London Heat and Power Project

Environmental Statement Volume 2 Appendix 7.1 Ground Conditions and Contamination Assessment Methodology

AD06.02


The Planning Act 2008 The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 Regulation 5 (2)(a)

Issue

October 2015

Arup

Contents

			Page
1	Grour	nd conditions and contamination assessment methodology	1
	1.1	Introduction	1
	1.2	Engagement	1
	1.3	Legislation and guidance	6
	1.4	Baseline conditions	12
	1.5	Construction effects	14
	1.6	Operational effects	17
	1.7	Decommissioning effects	17
	1.8	Cumulative effects	17

1 Ground conditions and contamination assessment methodology

1.1 Introduction

- 1.1.1 This appendix sets out the methodology for assessing the likely significant effects of the Project on ground conditions and contamination.
- 1.1.2 This section is divided into the following parts:
 - a. engagement describing a summary of comments included in the Scoping Opinion and received on the Preliminary Environmental Information Report (PEIR) and how these comments have been addressed;
 - b. legislation and guidance detailing requirements of the relevant National Policy Statements (NPS), how these have been addressed and additional guidance relevant to the assessment;
 - c. methodology for establishing baseline conditions; and
 - d. methodology for the assessment of construction, operation, decommissioning and cumulative effects.

1.2 Engagement

- 1.2.1 Engagement was key to development of the Application Site design and environmental assessment. Vol 2 Appendix 7.1 Table 1 details the stakeholders contacted, a summary of key issues raised and how these have been addressed in the assessment. Engagement commenced during the initial site investigation stages, continued throughout site design stage and scoping, and the risk assessments undertaken in 2015. All site investigation and site assessment reports relevant to the Project were issued to the Environment Agency (EA) for comment.
- 1.2.2 A summary of the comments on reports issued to the stakeholders, stakeholder consultation meetings and response to the Scoping Opinion relevant to ground conditions and contamination is detailed below. Full details of all the topic-specific comments received during scoping and subsequent technical stakeholder engagement and responses are provided in Vol 2 Appendix 7.1 Table 1.
- 1.2.3 Discussions have taken place with the EA on the management of potential impacts on groundwater, in particular the Chalk aguifer.

Vol 2 Appendix 7.1 Table 1 Ground conditions and contamination engagement – comments and responses

Organisation and date	Comment	Response
	Meeting to discuss AMEC ¹ site investigation and human health generic risk assessment which	

¹ Note: Prior to 2015, Amec Foster Wheeler company name was AMEC

Organisation and date	Comment	Response
	concluded that there was low risk to human health at the Application Site. LB Enfield was satisfied with the content of the report, but stated that additional assessment may be needed depending upon the future use of the Application Site ² (i.e. the future land use scenario). EA commented that the 2011 site investigation report adequately characterised the environmental risk posed by the Application Site.	Project design and are considered in the assessment. Human Health Risk was scoped out of the assessment.
EA, 2012	The EA issued a response ³ to the AMEC 2012 Source Protection Zone (SPZ) assessment and AMEC 2012 site investigation. The EA confirmed that they were satisfied with the contents of the 2012 SPZ assessment and that the 2012 site investigation provided useful information on the thickness of the London Clay across the Application Site.	As no unacceptable risks to groundwater receptors were identified, the design of the Project at the Application Site was progressed. A summary of all information relevant to the Project from the Application Site investigation reports and SPZ assessment report are included in Vol 2 Section 7.5 and a summary of all data from the reports are provided in the Hydrogeological Risk Assessment provided as Vol 2 Appendix 7.2 of the Environmental Statement (ES).
EA, 2013	The EA recommended that a thickness of 5 to 8m of London Clay should be retained below any wasterelated development on the Application Site.	AMEC was commissioned to undertake further site investigation in 2014 to confirm the geological thicknesses and the data from this investigation are included in Vol 2 Section 7.5 of the ES. As a result of these additional geological data, the Energy Recovery Facility (ERF) bunker was designed in north-east of the Application Site where the London Clay is thickest.
EA, January 2014	On the 2014 Site Investigation, the EA commented that further information regarding the permeability of the London Clay/Lambeth Clay at depth was required to better identify the risk to the underlying aquifer.	Laboratory permeability testing was undertaken on the drilling samples of London Clay and Lambeth Group. The results are summarised in the Vol 2 Section 7.5 of the ES and further details available in the Hydrogeological Risk Assessment provided as Vol 2 Appendix 7.2 of the ES.
EA, March 2014	During consultation on the Project design stage, the following aspects of the scheme were identified by the EA as requiring further assessment:	A Hydrogeological Risk Assessment (Vol 2 Appendix 7.2 of the ES) has been undertaken incorporating the aspects noted by the EA including

_

² Letter dated 3/10/11, from LB Enfield to AMEC, re: Edmonton SI Report

³ Letter dated 29/03/12, from Environment Agency to AMEC, re: Enquiry regarding dry Anaerobic Digestion (AD) Plant at Edmonton EcoPark in SPZ1 as part of NLWA Waste Services Procurement Process. Ref: NE/2012/114412/01-L01

Organisation and date	Comment	Response
	 Disturbance of groundwater flow in the Kempton Park Gravels as a result of the construction of the underground waste bunker which would fully penetrate this aquifer unit; A groundwater risk assessment and a hydrogeological assessment of groundwater flow; The need to maintain a minimum thickness of London Clay of 5 to 8m beneath the waste bunker and any other deep structures, to maintain a degree of protection to underlying aquifer units; and The potential for foundation piles to create pathways for migration of contaminants into aquifer units underlying the London Clay. 	requirements for a risk assessment set out in the EA's Groundwater Protection: Principles and practice GP3 ⁴ . Numerical modelling was undertaken to investigate the potential change to groundwater levels in the Kempton Park Gravels as a result of the proposed construction of the underground waste bunker as part of the proposed ERF. These assessments are all incorporated in Vol 2 Section 7.5 of the ES (baseline). The structures and buildings with deepest basements would be located in north-east of the Application Site where the London Clay is thickest to maintain a minimum of 5m London Clay beneath the waste bunker. A Piling Risk Assessment has been undertaken as part of the ES (Vol 2 Appendix 7.3). Detailed piling method statements will be undertaken as part of the detailed design process. The groundwater protection measures within the design will be agreed with the EA.
Scoping response: Secretary of State (November 2014) "In view of the current and previous uses of the Application Site the Secretary of State welcomes the proposed assessment of effects on ground conditions and contamination risks. The baseline for the Environmental Statement (ES) should explain in detail the extent of the study area, ensuring that the impacts are considered over a sufficiently wide area and provide the reasons to justify this."		The baseline for the assessment includes the detail noted by the Secretary of State and effects have been assessed inside and outside of the Application Site boundary where potentially significant effects have been identified.
	"The Secretary of State notes Table 8.2 which summarises the baseline scoping studies completed to date and which have helped to refine the scope of the assessment. Copies of these documents should be included with the ES if they are relied upon to support the scope and/or the conclusions of the assessment."	The Hydrogeological Risk Assessment summarises all data from previous investigations which is relevant to this assessment and is included as Vol 2 Appendix 7.2 of the ES.
	"Paragraph 8.3.7 states that the assessment will focus on significant	The assessment takes these comments into account. The pollution

⁴ Environment Agency (2013) Groundwater Protection: Principles and Practice Pollution GP3 August 2013 Version 1.1

Organisation and date	Comment	Response
	effects to receptors within the Application Site boundary. It is argued that pathways for contaminant migration to offsite receptors require contaminants entering underlying groundwater or existing contaminants in the soil/groundwater being disturbed and migrating elsewhere. The Report states that mitigation measures will prevent this from happening. These measures should be fully described in the ES; including how and why they mitigate all potentially significant adverse effects. It should also be clear how their delivery would be secured through the Design Consent Order [sic]. The potential of the measures to fail and/or not mitigate all potentially significant adverse effects (e.g. due to accidents or spillages/leakages of contaminants) should be addressed."	prevention measures are set out in Vol 2 Section 7 of the ES. The measures have been and will be discussed further with the LB Enfield and the EA through ongoing engagement.
	"Paragraph 8.3.27 explains that the hydrogeological conceptual site model (CSM) to be produced will identify the mitigation measures proposed. The characteristics and likely effectiveness of these measures should be discussed and agreed with the EA and the outcomes of this process should be explained in the ES."	The CSM is included in the assessment presented in Vol 2 Appendix 7.2. The CSM was developed as part of the Hydrogeological Risk Assessment and mitigation measures have been identified. The likely effectiveness of these mitigation measures has also been assessed. Discussions are ongoing with the EA regarding the effectiveness of the measures.
Scoping response: EA (November 2014)	"We are pleased to see that ground conditions and contamination have been considered within section 8 of the scoping document. Rather than focusing on human health implications which can be managed (e.g. capping or importing clean soils), it looks at the risks to the groundwater as a receptor."	Groundwater is considered as a receptor in Vol 2 Section 7 of the ES.
	"As identified, the detailed Hydrogeological Assessment of the Application Site should identify controls which will be in place to break any Source Pathway Receptor linkages during the construction and operational phases. This document does not go into as much detail for the operation phase controls as will be identified for the construction phase, we would suggest this is considered in more detail and how this can be expanded upon. There	A Source Pathway Receptor conceptual model has been developed and is described in the Hydrogeological Risk Assessment provided as Vol 2 Appendix 7.2 of the ES. For each risk identified in operational phase, associated environmental control measures and mitigation have been identified.

Organisation and date	Comment	Response
	will be a degree of overlap with any environmental permit requirements, but it is critical to get the appropriate infrastructure in place as it will be difficult and costly to retrofit controls once the Application Site has been developed".	
EA, February 2015	"Based on the analysis of advantages and disadvantages, we would also prefer to see the bunker removed as it leaves the land in a better position for redevelopment and less of a risk to the environment".	The assessment now considers that during demolition of the existing Energy from Waste (EfW) facility the bunker would be removed.
Phase Two Consultation response: EA (June 2015)	Hydrogeological Risk Assessment Report Review: EA are satisfied that all their comments raised from their review of the draft report had been addressed in the final report. "The new Source Protection Zone layers are to due be uploaded onto our website and we would like to reiterate that the Conceptual Site Model will need to be updated in due course to reflect this"	The new Source Protection Zones were uploaded 13 July 2015. There was only a very minor change on the Application Site. The updated SPZ figure (contained in Vol 2 Appendix 7.2 of the ES) has not resulted in any changes to the assessment in the Hydrogeological Risk Assessment or ES.
Phase Two Consultation response: LB Enfield (June 2015)	"There will be further work for risk to groundwater in the full EIA as the buildings will require piling which is likely to penetrate the London Clay. The London Clay is important as it is a barrier preventing surface contamination from reaching the chalk aquifer. The EIA will quantify risks and propose mitigation, if required, in order to ensure there are no unacceptable risks to ground water."	The assessment includes a Piling Risk Assessment (contained in Vol 2 Appendix 7.3 of the ES). The CoCP (Vol 1 Appendix 3.1 of the ES) contains an undertaking that a Piling Method Statement would be developed before any site works are undertaken.
Phase Two Consultation response: Thames Water (July 2015)	"No impact piling shall take place until a piling method statement (detailing the depth and type of piling to be undertaken and the methodology by which such piling will be carried out, including measures to prevent and minimise the potential for damage to subsurface sewerage infrastructure, and the programme for the works) has been submitted to and approved in writing by the local planning authority in consultation with Thames Water."	The assessment includes a Piling Risk Assessment (contained in Vol 2 Appendix 7.3 of the ES) .The CoCP (Vol 1 Appendix 3.1) contains an undertaking that a Piling Method Statement would be developed before any site works are undertaken.
	"We would expect the developer to demonstrate what measures he will undertake to minimise groundwater discharges into the public sewer."	A permit will be obtained for any groundwater discharges which are required to be made to the sewer.

1.3 Legislation and guidance

National policy

1.3.1 National policy requirements relevant to ground conditions and contamination assessment from EN-1: Overarching National Policy Statement for Energy and EN-3: National Policy Statement for Renewable Energy Infrastructure are listed in Vol 2 Appendix 7.1 Table 2 and Vol 2 Appendix 7.1 Table 3.

Vol 2 Appendix 7.1 Table 2: EN-1: Overarching National Policy Statement for Energy

Requirements of NPS EN-1	How the requirement is addressed	Location of where to find further detail
Para 5.15.4 notes that "activities that discharge to the water environment are subject to pollution control. The considerations set out in Section 4.10 of this NPS and detailed below on the interface between planning and pollution control therefore apply, and should be considered. These considerations will also apply in an analogous way to the abstraction licensing regime regulating activities that take water from the water environment, and to the control of regimes relating to works to, and structures in, on, or under a controlled water."		
Para 4.10.2 – "Pollution control is concerned with preventing pollution through the use of measures to prohibit or limit the releases of substances to the environments from different sources to the lowest practicable levels. It also ensures that water quality meet standards that guard against impacts to the environment or human health."	Pollution control included in design and detailed in CoCP. Pollution control risk assessed and impacts noted as part of ground conditions and contamination assessment.	CoCP (Vol 1 Appendix 3.1 of the ES)
Para 4.10.6 – "Applicants are advised to make early contact with relevant regulators including the EA, to discuss their requirements for environmental permits and other consents. This will help ensure count of all relevant environmental considerations and that the relevant regulators are able to provide timely advice and assurance to the Infrastructure Planning Commission. Whenever possible, applicants are encouraged to submit applications for Environmental Permits and other necessary consents at the same time as applying to the Infrastructure Planning Commission for development consent."	EA and LB Enfield consulted and informed throughout the development of the Application Site plan.	Vol 2 Section 7.2 (Engagement) of the ES
Para 4.10.8 – "The relevant pollution control authority is satisfied that potential releases can be adequately regulated under the pollution control framework; the effects of existing sources of pollution in and around the Application Site are not such that the cumulative effects of pollution when the proposed development is added would make that development unacceptable, particularly in relation to statutory environmental limits."	Cumulative impacts considered as part of ground conditions and contamination assessment.	Vol 2 Section 7.12 (Cumulative effects) of the ES

Requirements of NPS EN-1	How the requirement is addressed	Location of where to find further detail
Para 5.15.7 – It should be considered "whether appropriate requirements should be attached to any development consent and/or planning obligations entered into to mitigate adverse effects on the water environment."	Flood risk assessment and hydrogeological risk assessment undertaken. Potential impacts considered as part of ground conditions and contamination assessment.	Flood Risk Assessment (Vol 2 Appendix 10.2 of the ES), hydrogeological risk assessment (Vol 2 Appendix 7.2 of the ES), Water Resources and Flood Risk (Vol 2 Section 11 of the ES) and Ground Conditions and Contamination (Vol 2 Section 7 of the ES).
Para 5.15.8 – It should be considered "whether mitigation measures are needed over and above any which may form part of the Project application. A construction management plan may help codify mitigation at that stage."	Potential impacts considered as part of ground conditions and contamination assessment and managed by the CoCP.	CoCP (Vol 1 Appendix 3.1 of the ES) and Ground Conditions and Contamination (Vol 2 Section 7 of the ES)
Para 5.15.9 – "The risk of impacts on the water environment can be reduced through careful design to facilitate adherence to good pollution control practice. For example, designated areas for storage and unloading, with appropriate drainage facilities, should be clearly marked."	Water environment considered within the design and CoCP and potential impacts considered as part of ground conditions and contamination assessment.	CoCP (Vol 1 Appendix 3.1 of the ES)
Para 5.10.5 – "The ES should identify existing and proposed land uses near the Project, any effects of replacing an existing development or use of the Application Site with the proposed Project or preventing a development or use on a neighbouring site from continuing. Applicants should also assess any effects of precluding a new development or use proposed in the development plan."	Cumulative impacts of neighbouring developments considered as part of ground conditions and contamination assessment.	Vol 2 Section 7.12 (Cumulative effects) of the ES
Para 5.10.8 — "Applicants should also identify any effects and seek to minimise impacts on soil quality taking into account any mitigation measures proposed. For developments on previously developed land, applicants should ensure that they have considered the risk posed by land contamination."	Potential effects and impacts considered in hydrogeological risk assessment and as part of ground conditions and contamination assessment.	Hydrogeological Risk Assessment, (Vol 2 Appendix 7.2 of the ES), Water Resources and Flood Risk (Vol 2 Section 11 of the ES) and Ground Conditions and Contamination (Vol 2 Section 7 of the ES)

Requirements of NPS EN-1	How the requirement is addressed	Location of where to find further detail
Para 5.15.2 – "Where the Project is likely to have effects on the water environment, the Applicant should undertake an assessment of the existing status of, and impact of the proposed Project on, water quality, water resources and physical characteristics of the water environment as part of the ES."	Assessed under Water resources, which provides baseline for this assessment.	Water Resources and Flood Risk (Vol 2 Section 11 of the ES)
Para 5.15.3 of this NPS notes that the Applica	ant should include the following in	the ES.
"the existing quality of waters affected by the proposed Project and the impacts of the proposed Project on water quality"	Assessed in ground conditions and contamination assessment.	Ground Conditions and Contamination (Vol 2 Section 7 of the ES)
"existing water resources affected by the proposed Project and the impacts of the proposed Project on water resources"	Assessed under water resources which provides baseline for this assessment.	Water Resources and Flood Risk (Vol 2 Section 11 of the ES)
"any impacts of the proposed Project on water bodies or protected areas under the Water Framework Directive and SPZs around potable groundwater abstractions."	Assessed underground conditions and contamination assessment and water resources, which provides baseline for this assessment.	Ground Conditions and Contamination (Vol 2 Section 7 of the ES) and Water Resources and Flood Risk (Vol 2 Section 11 of the ES)

Vol 2 Appendix 7.1 Table 3: EN-3: National Policy Statement for Renewable Energy Infrastructure

Requirements of NPS EN-3	How the requirement is addressed	Location of where to find further detail
Para 2.5.86 – The Applicant should have "demonstrated measures to minimise adverse impacts on water quality and resources as described in EN-1 and EN-3."	as part of ground conditions	

Legislation, guidance and local policy

1.3.2 The basis for the assessment of contaminated land is founded in the legalisation, policy and guidance listed below. These documents define how contaminated land is identified, how contaminated land should be assessed, the requirement to identify and protect receptors, and the use of a conceptual model identifying source-pathway-receptors as an assessment methodology. These documents have therefore defined the methodology of the assessment and give guidance on the assessment outcome. A summary of some of the most pertinent paragraphs and/ or summaries of the relevant sections from these documents have been detailed below. As these documents are applicable to the development of

the methodology, they have not been referenced individually in the Assessment.

- a. National Planning Policy Framework;
- b. The Groundwater (England & Wales) Regulations (2009);
- Part 2A of the Environment Protection Act 1990:
- d. Department of Environment, Food and Rural Affairs (Defra) Contaminated Land Statutory Guidance (2012);
- e. Defra SP1010: Development of Category 4 Screening Levels for Assessment of Land affected by Contamination – Policy Companion Document, March 2014; Risk assessment guidance; and
- f. Model procedures for the management of land contamination (CLR11).
- 1.3.3 Paragraph 109 of the National Planning Policy Framework indicates that the planning system should contribute to and enhance the natural and local environment by:

"remediating and mitigating despoiled, degraded, derelict, contaminated and unstable land, where appropriate."

1.3.4 In this assessment the identification of any land which has potentially polluting substances has been assessed to determine if mitigation will be required as part of the Project. Paragraph 121 states that:

"Planning policies and decisions should also ensure that:

- the Application Site is suitable for its new use taking account of ground conditions and land instability, including from natural hazards or former activities such as mining, pollution arising from previous uses and any proposals for mitigation including land remediation or impacts on the natural environment arising from that remediation.
- adequate site investigation information, prepared by a competent person, is presented."
- Several site investigations have been undertaken at the Application Site 1.3.5 which included soil, gas and water sampling and monitoring and provide the baseline to this assessment.
- 1.3.6 The Groundwater (England & Wales) Regulations (2009) defines hazardous and non-hazardous substances, and makes it an offence to cause or knowingly permit the discharge of hazardous or non-hazardous substances into groundwater unless it is carried out under and in accordance with a permit granted by the EA. This definition is included as one of the assessment criteria.
- 137 The principal legislation governing the identification and remediation of contaminated land is Part 2A of the Environment Protection Act 1990, which was implemented in April 2000. The legislation is supported by the Contaminated Land (England) Regulations (2000), amended in 2006 and 2012, and Statutory Guidance (Defra Circular 01/2006), subsequently updated in April 2012. Together this provides the regulatory regime which sets out the nature of liabilities that can be incurred by owners of contaminated land and groundwater.

- 1.3.8 Part 2A provides a statutory definition of contaminated land and sets out the nature of liabilities that can be incurred by owners of contaminated land and groundwater and these definitions have been applied in this assessment. According to the Act, contaminated land is defined as:
 - a. "any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substance in, on, or under that land. that:
 - Significant harm is being caused, or there is significant possibility of such harm being caused; or
 - Significant pollution of controlled waters is being caused or there is a significant possibility of such pollution being caused"
- 1.3.9 Central to the regulatory system is a rigorous procedure of risk assessment which is used to determine the existence of 'contaminated land' according to the definition. The approach to undertaking a risk assessment should be in line with the regulations and be based on a tiered framework in accordance with risk assessment guidance⁵ and CLR11⁶. This approach was used in this assessment and in the Hydrogeological Risk Assessment which supports the assessment (Vol 2 Appendix 7.2 of the ES).
- 1.3.10 Following the guidance, a conceptual model has been developed at the preliminary risk assessment (tier 1) stage. The conceptual model represents the characteristics of the Application Site and indicates the possible relations between contaminants, pathways and receptors
- 1.3.11 For a potential risk to exist at a site all three of the above elements must be present, and linked together so that a contaminant has been identified, a receptor is located on the Application Site and there is an exposure pathway that links the contaminant to the receptor. The term 'pollutant linkage' is used to describe a particular combination of contaminant-pathway-receptor relationship.
- 1.3.12 For each receptor, a description of the harm that is to be regarded as significant harm for the purposes of the regime is contained in the statutory guidance and has been followed in this assessment. Receptors include human beings, ecological systems in certain protected locations (e.g. Sites of Special Scientific Interest), property such as crops, livestock, domesticated animals, animals maintained for sporting purposes, buildings and their services. Significant harm includes in appropriate cases death, disease, serious injury, specified ecological system effects, substantial diminution of crop yield and structural building failure. Pollution of controlled waters arising from the contaminated condition of land is also included in the regime.

⁵ Department for Environment, Transport and the Regions, Environment Agency and Institute for Environment and Health (2000) Guidelines for Environmental Risk Assessment and Management. July 2000.

⁶ Department for the Environment, Food and Rural Affairs and the Environment Agency. (2004) Model Procedures for the Management of Land Contamination. Contaminated Land Report CLR 11. September 2004.

1.3.13 Other guidelines and standards have been taken into account during the preparation of this assessment, in addition to those named above and include:

Controlled waters

a. Defra, EA Water Framework Directive Thames River Basin Management Plan (2009)

Baseline data for the assessment:

- b. British Standards Institute BS10175:2011+A1:2013 Investigation of Potentially Contaminated Sites Code of Practice was used for site investigations which are included in the baseline of the assessment.
- c. British Standards Institute BS5030:1999+A2:2010 Code of Practice for Site Investigations was used for site investigations which are included in the baseline of the assessment.
- d. EA Pollution Prevention Guidelines (PPG) (notably PPG1 Guide to Preventing Pollution, PPG2 Above Ground Oil Storage Tanks, PPG5 Works in or Near Water, PPG6 Working at Construction and Demolition Sites, PPG7 Refuelling Facilities Good Practice Guidelines, PPG21 Pollution Incident Response Planning, PPG22 Dealing with Spills)

Piling design:

- e. EA (2001) Piling and Penetrative Ground Improvement Methods on Land Affected by Contamination: Guidance on Pollution Prevention. NC/99/73
- f. EA (2002) Piling into Contaminated Sites

Groundwater risk assessment and assessment methodology

- g. EA Groundwater Protection: Principles and Practice Pollution GP3
- 1.3.14 Other guidelines, policies and plans have been consulted during the preparation of this assessment to ensure all applicable regional and local planning policies have been considered. The policies reference the use of the guidance and legislation which were already considered within the assessment as detailed in Paragraphs 1.3.12 and 1.3.13. Policies considered comprise:
 - a. London Plan (2011) ⁷ Policy 5.14 Water quality and waste water infrastructure, which indicates that future developments in London will "protect and improve water quality having regard to the Thames River Basin Management Plan";
 - b. Enfield Council Core Strategy 2010-2025 Section 8,8 which details the core policies for the Environment Protection for future developments in LB Enfield and are consistent with the national policy;

⁷ Greater London Authority (GLA) (2015) The London Plan, the Spatial Development Strategy for London Consolidated with Alterations since 2015, March 2015.

⁸LB Enfield (2010) The Enfield Plan Core Strategy 2010 – 2025, Adopted November 2010.

- c. Enfield Council Development Management Document (2014) Section 11, which details policy on Environmental Protection for future developments in the borough, and also provides guidance on the policies. The document details that contaminated land will be sufficiently assessed to determine that no harm will be caused for use of the Application Site. It also details that risk assessment of all potential effects, the application of suitable safeguards and consultation with the EA or other suitable regulators needs to occur. This document was consistent with the national policy and CLR11 guidance methodology considered in the assessment;
- d. Enfield Council Unitary Development Plan (1994) contains the policy on Environmental Protection (G1) which is consistent with the national policy considered in the assessment; and
- e. the London Borough Councils and EA have developed a contaminated land strategy in accordance with Part 2A and produced a document, Contaminated Land: A Guide to Help Developers Meet Planning Requirements, dated January 2004, which details the risk assessment methodology for contaminated land for new developments which is considered in the methodology for this assessment. This is consistent with the approach detailed in Part 2A which is used in this assessment.

1.4 Baseline conditions

Current baseline

1.4.1 Extensive work has been undertaken in relation to ground conditions and contamination at the Application Site. This work is summarised in Vol 2 Appendix 7.1 Table 4. The table additionally describes the purpose of each assessment or investigation. A map of the current site groundwater monitoring network and further details of each of the Application Site investigations and assessments are detailed in Vol 2 Appendix 7.2 (Hydrogeological Risk Assessment) of the ES.

Vol 2 Appendix 7.1 Table 4: Baseline data

Year	Relevant baseline data	Purpose
2011	Review of historical information and geological and groundwater vulnerability mapping	To determine the historical and current site conditions from the available literature and location mapping.
2011	Soils data from 56 intrusive locations	To develop geological mapping of the Application Site and soil quality
2011	Two groundwater and six ground gas monitoring rounds	To determine the baseline groundwater and ground gas concentrations
2011	Three ground gas monitoring rounds and risk classification	To establish the potential risk to human health and to the environment.
2012	A screening assessment for the SPZ for nearby public water supply boreholes was undertaken. This study included a CSM and	To establish a CSM and preliminary risk categorisation.

Year	Relevant baseline data	Purpose	
	preliminary risk categorisation for the proposed anaerobic digestion plant		
2013	Soils data from four additional boreholes installed into the London Clay and Lambeth Group	To develop geological mapping of the Application Site and groundwater quality in the Lambeth Group.	
2013	Additional investigation of groundwater quality, following feedback from the EA.	To confirm the water quality in the Lambeth Group by analysing with lower analytical minimum detection limits.	
2014	Soils and geotechnical data from 13 boreholes installed into the London Clay and Lambeth Group	To further develop geological mapping of the Application Site and determine the thickness of London Clay in the north of the Application Site. Geotechnical testing for informing building and foundation design.	
2014	Soils analysis from four boreholes installed into the London Clay and Lambeth Group	To further develop geological mapping of the Application Site and determine the land quality.	
2015	Ten rounds of groundwater monitoring data from 19 boreholes, collected 2012-14.	Determine the baseline groundwater quality on the Application Site and monitoring for the Application Site Protection Monitoring Plan.	
2015	Hydrogeological Risk Assessment for the Application Site and proposed ERF.	Establish the hydrogeological risks for the Application Site.	
2015	Piling Risk Assessment for the Application Site.	Establish the potential risks for the Application Site.	

Receptor identification and sensitivity

- 1.4.2 The varying effects of a contaminant on individual receptors depend largely on the sensitivity of the receptor. Receptors include any people, animal or plant populations, or natural or economic resources within the range of the contaminant source which are connected to the source by the transport pathway, although in this instance the assessment is concerned primarily with soils and groundwater.
- 1.4.3 The receptors for current site activities are identified as part of the ground condition and contamination assessment in the CSM. The sensitivity of each of the receptors has been identified as part of the assessment methodology. Baseline soil and groundwater sampling has been undertaken within the operational area of the Application Site and the boreholes and monitoring network put in place to establish baseline ground, surface water and groundwater quality is shown in Vol 2 Figure 7.1.
- 1.4.4 Receptors outside the Application Site boundary are also considered as receptors from onsite sources identified. The groundwater in the aquifers underlying the Application Site are sensitive receptors, and the public and private abstractions from these aquifers are sensitive receptors. Salmon's Brook, which is in hydraulic connectivity with the Application Site groundwater aquifers, is also considered a receptor for this assessment.

1.4.5 Surface water bodies outside the Application Site which have been identified as potential receptors have been assessed and their water quality considered within the Thames River Basin Management Plan (2009) context with reference to improving water quality.

Future baseline

1.4.6 The future baseline of the Application Site considers changes to the baseline due to planned developments in the vicinity of the Application Site which need to be taken into account in the assessment.

1.5 Construction effects

1.5.1 The methodology has been developed using expert judgement in conjunction with the guidance identified in Section 1.3.

Assessment area

1.5.2 The assessment area encompasses the Application Site and considers Principal and Secondary aquifers outside the Application Site, and public and private groundwater abstractions which could be impacted by sources within the Application Site. The surface water body Salmon's Brook is considered as it is in hydraulic connectivity with the onsite aquifers.

Assessment method and significance criteria

1.5.3 The significance of any impacts caused by the Project on baseline conditions has been assessed qualitatively based on professional judgement and relevant guidance (as detailed in Section 1.3) for contaminated land and water resources. The magnitude of the impact is determined by assessing the severity and likelihood. The sensitivity of the receptor, which is a combination of its relative importance and the degree of anticipated environmental response of the receptor, and the magnitude of any potential impact combine to determine the significance of the impact. Magnitude, severity, sensitivity and significance criteria were developed and are detailed below.

Severity

Severity of the impact is the scale of impact on a receptor, i.e. size, duration, timing or frequency, as defined in Vol 2 Appendix 7.1 Table 5. The likelihood of the impact is detailed in Vol 2 Appendix 7.1 Table 6. The severity of impact is combined with the likelihood of occurrence to give the magnitude of impact as detailed in Vol 2 Appendix 7.1 Table 7.

Vol 2 Appendix 7.1 Table 5: Severity of impact

Severity	Criteria (impact size, duration, timing or frequency)		
Major	Major change to soil or groundwater conditions (including deterioration in soil or groundwater quality) resulting in temporary or permanent changes (e.g. major spillage resulting in levels of contamination which would cause significant harm to a receptor).		
Moderate	Detectable change to soil or groundwater conditions resulting in non-fundamental temporary or permanent changes. Some deterioration in soil quality likely to temporarily affect sensitive receptors.		
Minor	Detectable but minor change to soil or groundwater conditions. Soil quality standards less than threshold and unlikely to affect sensitive receptors (e.g. a minor spillage).		
Negligible	Unquantifiable change in soil or groundwater conditions.		

Vol 2 Appendix 7.1 Table 6: Likelihood of impact

Impact	Definition	
Unlikely	An impact which whilst theoretically possible will probably never be realised.	
Low likelihood	An impact that is considered possible when considered over the development lifetime.	
Likely inevitable	An impact which is considered likely when considered over the development lifetime, but not inevitable.	
High likelihood	An impact that is considered to be a direct and inevitable consequence of the Project or which is considered to be probable even when considered in the short term.	

Vol 2 Appendix 7.1 Table 7: Magnitude of impact

		Likelihood			
		Unlikely	Low likelihood	Likely inevitable	High likelihood
Severity	Major	Minor	Moderate	Major	Major
	Moderate	Negligible	Minor	Moderate	Moderate
	Minor	Negligible	Negligible	Minor	Minor
	Negligible	Negligible	Negligible	Negligible	Negligible

Sensitivity

1.5.4 Vol 2 Appendix 7.1 Table 8 provides the sensitivity criteria for receptors, which is a combination of their relative importance and the degree of anticipated environmental response.

Vol 2 Appendix 7.1 Table 8: Criteria for sensitivity of receptor

Sensitivity	Criteria
Very High	Environment responds to major change(s) e.g. substantial change to groundwater quality in an aquifer used as potable drinking water supply. Potential to cease drinking water supply on long term.

Sensitivity	Criteria
High	Environment clearly responds to effect(s) in quantifiable and/or quantifiable manner e.g. change in groundwater quality in an aquifer causing identifiable deterioration in water quality. Potential to cease drinking water supply on medium or short term.
Medium	Environment responds in a minimal way such that only minor changes are detectable e.g. groundwater quality shows only minor changes.
Negligible	Environment is insensitive to impact, no discernible changes e.g. no significant change in water quality detected, or receptor not sensitive to change.

Significance criteria

- 1.5.5 Magnitude of impact and sensitivity have been combined to provide the significance of impacts on receptors as detailed in Vol 2 Appendix 7.1 Table 9.
- 1.5.6 The significance assessment is the process of collating known information on a hazard or set of hazards in order to estimate actual or potential impact on receptors. Receptors are connected with the hazard under consideration via one or several exposure pathways Risks are generally managed by isolating or removing the hazard, isolating the receptor, or by intercepting the exposure pathway. Without the three essential components of a source, pathway and receptor, there can be no effect on the receptor. Thus, the mere presence of a hazard at a site does not mean that there will necessarily be attendant risks.
- 1.5.7 In this assessment the source, pathway and receptor linkage is identified within the CSM. The assessment is made for each contaminant on a receptor by receptor basis with reference to the significance and degree of the risk. In assessing this information, a measure is made of whether the source contamination can reach a receptor, determining whether it is of significance or not.

Vol 2 Appendix 7.1 Table 9: Significance of the impact

		Sensitivity of Receptor			
		Very high	High	Medium	Low
pact	Major	Very Substantial	Substantial	Substantial /Moderate	Moderate
Magnitude of Impa	Moderate	Substantial	Substantial /Moderate	Moderate	Moderate/Slight
	Minor	Substantial /Moderate	Moderate	Moderate/ Slight	Slight
	Negligible	Negligible	Negligible	Negligible	Negligible

Key: Significant Impact Not Significant Impact

Vol 2 Appendix 7.1 Table 10 Definition of significance of impacts

	Significance	Definition
Not significant impact	Negligible	The presence of an identified hazard does not give rise to the potential to cause significant harm to a receptor.
	Slight/Moderate	It is possible that harm could arise to a receptor from an identified hazard but it is likely that, at worst, this harm, if realised, would normally be minor.
Significant impact	Substantial	It is possible that, without appropriate remedial action, harm could arise to a receptor. It is relatively unlikely that any harm would be high, and if any harm were to occur it is more likely that such harm would be minor.
	Very Substantial	Harm is likely to arise to a receptor from an identified hazard at the Application Site without appropriate remedial action.

1.5.8 Where the risk of significant impact is assessed to be substantial or above, mitigation/management will normally be required to reduce the level of risk to slight or negligible levels. In any situations where it is not possible, or reasonable, to mitigate the impacts down to this level, these residual risks have then been assessed. The summary for each significance category is detailed in Vol 2 Appendix 7.1 Table 10.

1.6 Operational effects

1.6.1 The assessment method is the same as that applied for the construction assessment and described in Section 1.5.

1.7 Decommissioning effects

1.7.1 The assessment method is the same as that applied for the construction assessment and described in Section 1.5.

1.8 Cumulative effects

- 1.8.1 Cumulative effects of other developments within the local area are identified below, and their effects are considered qualitatively during the different phases of the Project.
- 1.8.2 The potential effects for the construction and operational phases of each of the developments are identified and these effects are considered in addition to the potential effects from the Project. The cumulative effects of the developments are assessed to indicate if there are any likely significant impacts.
 - a. The North London (Electricity Line) Reinforcement (Development Consent Order) Project is located approximately 60m from the Application Site and extends along the north-east, east, south-east and south of the Application Site. Upgrade work to an existing overhead line between Waltham Cross and Tottenham Substations, and its operation at a higher voltage. The upgrading will involve works at each substation along the route. This includes a substation located partially within the Application Site boundary. No information is available regarding the

- nature of the upgrade work however any construction required has the potential to increase hardstanding within that area.
- b. Meridian Water, approximately 300m south of the Application Site. It is anticipated that these works will include excavations, piles and dewatering and therefore may have effect on the flow and water quality in the underlying aquifers. Any change of use to residential is likely to extend the amount of soft landscaping and hence would influence infiltration rates at that site.

NORTH LONDON WASTE AUTHORITY

NORTH LONDON HEAT AND POWER PROJECT

ENVIRONMENTAL STATEMENT: VOLUME 2 APPENDIX 7.2 HYDROGEOLOGICAL RISK ASSESSMENT

AD06.02

North London Waste Authority North London Heat and Power Project Hydrogeological Risk Assessment

AD06.02

The Planning Act 2008 The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 Regulation 5 (2)(a)

Issue | October 2015

Amec Foster Wheeler Environment & Infrastructure UK Ltd.

This report takes into account the particular instructions and requirements of our client.

It does not in any way constitute advice to any third party who is able to access it by any means. Amec Foster Wheeler excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

Contents

			Page
Exec	utive su	mmary	1
1	Introd	luction	4
	1.1 1.2	Terms of reference and purpose of this report Summary of the Proposed Project	4
	1.3	Sources of Information	5
2	Edmo	onton EcoPark - location, descriptions and setting	8
	2.1	Site location and description	8
	2.2	Edmonton EcoPark topography and existing land use	8
	2.3	Adjacent land use	9
	2.4	Edmonton EcoPark history	9
	2.5	Regional geology and hydrogeology	9
	2.6	Edmonton EcoPark geology	10
	2.7	Made Ground	11
	2.8	Natural Ground	12
	2.9	Energy from Waste facility excavation area	13
3	Hydro	ogeology	13
	3.1	Groundwater levels	13
	3.2	Groundwater quality	16
4	Hydro	ology	20
	4.1	Surface water	20
	4.2	Surface water quality	20
	4.3	Surface water quality from the Environmental Permit Regumentation	lations 21
	4.4	Flood risk	22
	4.5	Groundwater - surface water interactions	22
5	Conce	eptual site model	23
	5.1	Conceptual model	23
	5.2	Potential sources	25
	5.3	Potential pathways	26
	5.4	Potential Receptors	28
6	Huma	n health risk assessment	29
	6.1	Approach	29
	6.2	Results	30
	6.3	Ground gas assessment	31

7	Hyd	rogeological Risk Assessment	32	
	7.2	Hazard Identification and Risk Register	32	
	7.3	Risk register	32	
	7.4	Hazards	34	
	7.5	Mitigation measures	34	
	7.6	Risk matrix	36	
	7.7	Results	38	
8	Con	clusions	40	
Table	S			
Table ²	1.1	Sources of Information		
Table 3	3.1	Results of Laboratory Triaxial Permeability Testing of Clay Fo	rmations	
Table 3	_	Summary of exceedance of Water Quality Standards in Grounthe KPG		
Table 3	3.3	Summary of exceedance of Water Quality Standards in Group the Lambeth Group	าdwater in	
Table 5	5.1	Potential Contaminant Sources		
Table 5	5.2	Receptors and pathways		
Table 6	3.1	Soil Analysis		
Table 6	3.2	Examples of Soil GAC Exceedances		
•		Potential Sources previously assessed (Appendix F)		
Table 7.2		Potential Sources (not including previous sources already ass	essed)	
Table 7	7.3	Likelihood of an Event		
Table 7		Environmental Consequence of an Event		
		Risk Matrix		
Figur	es			
Figure	1	Site location plan		
Figure		Site layout '		
Figure	3	Exploratory hole locations		
Figure		Source Protection Zones		
Figure		Top of the London Clay and geological cross section locations	3	
Figure		Base of the London Clay		
Figure		Thickness of the London Clay		
Figure		Cross Section A-A' Cross Section B-B'		
3		Groundwater Levels in Kempton Park Gravels May 2014		
•		Groundwater Levels in Kempton Park Gravels May 2014 Groundwater Levels in Kempton Park Gravels May 2014		
Figure 12		Conceptual model block diagram		
Figure		Conceptual model site section		

Appendices

Appendix A : Borehole figures, logs and geotechni	cal analysis results <i>F</i>	۱.1
A1 Figures	A	۱.1
A2 Borehole logs and geotechnical analysis re	sults A	۱.2
Appendix B : Soil Generic Quantitative Risk Asses	sment E	3.1
Appendix C : Groundwater and surface water analy	rtical results C	2.1
Appendix D : Kempton Park Gravel numerical grou	ndwater model [).1
Appendix E : Energy from Waste facility design dra	awings E	≣.1
Appendix F : Initial groundwater risk assessment s	creening table	₹.1
Appendix G : Hydrogeological Risk Assessment ta	bles	3.1

Executive summary

- i.i.i Amec Foster Wheeler Environment & Infrastructure UK Ltd (Amec Foster Wheeler) was commissioned by North London Waste Authority (the Applicant) to undertake a hydrogeological risk assessment at Edmonton EcoPark. The Applicant is seeking a Development Consent Order (DCO) for the North London Heat and Power Project (the Project), which includes a proposed Energy Recovery Facility (ERF) and associated infrastructure to replace the existing Energy from Waste (EfW) facility. As part of the DCO Application, an Environmental Impact Assessment (EIA) has been undertaken. The Environment Agency (EA) has identified a hydrogeological risk assessment as a requirement to support the EIA.
- i.i.ii The Project consists of a proposed ERF in the northernmost section of the Edmonton EcoPark that will comprise:
 - a. a waste reception area;
 - b. a storage bunker;
 - c. the main combustion and boiler plant;
 - d. an ash recycling facility; and
 - e. a turbine, as well as administration buildings.
- i.i.iii The waste stream will be derived from domestic and business sources and will not include separately collected hazardous wastes. In the south and east, a one storey Recycling and Fuel Preparation Facility (RFPF) and two storey EcoPark House office building are proposed.
- i.i.iv The existing EfW facility and below ground bunker will be demolished and backfilled as well as the current Waste Water Treatment Plant once the proposed ERF is fully operational.
- i.i.v For the proposed ERF, the significant considerations for groundwater are: introduction of new hazards at the Edmonton EcoPark; and creation of new pathways from sources of potentially polluting substances to the underlying Principal Aquifer and public water abstraction from that aquifer. The Edmonton EcoPark lies within the inner Source Protection Zone (SPZ) for a public water abstraction.
- i.i.vi The Project raises the following considerations for groundwater protection:
 - a. changes in groundwater levels and flow directions in the Kempton Park Gravels due to the impermeable ERF bunker structure;
 - b. maintenance of the protection to underlying sensitive aquifers provided by the low permeability London Clay and/or Alluvium; and
 - c. the potential for foundation piles to create new pathways for contaminant migration from the surface to sensitive aguifers at depth.
- i.i.vii The Edmonton EcoPark is generally flat and low-lying. It has been used as a waste management site since the 1960s.
- i.i.viii The Edmonton EcoPark is underlain by Made Ground, a thin layer of Alluvium and then the Kempton Park Gravels (River Terrace Deposits), beneath this is the London Clay, Lambeth Group, Thanet Sands and Chalk.
 - 1 AD06.02 | Issue | October 2015 | Amec Foster Wheeler Environment & Infrastructure UK Ltd.

- i.i.ix The Alluvium, Kempton Park Gravels, Thanet Sands and the sandier horizons in the Lambeth Group are Secondary Aquifers and the Chalk is a Principal Aquifer.
- i.i.x The Edmonton EcoPark is within an inner (zone 1) and outer (zone 2) groundwater SPZ for a public water supply borehole at Chingford 400m east of the Edmonton EcoPark, which abstracts groundwater from the Chalk.
- i.i.xi The low permeability layers in the Lambeth Group and the London Clay provide protection to the underlying Chalk by limiting downward movement of groundwater from the surface.
- i.i.xii In the centre of the Edmonton EcoPark, the London Clay is absent where it was removed to permit construction of the existing EfW facility bunker.
- i.i.xiii Groundwater is found at shallow depth in the Kempton Park Gravels and generally flows to the southwest.
- i.i.xiv Groundwater quality in the Chalk is anticipated to be good, reflecting its use for potable water supply. The Thanet Sand is commonly found to be in hydraulic connectivity to the Chalk and therefore its water quality is therefore also anticipated to be good.
- i.i.xv There is some contamination in the Kempton Park Gravels and Lambeth Group (exceedences of water quality standards) for ammonium, chloride, sulphate, metals and metalloids (aluminium, arsenic, boron, cadmium, chromium, copper, mercury, iron, nickel, and selenium), phenols and vinyl chloride.
- i.i.xvi The Edmonton EcoPark sits between the Enfield Ditch to the east and Salmon's Brook immediately west of the Edmonton EcoPark. The River Lee Navigation is further to the east of the Edmonton EcoPark. Water quality monitoring of Salmon's Brook and the River Lee Navigation found no exceedances of the freshwater EQS but elevated ammonium was identified in Salmon's Brook at concentrations of 4.1mg/L upstream and 2.1mg/L downstream. As the concentration is lower downstream it does not suggest that the Edmonton EcoPark is a source of ammonium to the watercourse.
- i.i.xvii A conceptual site model has been developed that links sources, pathways and receptors. A range of potential sources associated with existing and Project activities have been identified.
- i.i.xviii Current pathways, and pathways which may be developed due to the Project, have also been identified in association with the proposed ERF bunker, deep foundation piles, dewatering to permit excavations and existing EfW facility bunker demolition.
- i.i.xix The main receptors that are potentially at risk from the Project are: current and future commercial site users; construction workers; groundwater in the Kempton Park Gravels; Lambeth Group, Thanet Sands; Chalk aquifers; and public supply boreholes.
- i.i.xx Separate preliminary risk assessments have been undertaken to consider human health and groundwater.

- i.i.xxi The results of the human health risk assessment found a small number of exceedences of generic assessment criteria for lead, chromium (total) and benzo(a)pyrene. The presence of asbestos was noted in a small number of samples. The majority of GAC (General Assessment Criteria) exceedances are at depths below 0.7m and therefore there is unlikely to be an exposure pathway which could affect human health. The shallow exceedences were in areas covered in hard standing, mitigating a potential exposure pathway.
- i.i.xxii The results of the hydrogeological risk assessment found that after mitigation measures the risk for the majority of possible hazard events is low, with the exception of where the impermeable surface or bund is breached by subsidence in which case the risk is considered to be medium. Such an event would also need to coincide with another event (e.g. ruptures of a pipeline) and the likelihood of such an event is considered to be very remote. The risk could further be reduced by:
 - a. regular inspection of bunds and impermeable surfaces; and
 - b. emergency response procedure in the event of a failure.

1 Introduction

1.1 Terms of reference and purpose of this report

- 1.1.1 Amec Foster Wheeler Environment & Infrastructure UK Ltd (Amec Foster Wheeler) has been commissioned by North London Waste Authority (the Applicant) to undertake a hydrogeological risk assessment at Edmonton EcoPark.
- 1.1.2 The Applicant is seeking a Development Consent Order (DCO) for the North London Heat and Power Project (the Project), which includes a proposed Energy Recovery Facility (ERF) and associated infrastructure to replace the existing Energy from Waste (EfW) facility. As part of the DCO application, an Environmental Impact Assessment (EIA) has been undertaken. The Environment Agency (EA) has identified a hydrogeological risk assessment as a requirement to support the EIA.
- 1.1.3 The DCO Application Site boundary includes the existing Edmonton EcoPark, a Temporary Laydown Area to the east of the Edmonton EcoPark, part of Lee Park Way and land to the west of the River Lee Navigation, an area in the northwest around the existing water pumping station, part of Ardra Road. This assessment has been undertaken for the Edmonton EcoPark only.

1.2 Summary of the Proposed Project

- 1.2.1 The Project consists of a proposed ERF, which will be developed in the northernmost section of Edmonton EcoPark and will comprise:
 - a. a waste reception area including a storage bunker;
 - b. the main combustion and boiler plant;
 - c. an ash recycling facility; and
 - d. a turbine, as well as administration buildings.
- 1.2.2 The waste stream will be derived from domestic and business sources and will not include separate hazardous wastes. The buildings currently in the north of the Edmonton EcoPark are to be demolished.
- 1.2.3 In the south of the Edmonton EcoPark a one storey Resource Recovery Facility (RRF) is proposed, and in the area to the east of the Edmonton EcoPark a two storey EcoPark House office building is proposed.
- 1.2.4 The existing EfW facility and below ground bunker will be demolished and backfilled, as well as the current Waste Water Treatment Plant once the proposed ERF is fully operational. The detailed EfW facility demolition design has yet to be finalised and therefore, the demolition stage is not considered in this hydrogeological risk assessment. However, the current Edmonton EcoPark site condition and post bunker removal stages are considered.
- 1.2.5 For the proposed construction, the significant considerations for groundwater are: introduction of new hazards to the Edmonton EcoPark; and creation of new pathways from sources of potentially polluting
 - 4 AD06.02 | Issue | October 2015 | Amec Foster Wheeler Environment & Infrastructure UK Ltd.

substances to the underlying Principal Aquifer and public water abstraction from the aquifer. The Edmonton EcoPark lies within the inner Source Protection Zone (SPZ) for the public water abstraction which indicates that groundwater underlying the Edmonton EcoPark is within 50 day travel time to the abstraction.

- 1.2.6 From consultation with the EA, the Project raised the following considerations for groundwater protection:
 - a. changes in groundwater levels in the Kempton Park Gravels due to the installation of an impermeable ERF bunker structure;
 - b. disturbance of groundwater flow in the Kempton Park Gravels as a result of the construction of an underground waste bunker for the proposed ERF that will fully penetrate that aguifer;
 - maintaining the protection to underlying, sensitive aquifers provided by the low permeability London Clay. The EA requires that a minimum thickness of London Clay (5m) is maintained beneath the waste bunker and other deep structures; and
 - d. the potential for foundation piles to create pathways for migration of contaminants from the surface into sensitive aquifers underlying the London Clay.

1.3 Sources of Information

1.3.1 This hydrogeological risk assessment is based on information contained in the reports listed in Table 1.1 and on publicly available sources of information. Previous reports comprise desk studies, site investigation reports and regulatory liaison.

Table 1.1 Sources of Information

Report	Report Title					
Reference Number	Report Title					
Site Investigations	Site Investigations					
29541rr009i2 (March 2011)	Entec (now Amec Foster Wheeler), 2011. North London Waste Authority. ISDS Baseline Geo-environmental Site Investigation Report.	This investigation comprised of the drilling and installation of 22 boreholes, and drilling of 34 window sample holes (the majority of which were also installed as groundwater monitoring points). Six boreholes were progressed into the Lambeth Group. The depths to this stratum were found to vary between 11.2m bgl, (0.36m above Ordnance Datum (AOD)) in the south of the Edmonton EcoPark, and 24.2m bgl (-12.45m AOD), in the north, indicating a marked variation in the thickness of the London Clay.				
29541rr036i3 (February 2012)	AMEC, 2013. North London Waste Authority. ISDS Baseline Geo- environmental Supplementary Site Investigation Report.	The 2012 investigation was designed to provide clarification of the profile of the upper surface of the Lambeth Group by means of 4 boreholes progressed to the Lambeth Group to aid interpretation of the geological structure				
29541rr037i2	AMEC, 2012. Technical Note: SPZ Screening Assessment – Discussion Document.	In 2012, Amec Foster Wheeler undertook an SPZ Screening Assessment (29541rr037i2). This detailed the risk to controlled water posed by the proposed waste activities at a dry anaerobic digestion plant at the Edmonton EcoPark.				
35180r010i2 (June 2014)	AMEC, 2014. North London Waste Authority. Geotechnical Ground Investigation.	This investigation, comprised of 13 boreholes, which were designed to provide further clarification of the geological structure and geotechnical properties of the geology beneath the north of the Edmonton EcoPark. Groundwater monitoring standpipes were installed at five locations, four within the Lambeth Group and one within the Kempton Park Gravels to supplement the existing groundwater monitoring network				
29541rr084i2 (December 2014)	Amec Foster Wheeler, 2015. North London Waste Area.	This investigation was undertaken to confirm the geology in the vicinity of the existing EfW facility. Two boreholes were drilled to between 8 and 25m bgl.				
29541rr086i2 (December 2014)	Amec Foster Wheeler, 2015. North London Waste Authority. Geoenvironmental Desk Study and Supplementary Ground Investigation - Wharf Area	This was undertaken to investigate baseline geo-environmental ground conditions in the Wharf Area which is located along the eastern Edmonton EcoPark margin. Two boreholes were drilled to 25m bgl, one borehole was installed in the Kempton Park Gravels.				

Report Reference Number	Report Title	
29541rr058i2	AMEC, 2014. North London Waste Authority. Edmonton-site Protection and Monitoring Programme. Final 2013 Annual Report, Year 2 of 2.	The aim of the SPMP is to assess whether Edmonton EcoPark activities have a significant effect on groundwater and to highlight potential issues. The baseline groundwater conditions for the Edmonton EcoPark were established through two years of quarterly groundwater monitoring (2012 and 2013) for key potentially polluting substances (PPS). These baseline concentrations form the basis for comparison with all future monitoring results under the Environmental Permitting Regulations (EPR).
29541rr085i1	Amec Foster Wheeler, 2015. North London Waste Authority. Edmonton-site Protection and Monitoring Programme. Draft 2014 Annual Report, Year 1 of 3.	Between 2012 and December 2014, as part of the SPMP, ten rounds of groundwater monitoring were carried out. Two surface water monitoring rounds at four locations have been undertaken on the River Lee Navigation and Salmon's Brook. The Kempton Park Gravel aquifer was identified to be potentially most at risk from the current Edmonton EcoPark activities within the SPMP, and therefore only Kempton Park Gravels groundwater monitoring locations are monitored.

1.3.2 All boreholes in the above studies were drilled using cable percussive methodology with two hour and 24 hour bentonite and grout seal approved by the EA, to ensure no pollutant pathways were created by the ground investigation boreholes.

2 Edmonton EcoPark - location, descriptions and setting

2.1.1 The description provided in the following section is a summary to provide background information pertinent to this report. Further details are provided in the reports listed in Table 1.1.

2.1 Site location and description

Site Name Address:	and	London Waste Ltd (LWL), EcoPark, Advent Way, Edmonton, London N18 3AG				
			_			
Grid Referen	ce:	TQ 35750 92860	Site Area:	15.6 ha		
Current Site Use:		Waste operations comprising: existing EfW facility, ash recycling facility, composting plant, waste transfer station and bulky waste facility. There is also a lorry park and open landscaped areas.				
Proposed Project:	Site	Waste operations comprising: pro	posed ERF and asso	ciated infrastructure		

- 2.1.1 This assessment has been undertaken for the Edmonton EcoPark, as shown in Figure 1.
- 2.1.2 The Environmental Impact Statement has been undertaken for the DCO Application Site, shown in Figure 1, which includes a Temporary Laydown Area to the east of the Edmonton EcoPark and an area in the northwest related to the pump station pipework. As the groundwater data available is for the Edmonton EcoPark and no groundworks are anticipated at the Temporary Laydown Area, this assessment has been undertaken on the Edmonton EcoPark only.

2.2 Edmonton EcoPark topography and existing land use

- 2.2.1 The Edmonton EcoPark is generally flat and low lying at approximately 11m AOD, with the exception of raised areas in the northeast. The south of the Edmonton EcoPark, where the main entrance is located, is generally landscaped areas with surfaced roads and car parks. The main process areas of the Edmonton EcoPark are in the centre and north and there is further landscaping in the east. The main process plant can be divided into four operational areas:
 - existing EfW facility in the centre of the Edmonton EcoPark. It comprises a large building incorporating a tipping hall, waste storage bunkers and waste treatment technology;
 - b. ash recycling facility to the north of the existing EfW facility area. It comprises sheds and open areas of ash storage;
 - c. composting plant in the north west of the Edmonton EcoPark. This area comprises several storage and composting sheds; and

- d. waste transfer station in the north eastern corner of the Edmonton EcoPark, comprising storage areas for combustible waste (used to fuel the existing EfW facility), recyclables and non-recyclables.
- 2.2.2 The existing Edmonton EcoPark layout is shown in Figure 2.

2.3 Adjacent land use

2.3.1 The Edmonton EcoPark is in a commercial/industrial setting. Land uses adjoining the Edmonton EcoPark are outlined below:

Direction	Land uses
North	Immediately north of the Edmonton EcoPark are commercial/light industrial properties. Beyond these is the Deephams Sewage Treatment Works.
East	The Enfield Ditch borders the majority of the Edmonton EcoPark. Beyond this is 'Lee Park Way', an access road which forms part of National Cycle Route 1. The River Lee Navigation is immediately to the east of this road, then there is an area used for recycling construction and demolition wastes.
South	The North Circular (A406) is immediately to the south. Beyond this are commercial properties and the planned Meridian Water development scheme.
West	Salmon's Brook is immediately to the west. Beyond this is the Eley Industrial Estate.

2.4 Edmonton EcoPark history

2.4.1 This Edmonton EcoPark has been used as a waste management site since the late 1960s. The Edmonton EcoPark had very limited use prior to its current function, although the northern part of the Edmonton EcoPark was formerly occupied by sludge beds. The surrounding area, particularly to the south and west, has had significant industrial development from at least 1896.

2.5 Regional geology and hydrogeology

2.5.1 The British Geological Survey (BGS) boreholes and regional mapping record the geological sequence identified in Table 2.1 at the Edmonton EcoPark as Made Ground overlying natural deposits in the vicinity of the Edmonton EcoPark. The Edmonton EcoPark is mapped as London Clay overlain by superficial deposits of Alluvium. The published data indicates London Clay is approximately 7.5 to 10m bgl (below ground level). The thickness of the Lambeth Group and Thanet Sands is not identified for the Edmonton EcoPark, although BGS borehole records to the south-west of the Edmonton EcoPark identify the base of the Lambeth Group at 22m bgl and base of the Thanet Sand at 27m bgl. BGS borehole logs in the vicinity of Edmonton EcoPark record Chalk between 32.5m bgl and 36m bgl, whilst a borehole to the east of the Edmonton EcoPark identifies Chalk at 43m bgl.

Table 2.1 Regional Geological Summary and Aguifer Designation

Strata	Typical Constituents	Estimated Thickness	Aquifer Status
Made Ground	Variable historic demolition rubble, including ash and clinker	Generally <5m	Not Applicable
Alluvium	Silty clay	Absent to <3m	Secondary Aquifer
Kempton Park Gravels (River Terrace Deposits)	Variably sandy, silty and clayey gravels	<5m	Secondary Aquifer
London Clay	Grey, occasionally sandy or silty clay	7.5-10m	Unproductive Strata
Lambeth Group (formerly known as the Woolwich & Reading Beds)	Grey, sandy clay	Unknown	Secondary Aquifer
Thanet Sand	Silty or clayey sand	Unknown	Secondary Aquifer
Upper Chalk	Off-white carbonaceous limestone with flints	>30m	Principal Aquifer

- 2.5.2 The Edmonton EcoPark falls within an EA-designated inner (zone 1) and outer (zone 2) groundwater SPZ for a public water supply borehole at Chingford 400m east of the Edmonton EcoPark, as shown in Figure 4. The public water supply source abstracts groundwater from the Chalk aquifer which is defined as a principal aquifer by the EA. This aquifer is overlain by the Thanet Sands, Lambeth Group and London Clay. The low permeability layers in the Lambeth Group and the London Clay provide protection to the underlying Chalk by limiting downward movement of groundwater from the surface.
- 2.5.3 There are no licensed groundwater abstractions within 250m of the Edmonton EcoPark. In addition to the Chingford public water supply there are is also a private potable water supply ~400m to the east. Three sites are related to water bottling with a further site for general use all located to the west.
- 2.5.4 Groundwater flow within the Kempton Park Gravels is expected to be towards the east or south-east to discharge to the River Lee. Groundwater flow within the deeper Chalk aquifer is likely to be towards the abstraction wells to the east as indicated by the SPZ.

2.6 Edmonton EcoPark geology

2.6.1 A summary of the ground conditions at the Edmonton EcoPark based on data obtained in ground investigations undertaken at the Edmonton EcoPark between March 2011 and December 2014 is provided in Table 2.2. Borehole logs are provided in Appendix A2 of Vol 2 Appendix 7.2 of the ES.

Table 2.2 Edmonton EcoPark Geological Summary and Aquifer Designation

Strata	Typical Constituents	Approximate Thickness	Aquifer Status
Made Ground	Variable historic demolition rubble, including ash and clinker	1.0 -7.5m	NA
Alluvium	Silty clay	Absent to 3.8m	Secondary Aquifer
Kempton Park Gravels (River Terrace Deposits)	Variably sandy, silty and clayey gravels	1.1 - 4.6m	Secondary Aquifer
London Clay	Grey, occasionally sandy or silty clay	0.7 - 18.1m	Unproductive Strata
Lambeth Group (formerly known as the Woolwich and Reading Beds)	Grey, mottled brown, sandy clay	Unknown	Secondary Aquifer
Thanet Sand	Silty or clayey sand	Unknown	Secondary Aquifer
Upper Chalk	Off-white carbonaceous limestone with flints	>50m	Principal Aquifer

- 2.6.2 Site investigation has confirmed the geological sequence. A thin layer of Alluvium was identified across much of the Edmonton EcoPark overlying the Kempton Park Gravels (River Terrace Deposits) but at a number of locations the Alluvium was absent. No water strikes were encountered in the Alluvium.
- 2.6.3 The Kempton Park Gravels underlies the Alluvium. They have a thickness of 1.1 to 4.6m (average 3m). The base of the Kempton Park Gravels (top of the London Clay) was between 3.5 and 7.9m AOD.
- 2.6.4 The London Clay was found to be a stiff to hard grey/ brown silty clay with occasional flint gravel. The base of the London Clay falls from 3.2m AOD, in the south at BH402 to -12.5m AOD in the north of the Edmonton EcoPark at BH116); a difference of 15.6m over a distance of approximately 400m. This variation suggests a more complex structure than typically anticipated at the interface between these strata.
- 2.6.5 The Lambeth Group comprised very dense clayey sand and sandy clay with shell fragments with sandy silt and clay bands. The base of this stratum was not proven in exploratory holes. Sand layers were identified within the Lambeth Group and were often associated with water strikes.

2.7 Made Ground

2.7.1 Made Ground was encountered at all intrusive locations to a depth that varied between 6.9 and 9.5m AOD. All boreholes were drilled through hardstanding of asphalt or concrete, followed by hardcore and gravel. Beneath this Made Ground generally comprised clayey sand or gravelly, sandy clay, with brick and concrete. Asphalt and clinker were encountered in several boreholes and asbestos may be associated with these demolition materials. There was very little visual/olfactory evidence of contamination in the Made Ground, although hydrocarbon odours were noted in BH301

and BH308. Boreholes drilled within the existing EfW facility bunker excavation found Made Ground down to 2.1 to 4.5m AOD, which is much deeper than elsewhere on-site. This thickness is a result of the backfilling of the bunker as detailed in Section 2.9.

2.8 Natural Ground

Alluvium

2.8.1 Alluvium was encountered beneath the Made Ground in the majority of locations but was absent at BH109, BH304, BH312, BH403 and BH404. It generally consisted of very soft to soft, silty, frequently organic clay, with soft fibrous peat present. The base of the alluvium where present, was at 6.4 to 9.0m AOD.

Kempton Park Gravels

2.8.2 This comprised medium dense silty, gravelly sand and silty sandy gravel. Gravels were predominantly flint. It was encountered at all locations with the exception of BH403 and BH404 in the existing EfW facility bunker area. The base was between 3.5 to 7.9m AOD.

London Clay

- 2.8.3 This stratum comprised firm to stiff clay with local laminations, silty clay and slightly sandy clay. The base varied from 3.2 to -12.5m AOD. Generally the London Clay is thickest in the north-east of the Edmonton EcoPark, varying from 10.8m at BH301 in the north-west to 17.9m at BH313 in the north-east. The London Clay thins to the south to 3.1m at BH124 and 0.7 m at BH402 in the Wharf area in the south-east.
- 2.8.4 Contours of the upper and lower surfaces of the London Clay, as well as the thickness of London Clay, are shown in Figures 5, 6 and 7. Geological cross-sections from south-south-west to north-north-east through the Edmonton EcoPark (Section A A') and from west to east across the proposed ERF area in the north of the Edmonton EcoPark (Section B B') are provided as Figure 8 and Figure 9 respectively. The location of the cross-sections is shown in Figure 5.
- 2.8.5 Cross section A A' shows that the base of the London Clay is shallowest in the southwest and deepest in the northeast.
- 2.8.6 Cross section B B' shows that the thickness of the London Clay is greatest towards the eastern Edmonton EcoPark boundary.

Lambeth Group

2.8.7 The Lambeth Group comprises very dense clayey sand and sandy clay with shell fragments, with some stiff to very stiff sandy silt bands. The base of the stratum was not encountered to prevent the creation of potential pathways to the Chalk aquifer. From the geological sequence identified from borehole logs to the south-west of the Edmonton EcoPark, the thicknesses of the Kempton Park Gravels and London Clay are similar to those recorded in the south of the Edmonton EcoPark. The off-site

boreholes identify the base of the Lambeth Group at approximately 22m bgl (-11m AOD assuming a ground level of 11m AOD) and therefore its base may be at a similar depth to that in the south of the Edmonton EcoPark. As the London Clay thickens in the north of the Edmonton EcoPark, the base of the Lambeth Group is anticipated to be at a lower elevation there. The borehole logs indicated that the Lambeth Group had increased sand content with depth, which could indicate an increased hydraulic conductivity and a possible hydraulic connection with the underlying Thanet Sands.

2.9 Energy from Waste facility excavation area

- 2.9.1 The existing EfW facility and underlying bunker were built in the 1960s. The only details of the construction are from the design drawings, shown in Appendix E and building surveys.
- 2.9.2 The design drawings for the existing EfW facility bunker indicate that it was constructed as a benched open excavation to a depth of approximately 14m bgl. Bentonite walls are shown set back from the excavation to stop inflows from the Kempton Park Gravel aquifer. After the construction of the vertical concrete walls and horizontal base the remaining excavation void outside the walls was backfilled. No information was retained on the material used as backfill. No information on the bentonite wall is available: it is therefore not known if it was constructed, and if it was built, what its location is or whether it was retained post construction.
- 293 The backfill was investigated in BH403 and BH404 in December 2014. The investigation found that the infill material at those locations was clayey sand and gravelly clay with concrete and brick fragments. The source of this material is unknown, but it is likely that the backfill consisted predominantly of the soils excavated for the construction the bunker. Water strikes were noted in BH403 and BH404 at 3.5m and 6m bgl respectively in gravelly backfill. The groundwater level is comparable with the groundwater level within the Kempton Park Gravels and therefore, there may be a hydraulic connection between the backfill and the Kempton Park Gravels. No deeper water strikes or groundwater inflows were recorded in the backfill. Backfill was identified to depths of 8.6 and 6.5m bgl. It was underlain by mottled silty clay, probably of the Lambeth Group. BH404 encountered 10.5m of silty clay and then a water bearing sand layer. BH403 was terminated 2m into the Lambeth Group and did not have a water strike. No Alluvium, Kempton Park Gravel or London Clay was recorded in BH403 and BH404.

3 Hydrogeology

3.1 Groundwater levels

Made Ground

3.1.1 Made Ground is not designated as an aquifer. There were several water strikes within Made Ground. These are likely to be perched water in water bearing strata overlying the clays and low permeability peaty silt layers within the Alluvium. These water bearing Made Ground layers are laterally

discontinuous and are not in hydraulic connection with the Kempton Park Gravel Aquifer.

Alluvium

3.1.2 The Alluvium is a Secondary Aquifer. No water strikes were encountered in the Alluvium at the Edmonton EcoPark. Due to the low permeability of the peaty silts, this layer does not appear to transfer water but rather act as an aquiclude or aquitard and is likely to provide some protection to the underlying aguifer, where present.

Kempton Park Gravels

- 3.1.3 The Kempton Park Gravels is a Secondary Aquifer. They have been identified in all boreholes as water bearing, with the exception of BH403 and BH404 where it is believed that the gravels were removed to permit excavation for the existing EfW facility bunker. Groundwater levels are between 7.12 and 9.45m AOD. Groundwater level data for 2012 to 2014 have been interpreted to understand flow directions. Flow was generally in a southerly to south-south-westerly flow direction. However, in between July 2013 and May 2014 flow onto the Edmonton EcoPark occurred at the north-western boundary. The flow direction in November 2014 showed a change due to a fall in water levels across the north of the Edmonton EcoPark and was to the north across the northern part of the Edmonton EcoPark, but a general south-south-westerly flow direction in the southern half of the Edmonton EcoPark. This indicates flow off-site through the northern boundary at that time. Groundwater contours for May 2014 and November 2014 are shown in Figure 10 and Figure 11.
- 3.1.4 The Kempton Park Gravels are absent around the existing EfW facility bunker. It is believed that they were excavated during construction of the bunker and that the resulting void was backfilled with gravelly clay and clayey sand and gravel. Water strikes in BH403 and BH404 in the backfill were at a similar level to groundwater level in the Kempton Park Gravel. This may indicate a hydraulic connection between the Kempton Park Gravel and backfill. No further water strikes or groundwater inflows were recorded below this depth.

London Clay

- 3.1.5 The London Clay is categorised as Unproductive Strata. No water strikes or water bearing strata were identified within the London Clay on-site.
- 3.1.6 The results of laboratory permeability testing (Table 3.1) indicate that the clay has a low permeability (mean value 2.9 x 10⁻¹¹ m/s) across the Edmonton EcoPark. The London Clay is therefore an aquitard that provides protection to the underlying aquifers by limiting vertical movement of groundwater.
- 3.1.7 The London Clay thins from the north to the south of the Edmonton EcoPark. The areas where the London Clay is thickest provide the greatest protection to the underlying aquifers. In the EfW facility bunker excavation area, the London Clay is absent. It is believed that the London Clay was excavated in this location.

Table 3.1 Results of Laboratory Triaxial Permeability Testing of Clay Formations

Sample Location	Geology and Depth	Date of test	Permeability m/sec
BH204	London Clay (10 m bgl)	Dec 2011	1.9 x 10 ⁻¹¹
BH201	London Clay (18.5 m bgl)	Dec 2011	1.1 x 10 ⁻¹¹
BH203	London Clay (12.5 m bgl)	Dec 2011	1.8 x 10 ⁻¹¹
BH202	London Clay (13.0 m bgl)	Dec 2011	1.5 x 10 ⁻¹¹
BH301	London Clay (16 m bgl)	June 2014	6.78 x 10 ⁻¹¹
BH306	London Clay (21.6 m bgl)	June 2014	4.16 x 10 ⁻¹¹
BH307	London Clay (20.5 m bgl)	June 2014	9.39 x 10 ⁻¹¹
BH309	London Clay (15.1 m bgl)	June 2014	3.46 x 10 ⁻¹¹
Mean value (geome	etric mean)		2.91 x 10 ⁻¹¹
BH401	Lambeth Group (17.0 m bgl)	Dec 2014	8.6 x 10 ⁻¹¹
BH402	Lambeth Group (15.5 m bgl)	Dec 2014	6.06 x 10 ⁻¹¹
BH403	Lambeth Group (9.5 m bgl)	Dec 2014	8.52 x 10 ⁻¹¹
BH404	Lambeth Group (10.0 m bgl)	Dec 2014	1.45 x 10 ⁻¹⁰
BH404	Lambeth Group (13.0 m bgl)	Dec 2014	8.49 x 10 ⁻¹¹
BH404	Lambeth Group (16.0 m bgl)	Dec 2014	9.87 x 10 ⁻¹¹
Mean value (geome	etric mean)		9.02 x 10 ⁻¹¹

Lambeth Group

- 3.1.8 The Lambeth Group is a Secondary A Aquifer. Beneath the Edmonton EcoPark it consists of clayey sand and sandy clay and sandy silt layers. Water strikes were encountered in the sandy silt layers. However, the sand layers do not appear to be laterally continuous across the Edmonton EcoPark.
- 3.1.9 Groundwater level monitoring in the Lambeth Group is limited to four boreholes (BH201, BH202, BH203 and BH204) for which data is available for 2011 and 2012. Water levels are shown in Appendix C2. These boreholes monitor groundwater at different depths but are all within sandy silt layers. There does not appear to be any consistency in the levels, suggesting that there is not any lateral hydraulic connectivity across the Edmonton EcoPark in this stratum. However, this interpretation is based on a limited data set. The base of the Lambeth Group has not been proven onsite.
- 3.1.10 The results of laboratory permeability testing (Table 3.1) on samples of silty clay found low hydraulic conductivity (mean 9.02 x 10⁻¹¹ m/s), similar to the London Clay. These results indicate that the Lambeth Group clays are likely to provide protection to underlying aquifers, where present.

Chalk and Thanet Sand Formations

3.1.11 No site-specific information is available for the Thanet Sand or Chalk Formations. These formations are believe to be in hydraulic connection with

each other. Groundwater flow directions within the deeper Chalk aquifer are likely to be towards abstraction wells to the east.

3.2 Groundwater quality

- 3.2.1 Groundwater monitoring has been undertaken at the operational site during site investigations and as part of Environmental Permitting to characterise groundwater quality and establish baseline concentrations for potentially polluting substances.
- 3.2.2 Site-specific groundwater quality monitoring data is limited to the Kempton Park Gravels and Lambeth Group.
- 3.2.3 Groundwater quality in the deeper aquifers (Thanet Sands and Chalk) is anticipated to be good, reflecting its use for potable water supply.
- 3.2.4 Groundwater quality in the Kempton Park Gravels is the most likely to have been affected by contamination from the existing processes at the Edmonton EcoPark and Made Ground, and from neighbouring sites due to its proximity to surface activities.
- 3.2.5 An assessment of groundwater contamination in the Kempton Park Gravels has been undertaken by comparing the results of groundwater sampling with water quality standards (WQS), taken form Environmental Quality standards (EQS) and Drinking Water Standards (DWS). The full results are given in Appendix C1 and summarised in Table 3.2 (Kempton Park Gravels) and Table 3.3 (Lambeth Group). The values highlight in grey in Table 3.2 and Table 3.3 represent water quality results which exceed the DWS.

North London Waste Authority

North London Waste Authority

Hydrogeological Risk Assessment

Table 3.2 Summary of exceedance of Water Quality Standards in Groundwater in the KPG

Contaminants	Unit	DWS	BH119	BH101	BH101	BH102	BH106	BH106	BH107	BH109	BH109	BH110	BH110	BH113	BH114	BH114	BH114
Sulphate as SO ₄	mg/l	250	146	155	53	147	237	202	204	204	119	209	174	142	227	126	179
Sulphide	μg/l	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloride	mg/l	250	470	350	490	250	240	200	240	240	140	330	260	270	230	130	300
Ammonium as NH ₄	μg/l	500	17000	8100	2000	7000	5500	5100	7900	7900	1800	5400	7300	8800	9200	6400	10000
Aluminium	mg/l	0.2	< 0.0010	0.47	0.09		0.22	0.12	0.058	0.058	0.031	0.32	0.072	0.062	0.41	0.15	0.013
Arsenic	μg/l	10	0.65	20	27	13	11	7.7	15	15	8.4	8.8	13	8.8	13	11	8.1
Barium	μg/l	-	49	53	69	20	85	73	62	62	58	44	38	47	39	13	43
Boron	μg/l	1000	550	320	1200	210	240	360	350	350	330	250	310	330	340	300	500
Cadmium	μg/l	5	< 0.02	< 0.10	< 0.08	< 0.10	< 0.08	< 0.08	< 0.10	< 0.10	< 0.08	< 0.10	< 0.08	< 0.08	< 0.10	< 0.08	< 0.08
Chromium	μg/l	50	0.4	0.5	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.4	< 0.4	0.8	0.8	0.5
Copper	μg/l	2000	< 0.5	1.5	4.2	< 0.7	1.4	1.3	< 0.7	< 0.7	1.2	0.9	1.5	< 0.7	1.7	1.5	1
Iron	mg/l	0.2	0.25	2.7	0.28		0.23	0.86	7.4	7.4	0.64	0.85	0.45	0.28	1.9	0.42	0.94
Lead	μg/l	10	< 0.2	2.5	3.3	< 1.0	< 1.0	2.2	< 1.0	< 1.0	1.1	1.2	< 1.0	1.5	4.3	2.3	2.6
Mercury	μg/l	1	0.51	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel	μg/l	20	9.8	5.2	23	7.2	22	2.8	2.6	2.6	1.5	4.2	2.9	2.9	3.9	5.1	3.2
Selenium	μg/l	10	2.9	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Zinc	μg/l	-	< 0.5	7.4	19	< 0.4	< 0.4	3.5	1.4	1.4	1.5	7.3	< 0.4	1.6	9.9	< 0.4	1
Total Phenols (monohydric)	μg/l	0.5	< 10	< 10	42	< 10	< 10	17	< 10	< 10	11	< 10	< 10	21	< 10	< 10	25
Vinyl Chloride	μg/l	0.5	< 1.0	< 10.0	< 10.0	10.4	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Total EPA-16 PAHs	μg/l	-	0.21	< 0.20	< 0.20	< 0.20	< 0.20	2.06	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20

Grey shading: DWS exceeded

Table 3.3 Summary of exceedance of Water Quality Standards in Groundwater in the Lambeth Group

Contaminant	Units	DWS	BH201	BH202	BH204	BH202	BH201	BH203	BH204
Sulphate as SO ₄	mg/l	250	51.2	612	401	650	89	77	260
Sulphide	μg/l	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloride	mg/l	250	87	300	170	250	110	73	130
Ammonium as NH ₄	μg/l	500	680	3700	990	2000	730	1900	1300
Aluminium	mg/l	0.2	1.5	0.44	0.41	0.37	0.18	1.2	0.28
Iron	mg/l	0.2	0.84	0.2	0.26	0.16	0.075	1.5	0.19
Selenium	μg/l	10	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	15	< 4.0

Grey shading: DWS exceeded

Made Ground

3.2.6 Leachate samples for Made Ground soils were screened against DWS and fresh water EQS. Concentrations of ammonium, dissolved metals (aluminium, arsenic, boron, iron, lead, mercury and nickel) and total cyanide exceeded DWS and dissolved metals (cadmium, chromium, copper and zinc) exceeded the fresh water EQS. This is consistent with the parameters that exceeded these standards in the Kempton Park Gravel aquifer and indicate Made Ground may be a source of contamination to shallow groundwater.

Kempton Park Gravels

3.2.7 Ammonium, chloride, sulphate, metals and metalloids (aluminium, arsenic, boron, cadmium, chromium, copper, mercury, iron, nickel, and selenium), phenols and vinyl chloride have been found above DWS and/ or EQS. There is no drinking water standard for total PAH but they were detected above in two samples.

Lambeth Group

- 3.2.8 Groundwater in the Lambeth Group (Table 3.3) shows water quality standard exceedances of ammonium in every sample and some exceedances for sulphate, chloride, aluminium, chromium, iron and selenium
- 3.2.9 The concentration of ammonium is highest in the northeast which may imply a source to the north outside the Application Site. However, these concentrations may represent a natural baseline and may indicate that groundwater in the Lambeth Group is under reducing (low quantity of oxygen) conditions.
- 3.2.10 The bunker of the existing EfW facility in the centre of the Edmonton EcoPark is a potential vertical pathway for contaminant migration. However, the groundwater quality data show ammonium concentrations downgradient of the existing EfW facility to be lower than up gradient.

4 Hydrology

4.1 Surface water

- 4.1.1 There is a plastic-lined ornamental pond in the eastern landscaped area which would be removed as part of the Project.
- 4.1.2 The following surface water features have been identified within the surrounding area:
 - e. Enfield Ditch, which is classified as a controlled water. It runs close to the eastern boundary of Edmonton EcoPark discharges to Salmon's Brook:
 - f. Salmon's Brook immediately west of the Edmonton EcoPark;
 - g. River Lee Navigation immediately east of the Edmonton EcoPark in the Wharf area and ~50m east of the main Edmonton EcoPark boundary;
 - h. The River Lee ~400m to the east, where there are also associated drains and an aqueduct;
 - i. William Girling Reservoir ~200m to the north-east; and
 - j. Banbury Reservoir ~750m to the south-east.

4.2 Surface water quality

- 4.2.1 Under the Water Framework Directive (WatFD), the EA has produced nine River Basin Management Plans for England to manage water quality targets and river basin planning. The aim of the WatFD is for all waterbodies (rivers, lakes and groundwater) to achieve good ecological status, unless they are heavily modified in which case they must achieve good ecological potential and ensure no deterioration from current status/potential.
- 4.2.2 The River Lee Navigation and surrounding area is located within the London catchment of the Thames River Basin District. The EA website shows the status of watercourses based on the 2009 River Basin Management Plan. All the water features are identified as 'heavily modified' under the WatFD, only being able to achieve good ecological potential rather than status because of substantial changes to the physical character of the waterbody resulting from physical alterations caused by human use.

Table 4.1 WatFD Waterbody designations

Waterbody Name	Current ecological quality	Biological elements (reason for status)	Supporting elements (reason for status)
River Lee	Moderate potential	Moderate (invertebrates)	Poor (phosphate)
Salmon's Brook (includes Salmon's Brook, Lee Navigation)	Poor potential	Poor (phytobenthos)	Poor (phosphate)
Pymmes Brook (Salmon's Brook to Lee)	Moderate Potential	Bad (invertebrates)	Poor (phosphate)

Waterbody Name	Current ecological quality	Biological elements (reason for status)	Supporting elements (reason for status)
William Girling Reservoir	Poor potential	Poor (phytoplankton)	Bad (phosphorus)
Banbury Reservoir	Good potential	No data	No data

- 4.2.3 Enfield Ditch is located within the Salmon's Brook waterbody and therefore has the same classification as given to all watercourses within that waterbody.
- 4.2.4 Salmon's Brook waterbody is classified as having Poor ecological potential, with high or moderate quality in terms of pH, Ammonia Fish and Macrophytes, but the poor status relates to diatoms, dissolved oxygen and phosphates. This waterbody has an objective to reach 'good' ecological potential by 2027, with planned mitigation measures to achieve this including sediment management strategies, preservation and where possible enhancement of ecological value of marginal aquatic habitat, banks and riparian zone¹.
- 4.2.5 The River Lee waterbody is classified as having moderate ecological potential, for the reasons given in Table 4.1, for all other parameters (such as fish, Ammonia, dissolved oxygen) the classification is good or high. This waterbody has an objective to reach 'good' ecological potential by 2027.
- 4.2.6 Pymmes Brook is classified as having moderate ecological potential for the reasons given in Table 4.1, other supporting elements such as ammonia and dissolved oxygen are of moderate status. This waterbody has an objective to reach 'good' ecological potential by 2027, with planned mitigation measures to achieve this including improving floodplain connectivity, preserve and where possible enhancing the ecological value of marginal aquatic habitat, banks and riparian zone and sediment management strategies.
- 4.2.7 William Girling Reservoir is classified as having Poor ecological potential for the reasons given in Table 4.1. This waterbody also has an objective to reach 'good' ecological potential by 2027.
- 4.2.8 Banbury Reservoir is classified as having 'good' ecological potential. There will be a requirements as part of the WatFD that this is maintained at 'good' status.

4.3 Surface water quality from the Environmental Permit Regulations monitoring

4.3.1 As part of EPR monitoring samples of surface water are collected and subject to analysis at four locations upstream and downstream of the Edmonton EcoPark on Salmon's Brook (SW1 and SW2) and the River Lee Navigation (SW3 and SW4) respectively (see Figure 3 for monitoring locations).

¹ Annex B Thames River Basin District, December 2009

²¹ AD06.02 | Issue | October 2015 | Amec Foster Wheeler Environment & Infrastructure UK Ltd.

- 4.3.2 Surface water quality data have been reviewed against EQS and DWS to identify any potential contaminants. The results are detailed in Appendix C1.
- 4.3.3 No exceedances of the freshwater EQS were identified but elevated ammonium was identified in Salmon's Brook at concentrations of 4.1mg/L upstream and 2.1mg/L downstream. As the concentration is lower downstream it does not suggest that the Edmonton EcoPark is a source of ammonium to the watercourse. The concentration of ammonium in the Lea Navigation is lower at 0.5mg/L at both upstream and downstream locations.
- 4.3.4 There are increases in the concentration of a number of dissolved metals between upstream and downstream locations for both Salmon's Brook and the River Lee Navigation. The 2014 samples indicate the largest increases down-stream are for Copper, Zinc and Calcium, contrasting to the 2011 samples where Copper and zinc showed no change or a reduction downstream.

4.4 Flood risk

4.4.1 The existing EfW facility area and parts of the southern landscaped area are at risk from extreme flooding from rivers without flood defences (Zone 2) according to the EA. Further information on flooding is available in the Flood Risk Assessment report (Vol 2 Appendix 11.2 of the ES).

4.5 Groundwater - surface water interactions

- 4.5.1 The Enfield Ditch is ephemeral and is often dry or with little flow, suggesting that it does not receive significant inflows from groundwater. The ditch is believed to be unlined. The elevation of the base of the ditch has been measured as approximately 8.5m AOD at the entrance to the Wharf area on the Edmonton EcoPark, which is above groundwater levels in this area suggesting that the ditch loses water to ground.
- 4.5.2 Groundwater levels in the Kempton Park Gravels at the Edmonton EcoPark (Figure 10 and Figure 11), indicate that there appears be a hydraulic connection with Salmon's Brook. This flow appears to be into the Edmonton EcoPark in November 2014 in the northwest, but in May 2014 the flow was in the off-site direction.
- 4.5.3 The River Lee Navigation is canalised adjacent to the Edmonton EcoPark and does not appear to be in hydraulic connection with groundwater.
- 4.5.4 Other surface water bodies (River Lee and William Girling Reservoir or Banbury Reservoir) are unlikely to be in hydraulic connection with Edmonton EcoPark groundwater due to their distance, and in the case of reservoirs, the likely presence of low permeability liners.

5 Conceptual site model

5.1 Conceptual model

- 5.1.1 The conceptual model is developed at the Preliminary Risk Assessment tier and reviewed and refined during subsequent risk assessment tiers. The conceptual model represents the characteristics of the site and indicates the possible relations between contaminants, pathways and receptors, where:
 - a. a contaminant is a substance which is present in, on, or under the land and has the potential to cause harm;
 - b. a receptor is which could be adversely affected by the contaminant, including human beings; and
 - a pathway is a route or means by which a receptor could be exposed to, or affected by, a contaminant.
- 5.1.2 For a potential risk to exist at a site all three of the above elements must be present, and linked together so that a contaminant has been identified, a receptor is located on-site and there is an exposure pathway that links the contaminant to the receptor. The term contaminant linkage is thus used to describe a particular combination of contaminant-pathway-receptor relationship.
- 5.1.3 The proposed Edmonton EcoPark usage is a waste facility (non-landfill) within a SPZ1 for a potable groundwater abstraction in the Principal Aquifer beneath the Edmonton EcoPark. A conceptual model block diagram is shown in Figure 12 and the Edmonton Eco-Park site conceptual model cross section showing the Project effects is shown in Figure 13.
- 5.1.4 The geology beneath the Edmonton EcoPark consists of Made Ground overlying Alluvium. This overlies the Kempton Park Gravels, then the London Clay, Lambeth Group, Thanet Sands and Chalk.
- 5.1.5 Shallow perched water is found in the Made Ground above low permeability peaty silts layers within the Alluvium. The Alluvium on-site was found to have a low permeability and did not produced any water strikes. It is therefore likely to provide protection to the underlying Kempton Park Gravel aquifer where present. However, in areas where the Alluvium is absent infiltration from the surface and lateral flows of perched water may enter the Kempton Park Gravel aquifer.
- 5.1.6 The Kempton Park Gravels are a permeable sand and gravel Secondary Aquifer. Groundwater level data indicate flows in a southerly to south-south-westerly direction. Groundwater levels and flow directions suggest that the Kempton Park Gravels are in hydraulic connectivity with Salmon's Brook along the western Edmonton EcoPark boundary.
- 5.1.7 The Kempton Park Gravels overlie the London Clay which is an unproductive low permeability clay with a laboratory permeability of approximately 10⁻¹¹m/sec. The London Clay is thickest in the northeast (approximately 18m) and thins to approximately 3m in the south of the Edmonton EcoPark and less than 1m in the southeast. It acts as an aquitard

and provides protection to the underlying Principal and Secondary Aquifers. This protection is greatest where the London Clay is thickest.

- 5.1.8 The London Clay confines groundwater in the underlying Lambeth Group Secondary Aguifer. Groundwater has been identified in the Lambeth Group in sand layers but these layers do not appear to be laterally continuous across the Edmonton EcoPark. The base of the Lambeth Group was not proven on-site but the basal sands of the Lambeth Group are regionally mapped as having hydraulic connection with the underlying Thanet Sands and Chalk. From the geological sequence identified from borehole logs to the south-west of the Edmonton EcoPark, the thicknesses of the Kempton Park Gravels and London Clay are similar to those recorded to that in the south of the Edmonton EcoPark. The off-site boreholes identify the base of the Lambeth Group at approximately 22m bgl (-11m AOD assuming a ground level of 11m AOD) and therefore its base may be at a similar depth in the south of the Edmonton EcoPark. As the London Clay thickens in the north of the Edmonton EcoPark and Lambeth Group is identified in on-site boreholes to approximately -14m AOD, the base of the Lambeth Group is anticipated to be at a much lower elevation here. Much of the shallower Lambeth Group on-site is also low permeability clay which could itself provides some protection to the underlying Principal and Secondary Aguifers. Boreholes in the vicinity of the Edmonton EcoPark have recorded Chalk at between 32.5 m bgl and 36 m bgl (approximately -21.5 to -25 mAOD).
- 5.1.9 The most stringent groundwater protection measures are considered necessary at the Edmonton EcoPark due to the underlying SPZ1. With these measures in place, future changes to the SPZ area or the addition of further abstractions in the vicinity of the Edmonton EcoPark are not foreseen to introduce any requirement for further groundwater protection measures.
- 5.1.10 It appears that the construction of the existing EfW facility bunker was undertaken in a large, deep excavation which went down into the Lambeth Group. The Kempton Park Gravels and London Clay are therefore absent in the area of the excavation. Once the bunker was constructed the remaining void outside the bunker was infilled. Investigation has found that the backfill is gravelly clay Made Ground. As the London Clay has been excavated in this area, a potential pathway through the backfill material to the Lambeth Group exists. However, groundwater quality in the Lambeth Group does not indicate the presence of organic contaminants (e.g. PAH, VOCs, TPH or phenols). In addition, the concentration of ammonium is greater in the north upgradient and lower in the south downgradient of the bunker, therefore there is no water quality evidence of a contamination pathway to the Lambeth Group. The infill material in this area was found to be low permeability Clay and also the top 10m of Lambeth Group was found to be low permeability mottled clay and therefore is likely to limit vertically downwards groundwater flow.
- 5.1.11 The Enfield Ditch is believed to be unlined and to be able to drain to the underlying aguifers.

- 5.1.12 The River Lee Navigation is canalised adjacent to the Edmonton EcoPark and does not appear to be in hydraulic connectivity with the on-site aquifers and therefore is not considered further within the risk assessment.
- 5.1.13 No groundwater pathway has been identified to the following water bodies; River Lee, William Girling Reservoir or Banbury Reservoir and they are therefore are not considered further within the risk assessment.
- 5.1.14 Made Ground soils and ground gas have been identified at the Edmonton EcoPark and these are potential sources for human health receptors and therefore will be assessed in Section 6 of the ES.

5.2 Potential sources

- 5.2.1 The detailed design for the proposed ERF has not been yet undertaken. However, it is assumed that the proposed ERF will represent a similar source to the existing EfW facility i.e. it will not introduce any new sources of potentially polluting substances.
- Any potential sources introduced during construction will be controlled through good practice as set out in the Code of Construction Practice (CoCP) (Vol 1 Appendix 3.1 of the ES) and as such are unlikely to present a significant risk to groundwater.
- 5.2.3 Potential sources on-site are detailed in Table 5.1.

Table 5.1 Potential Contaminant Sources

Source	Description	Potentially polluting substances
Waste within reception area, compost and storage bunker	Waste is stored on-site in sealed bunker. Recycling is stored on-site on hardstanding.	Elevated concentration of: chloride, ammonium, BOD, dissolved metals, phenols, PAH, VOCs. Low risk of some pathogenic organisms.
Ash recycling facility	Recycling facility on hardstanding.	Dissolved metals and dioxins.
Water treatment facility	Plant for the treatment of on-site waste water.	Chloride, ammonium, dissolved metals, acids used for cleaning and pH balancing.
Fuel storage	Fuel storage on hardstanding.	TPH, BTEXs.
Drainage system	Receives various low strength liquors and building washdowns.	Cleaning detergents and low strength liquors.
Emergency water use	Fire water and disposal.	May become contaminated dependant on the emergency.
Made Ground perched groundwater	Perched groundwater found in the Made Ground has been identified to have potentially polluting substances and high vulnerability to pollution.	Ammonium, dissolved metals, phenols and potential PAH, TPH and VOCs.
EfW facility excavation infill	The materials used to infill the excavation were not detailed in the construction notes and therefore potentially polluting substances may be present.	Potential ammonium, dissolved metals, phenols, PAH, TPH and VOCs.

Source	Description	Potentially polluting substances
Kempton Park Gravel aquifer	Water from the Kempton Park Gravel aquifer has been identified to have lower quality than that of the underlying aquifers and high vulnerability to pollution.	Ammonium, dissolved metals, phenols and potential PAH, TPH and VOCs.
Made Ground soils	Edmonton EcoPark is underlain by a layer of Made Ground soils.	Ammonium, dissolved metals, phenols, asbestos and potential PAH, TPH and VOCs.
Ground gas	Potential ground gas due to presence of Made Ground and industrial history of the area.	Ground gases and volatiles.

5.3 Potential pathways

- 5.3.1 Current pathways, and pathways which may be developed due to the Project are identified in Table 5.2. As the pathways which are created during the construction will remain during the operational stage, the pathways for both stages can be considered together.
- 5.3.2 The additional potential pathways which may be introduced due to the Project are:

Energy Recovery Facility bunker

- 5.3.3 During construction of the bunker for the proposed ERF, a thickness of London Clay will be excavated reducing the protection provided, and potentially creating a vertical pathway to underlying aquifers. However, a substantial thickness (>5m) of London Clay will remain beneath the excavation.
- 5.3.4 The bunker will be constructed from impermeable materials and will create a barrier to lateral flow in the Kempton Park Gravel. This will change the flow pattern in the gravels potentially creating new pathways or altering existing pathways.
- 5.3.5 Possible vertical and lateral pathways created between aquifers along the outside walls and supporting structures of the bunker.
- 5.3.6 Disturbance of groundwater flow is anticipated in the Kempton Park Gravels as a result of the construction of the underground waste bunker for the proposed ERF which will fully penetrate this aguifer unit.
- 5.3.7 Potential changes in the water levels due to the installation of an impermeable ERF bunker structure have been investigated through the use of a numerical groundwater model using MODFLOW-2005. This modelled the proposed ERF and immediate surrounding area (Appendix D of Vol 1 Appendix 7.2 of the ES). Following construction of the bunker the model predicts that up-gradient groundwater levels will increase slightly by up to 0.02m in the area immediately north of the bunker. Conversely, groundwater levels to the south of the bunker are predicted to fall slightly by approximately the same height. The changes to groundwater elevation are predicted to be localised to within 150m of the bunker location. Beyond

this distance groundwater elevations are predicted to be essentially identical (<0.005m difference).

Deep foundation piling

5.3.8 Construction of piled foundations, other deep structures and excavations may create vertical pathways between aquifers, particularly where they fully penetrate low permeability layers. Piles may be required for three separate buildings: to the north of the Edmonton EcoPark at the proposed ERF building, at the south of the Edmonton EcoPark at the RRF building and at EcoPark House in the Wharf area.

Excavations

5.3.9 Where dewatering is required for deep excavations, pumping has the potential to draw in contaminated groundwater from elsewhere on-site or from off-site sources creating new pathways or altering existing pathways.

Energy from Waste facility bunker demolition

- 5.3.10 It is proposed to remove the existing EfW facility bunker. However, as the civil engineering strategy for this activity and associated liaison with the EA will take place during detailed design stage, the bunker demolition stage is not considered in this risk assessment. The current Edmonton EcoPark condition and post bunker removal stages are considered.
- 5.3.11 After removal of the bunker, it is assumed that the excavation will be backfilled in a manner than recreates the hydrogeological conditions existing before the bunker was built. This means that low permeability materials will be placed at the location of the low permeability clays in the Lambeth Group and London Clay and more permeable granular material will be placed at the location of aquifers.
- 5.3.12 The bunker is a barrier to groundwater flow and its removal will result in changes to the groundwater flow regime in this part of the Edmonton EcoPark, potentially creating new pathways for migration of existing contamination or altering existing pathways.
- 5.3.13 The bunker removal and backfilling removes some potential preferential vertical pathways between shallow groundwater and the Lambeth Group.

Table 5.2 Receptors and pathways

Receptor	Pathway
Groundwater in the Kempton Park Gravels aquifer (secondary aquifer)	Drainage of contaminants to ground and vertical migration through Made Ground and Alluvium. Vertical migration via artificial pathways (e.g. foundations, services). Lateral groundwater flow. Potential of mobilisation of PPS with changes in hydraulic gradient due to dewatering or constructed barriers.
Groundwater in the Lambeth Group and Thanet Sands aquifer (secondary aquifer)	Vertical migration of contaminants through London Clay. Vertical migration via artificial pathways (e.g. foundations, deep piles). Vertical migration in existing EfW facility excavation area from Made Ground through historic excavation infill. Lateral groundwater flow.

Receptor	Pathway
Groundwater in the Chalk aquifer (principal aquifer)	Vertical migration through Lambeth Group and Tertiary Sands. Vertical migration via artificial pathways (e.g. deep piles, deep boreholes). Lateral groundwater flow.
Public water supply boreholes in the Chalk aquifer	As above.
Private water supply boreholes	As above for Lambeth Group, Thanet Sands and Chalk aquifers (assuming boreholes abstract water from these deeper boreholes).
Surface water in Salmon's Brook	Overland flow of contaminants. Discharge of contaminated groundwater through lateral flow in Made Ground and Kempton Park Gravels. Surface water discharge to Salmon's Brook.
Surface water in the Enfield Ditch	Overland flow of contaminants. Discharge of contaminated groundwater.
Human Health: site workers, construction workers, workers on adjacent sites, local residences	Made Ground - dermal contact, ingestion, inhalation. Ground Gas – inhalation.

5.4 Potential Receptors

- 5.4.1 The main receptors that are potentially at risk from the proposed Project are summarised in Table 5.2 and detailed below:
 - a. current and future commercial site users, construction workers;
 - b. groundwater in the Kempton Park gravels (Secondary Drift aquifer);
 - c. groundwater in the Tertiary deposits (Lambeth Group and Thanet Sands) (Secondary aquifers);
 - d. groundwater in the Chalk aquifer (Principal aquifer);
 - e. groundwater public supply boreholes (the Edmonton EcoPark lies within SPZ1 and SPZ2);
 - f. groundwater private supply boreholes (29541rr086i1 indicated that there are 7 boreholes within 500 m of the Edmonton EcoPark);
 - g. surface water Salmon's Brook. This brook is located on the western margin of the Edmonton EcoPark and is fed by groundwater discharge from the Kempton Park gravels. A surface water drain is located along the eastern and southern boundaries of the Edmonton EcoPark and this discharges to Salmon's Brook;
 - h. Enfield Ditch located on-site and along the eastern and southern boundaries of the Edmonton EcoPark, designated as a controlled surface water; and
 - i. human health of and commercial neighbouring site users. There are no residential receptors sufficiently close to be considered at risk from

Made Ground and ground gas sources. Human health risk regulations consider sources up to 0.6m bgl as potential risk.

- 5.4.2 Receptors which are not considered in the risk assessment as no pathway has been identified are:
 - a. surface water: River Lee Navigation. The River Lee is canalised adjacent to the Edmonton EcoPark; it is not believed to be in hydraulic continuity with the Edmonton EcoPark. Therefore risks to this surface water body from the Edmonton EcoPark can be considered insignificant and this receptor is not considered further; and
 - b. surface water: River Lee. The river is located some 500m from the Edmonton EcoPark and is therefore unlikely to be a risk and has not been considered in the risk assessment.
- 5.4.3 The likely significant effects from ground conditions on designated ecological receptors (i.e. William Girling and King George's reservoirs, part of the Chingford Reservoirs Site of Special Scientific Interest) will not be assessed. This is on the basis that the identified ecological receptors are located upstream of the Edmonton EcoPark. Also, any additional mitigation measures identified as outcomes of the assessment of impacts on groundwater underlying the Edmonton EcoPark will also be protective of migration pathways through groundwater to the reservoirs.

6 Human health risk assessment

6.1 Approach

- 6.1.1 A human health risk assessment has been undertaken to identify potential risks from historical land contamination to people at the site and to enable appropriate risk management actions to be undertaken in accordance with the regulatory context of the site. There is a range of technical approaches to risk assessment of chemical contaminants, all of which broadly fit within a tiered approach. The tiered approach to assessing risks from land contamination is set out in the Defra and EA publication Model Procedures for the Management of Land Contamination CLR11. This section summarises a Tier 2 Generic Quantitative Risk Assessment.
- 6.1.2 An assessment of risks to human health from soils is included to ensure that one technical report provides support to both the Water Resources and Land Quality Environment Statements.
- 6.1.3 Soil samples collected during the ground investigation were analysed using the analytical suite listed in Table 6.1.

Table 6.1 Soil Analysis

	Table 9.1 Ooli Allarysis			
Туре	Parameter			
Inorganics	Metals (Al, As, Ba, B, Cd, Cr, Cu, Fe, Hg, Pb, Ni, Se, Zn), ammonium, pH, water soluble sulphate, total sulphate, sulphides, asbestos (Made Ground only), total and free cyanide.			
Organics	Total petroleum hydrocarbons (TPH – CWG), speciated polycyclic aromatic hydrocarbons (PAH) and phenol.			

- 6.1.4 Soil samples were taken and analysed as part of each site investigation listed in Table 1.1, with the exception of the June 2014 investigation. Separate Generic Quantitative Risk Assessments were undertaken for the results of the 2011, 2012 and December 2014 site investigations. The results of these Generic Quantitative Risk Assessments are detailed in the reports on each investigation.
- 6.1.5 The reporting of the June 2014 site investigation did not include a Generic Quantitative Risk Assessment. A Generic Quantitative Risk Assessment for this investigation is provided in Appendix B.
- 6.1.6 The most recent Generic Assessment Criteria (GAC) as set out in the Defra and EA at time of each report publication were used, supplemented with Amec Foster Wheeler-derived GACs; Chartered Institute of Environmental Health/LQM (CIEH/ LQM) GAC; and The Environmental Industries Commission/Association of Geotechnical and Geoenvironmental Specialists/CL:AIRE (EIC/AGS/CL:AIRE) GAC. As the sites existing and future land uses are commercial, the commercial GAC were used.

6.2 Results

6.2.1 A summary of soil GAC exceedances is shown in Table 6.2.

Table 6.2 Examples of Soil GAC exceedances	Table 6.2	Examples of Soil GAC Exceedances
--	-----------	----------------------------------

Determinand	Location (depth in mbgl)	GAC (mg/kg)	Concentration (mg/kg)
Chromium (total)	BH401 (0.7-0.9)	35	40
	BH402 (0.6-0.8)		37
	BH404 (6.7-6.8)		38
	BH404 (9.0-9.4)		36
Lead	WS123 (1.3-1.4)	2330	2700
Benzo(a)pyrene	BH113 (0.2-0.4)	14	20

- 6.2.2 The results show exceedences of GACs for lead, chromium (total) and benzo(a)pyrene. The presence of asbestos was noted in a small number of samples.
- 6.2.3 The majority (5 out of 6) of GAC exceedances are at depths below 0.7m and therefore there is unlikely to be an exposure pathway which could affect human health. The shallow exceedence for benzo(a)pyrene was in an area covered in hard standing, mitigating a potential exposure pathway.
- 6.2.4 It is assumed that construction workers will follow industry practice and PPE to minimise potential exposure to contaminants. The contractor should be informed of the presence of asbestos, which was identified in soils at BH116, WS1233, BH303 and BH404, so that they can take appropriate mitigation methods to prevent exposure.
- 6.2.5 An exposure pathway for future site users is unlikely due to the planned presence of hard standing and landscaping. The re-use of soils impacted by elevated contaminants should be avoided, they should either be placed at depth or covered by a clean cover layer to mitigate potential human exposure pathways.

- 6.2.6 In the existing EfW facility area analysis of backfill did not identify any exceedances of commercial GAC but there were a number of detections of asbestos. The only SVOCs detected were phenanthrene and anthracene in a sample from BH403 from 2.1 to 2.3m bgl at concentrations well below their respective GAC. TPH fractions were present in several samples however all were well below their respective GAC. Fractions in the C5 to C10 range were not present in any samples.
- 6.2.7 Toluene and m&p xylene were above the laboratory limit of detection in one sample taken in BH404 at 17.0 to 17.2m bgl but were well below their respective GACs.
- 6.2.8 The results of the GAC screening indicate that there were two exceedances for chromium in BH404 in the Lambeth Group (6.7 to 6.8 and 9.0 to 9.4m bgl). The chromium analysis did not distinguish between chromium III and chromium VI meaning that the worst case value of 35mg/kg for chromium VI has been used. The average value for chromium is 33.6mg/kg across the three samples taken in the Lambeth Group in BH404 indicating that chromium contamination in the Lambeth Group is unlikely to be a problem in this location. It is also unlikely that all of the chromium present is in the chromium VI state and the results are only marginally higher than the GAC value. In addition, the soils are at depth in the Lambeth Group and covered with hardstanding and as such these exceedances are deemed unlikely to present a significant risk to human health in the current Edmonton EcoPark layout.

6.3 Ground gas assessment

- 6.3.1 A ground gas assessment was conducted in 2011 covering up to 33 locations across the Edmonton EcoPark over nine monitoring rounds.
- A semi-quantitative approach was adopted for the assessment of ground gas data, following CIRIA C665. In order to provide a conservative assessment, a Gas Screening Values (GSV) for the Edmonton EcoPark have been calculated by taking the maximum borehole flow rate (I/hr) (including peak flow) and multiplying it with the maximum gas concentration (per cent) at each location. The calculation is carried out for both methane and carbon dioxide and the worst case GSV adopted. The GSV is used to determine the Characteristic Situation (CS), as detailed in the guidance document.
- 6.3.3 Elevated carbon dioxide and/or methane concentrations were recorded in locations WS110, WS111, WS117, WS122, WS124 and WS130. CS2 typically applies at these locations (see Figure 3 for monitoring locations).
- 6.3.4 As a result of the presence of methane and carbon dioxide in some areas of the Edmonton EcoPark, the risk assessment has identified that CS2 applies, or should be applied, in some areas of the Edmonton EcoPark. This classification provides guidance on the requirement for gas protection measures in future buildings.

7 Hydrogeological Risk Assessment

7.1.1 A Risk Assessment following the EA guidance GP3 has been carried out using the Edmonton EcoPark conceptual source-pathway-receptor linkages identified. The site activity is identified as waste management and the receptors considered are groundwater and controlled waters.

7.2 Hazard Identification and Risk Register

- 7.2.1 Hazard identification has been undertaken for the current waste Edmonton EcoPark and for the planned future Project at the Edmonton EcoPark to evaluate whether the Project (with appropriate mitigation measures) is acceptable in terms of the risk to the receptors. The following was undertaken:
 - a. identification of sources that could give rise to pollution reaching receptors;
 - b. identification of pathways that could release contaminants to the environment covering both acute (short-term, catastrophic) and chronic (long-term, less-severe) mechanisms;
 - c. assessment of the likelihood of a release occurring;
 - d. assessment of the consequence of a release to receptors;
 - e. identification of mitigation measures that would be put in place to stop contaminants escaping into the environment;
 - f. assignment of a relative measure to each of the above parameters to enable a qualitative assessment of the overall risk level (low, medium, high, critical); and
 - g. recommendations for additional measures or monitoring where a residual risk has been identified.

7.3 Risk register

- 7.3.1 The risk register (Appendix G of Vol 2 Appendix 7.2 of the ES) considers the on-site sources which have potential to cause contamination at a controlled water receptor in Table 7.1. No change to potential sources is identified during construction or during operation of the proposed ERF.
- 7.3.2 A risk assessment was previously undertaken for the existing waste plant activities and the risk tables used in that assessment are provided in Appendix F of Vol 2 Appendix 7.2 of the ES. The risk to groundwater and surface waters for each of these waste facility activities was found to be low and therefore the risk assessment has not been repeated for these activities. The sources considered in Appendix F are listed in Table 7.1. The remaining sources considered within this risk assessment are detailed in Table 7.2.

Table 7.1 Potential Sources previously assessed (Appendix F)

Activity	Description			
Process water system	Collects stores and distributes various liquors generated on-site. Process water is a low strength liquor.			
Feedstock preparation	Organic fraction from Dano drums is washed clean, dry solids are adjusted and sludge is stored.			
Drainage system	Receives various low strength liquors and building washdowns.			
Gas system and hot water systems	Cleans and dries the digester gas for supply to CHP and boiler plant that provides process heat in the form of hot water.			
Digestion and pasteurisation system	Treats feedstock sludge biologically to produce digester gas and Whole Digestate, heat treats the Whole Digestate to kill pathogens.			
Rejects from pulper	Grit and screenings handling system.			
Odour scrubbers	Part of odour control system.			

Table 7.2 Potential Sources (not including previous sources already assessed)

Source	Description	Potentially polluting substances		
Waste storage bunker (existing EfW and proposed ERF)	Waste is stored on-site in sealed bunker.	Could contain ammonium, high BOD, dissolved metals, phenols, PAH, VOCs. Low risk of some pathogenic organisms.		
Ash recycling facility	Recycling facility on hardstanding.	Dissolved metals, VOCs and dioxins.		
Fuel storage	Fuel storage on hardstanding.	TPH, BTEXs.		
Made Ground perched groundwater	Perched groundwater found in the Made Ground has been identified to have potentially polluting substances and high vulnerability to pollution.			
Existing EfW facility excavation infill	The materials used to infill the previous bunker excavation were not detailed in the construction notes and therefore potentially polluting substances may be present.	Potential ammonium, dissolved metals, phenols, PAH, TPH and VOCs.		
Kempton Park Gravel aquifer	Water from the Kempton Park Gravel aquifer has been identified to have lower quality than that of the underlying aquifers and high vulnerability to pollution.	Ammonium, dissolved metals, phenols and potential PAH, TPH and VOCs.		
Made Ground	Made Ground sandy clay with potential sources of contamination stockpiled or stored during construction.	Potential ammonium, dissolved metals, phenols, PAH, TPH and VOCs.		

- 7.3.3 For each source, the risk register considers the hazard (e.g. event causing a release of a contaminated substance to the environment), the consequence of the release (e.g. pollution at a receptor), the likelihood of the event, the mitigation measures that can be implemented to prevent or reduce the consequence of the event. The assessment considers the risk before and after safeguards are put in place.
- 7.3.4 Where the overall risk is identified as high or above then the proposed Project is considered to represent an unacceptable risk unless further mitigation measures can be implemented.

7.4 **Hazards**

- 7.4.1 For each of the identified sources, the conceptual model identifies possible mechanisms that could result in the release of contaminants to the environment by assessing each of the categories: Location, Failures, Maintenance, Operational, and Other where applicable. Contamination due to surface water flooding and flood water management has been considered in the Flood Risk Assessment (Vol 2 Appendix 11.2 of the ES) and therefore will not be considered in this assessment.
- 7.4.2 The main failure mechanisms that could result in a release to the environment for the sources considered for the Edmonton EcoPark are:
 - a. leak from underground bunker;
 - b. infiltration from ash recycling area though failure in hardstanding surface;
 - c. failure or overtopping of bunds or concrete floors/hardstanding;
 - d. spillages of effluent;
 - e. ground subsidence or heave; and
 - earth and groundworks during demolition and construction.
- 743 Additional failure mechanisms that could result in an increased risk to the environment during the construction and operational stages of the Project are:
 - a. possible vertical and lateral pathways would be generated between aguifers along the outside walls and supporting structures of the proposed ERF bunker due to installation method or corrosion of materials:
 - b. creation of vertical groundwater pathways between aquifers through piled foundations, other deep structures and excavations;
 - c. mobilisation of groundwater within the Kempton Park Gravels, in the event that de-watering is required during construction of the proposed ERF or demolition of the existing EfW Facility bunker demolition. As no detailed designed is available at this time for the existing EfW facility bunker removal the demolition stage is not considered in this risk assessment. The current Edmonton EcoPark condition and post bunker removal stages are considered;
 - d. changes to the Kempton Park Gravel groundwater pathway as a result of removal of the existing EfW facility bunker:
 - e. the bunker removal also removes the possible pathways between the Made Ground and Lambeth Group where the clay barrier between aguifers created.

7.5 Mitigation measures

- 7.5.1 Proposed mitigation measure for the waste facility sources are summarised below. A fuller inventory is provided in Appendix F and Appendix G. Standard mitigation measures in line with good practice and guidance will be implemented where appropriate, including measures to manage flood
 - 34 AD06.02 | Issue | October 2015 | Amec Foster Wheeler Environment & Infrastructure UK Ltd.

risk and drainage which will be set out in the FRA (Vol 2 Appendix 11.2 of the ES). The prevention of leakage and spillage of hazardous materials stored or used on-site will be addressed through environmental permitting during the operational stage. Mitigation measures will be documented in a future Construction Environmental Management Plan (CEMP) for the Edmonton EcoPark. The prevention of pollution from construction and demolition groundworks will be implemented though mitigation measure identified in the CoCP (Vol 1 Appendix 3.1 of the ES). The main mitigation measures that have been considered appropriate for the Project are:

- a. greater than 5m thickness of London Clay will be maintained beneath deep excavations. The proposed ERF bunker location, in the north-east of the Edmonton EcoPark, was chosen through consultation with the EA and took into account the hydrogeological risks. In particular, its location on-site was selected because geological mapping identified that the London Clay is thickest in this part of the Edmonton EcoPark, as shown in Figure 13. The bunker design allows a thickness of London Clay greater than 5m below the bunker and therefore minimising risks of creating vertical pathways to underlying aquifers;
- b. all pipework to be above ground or, if not, to be CCTV accessible to allow identification of leaks/failures:
- c. segregation of contaminated water and clean water (e.g. roof run-off);
- d. dewatering or flow barriers for groundwater in the Made Ground during groundworks so that flow into the Kempton Park Gravel is prevented;
- e. groundwater flow in the Kempton Park Gravel to be taken into account in the design of deeper structures and in the selection of infill materials;
- f. all structures to have impermeable bases;
- g. contained drainage system;
- h. all structures, including tank bases, designed and constructed to appropriate standards;
- treatment of contaminated water prior to discharge to sewer;
- j. design of required tank bunds to provide 110 per cent storage capacity based on largest tank capacity with allowance for 1:100 rainfall event;
- k. discharge of treated water and clean water to sewer rather than to ground;
- I. all overflows run to impermeable bunded areas or contained within building drainage system;
- m. use of control levels and alarms to identify leaks or overflows;
- n. deliveries of any ERF process chemicals to be to designated, bunded, areas;
- monitoring of the Edmonton EcoPark by instruments, inspections and daily walk around;
- p. documented maintenance and inspection procedures;
- q. environmental monitoring of surface and groundwater; and

35

r. piles will be designed to minimise hydrogeological risk by (1) not penetrating low permeability layers unless necessary; and (2) using piling techniques that minimise disturbance of low permeability layers and that also provide good seals with those layers.

7.6 Risk matrix

The risk matrix combines the likelihood of a hazard event occurring with the consequence of the event to derive an overall risk (low, moderate, high, critical). The likelihood and consequence categories are summarised in Table 7.3 and 7.4 respectively and the combined risk table is set out in Table 7.5.

Table 7.3 Likelihood of an Event

14	Likelihood						
	1	2	3	4	5	6	
	Remote	Highly Unlikely	Unlikely	Possible	Likely	Highly Likely	
Historical:	'Unheard of in the industry'	'Has occurred one or twice in the industry'	'Has occurred many times in the industry, but not in the Company'	'Has occurred once or twice in the Company'	'Has occurred frequently in the Company'	'Has occurred frequently at the location'	
Frequency: (Continuous Operation)	Once every 10,000 - 100,000 years at location	Once every 1,000 - 10,000 years at location	Once every 100 - 1,000 years at location	Once every 10 - 100 years at location	Once every 1 - 10 years at location	More than once a year at location or continuously	
Probability: (Single Activity)	1 in 100,000 - 1,000,000	1 in 10,000 - 100,000	1 in 1,000 - 10,000	1 in 100 - 1,000	1 in 10 - 100	> 1 in 10	

Table 7.4 Environmental Consequence of an Event

Consequence		Description
A	Catastrophic	GW: Large scale impact (100s m). Exceedance of drinking water standards in PWS boreholes with need to shut down supply or implement additional treatment. Long term/permanent impact.
В	Massive	SW: Large scale impact (100s to 1,000s m). Exceedance of drinking water in abstraction with need to shut down supply or implement additional treatment. Deterioration in ecological status of water body. Fish kill.
С	Major	GW: Large Scale (10-100m) impact on river gravel with exceedance of water quality standards, impact on deeper Tertiary and Chalk aquifers with exceedance of drinking water standards. Long term (months/years) impact
D	Moderate	SW: Large scale (100s m) impact on surface water with exceedance of water quality standards. Fish kill in surface water. Potable abstractions need to be taken out of supply. Medium term impact (days/weeks)
E	Minor	GW: Medium Scale (10s m) impact on river gravel aquifer with exceedance of water quality standards and impact on deeper Tertiary and Chalk aquifers with risk to groundwater abstractions. Medium term (months) impact
F	Slight	SW: Medium scale (100s m) impact on surface water with exceedance of water quality standards. Fish kill. Short term (days/weeks) impact

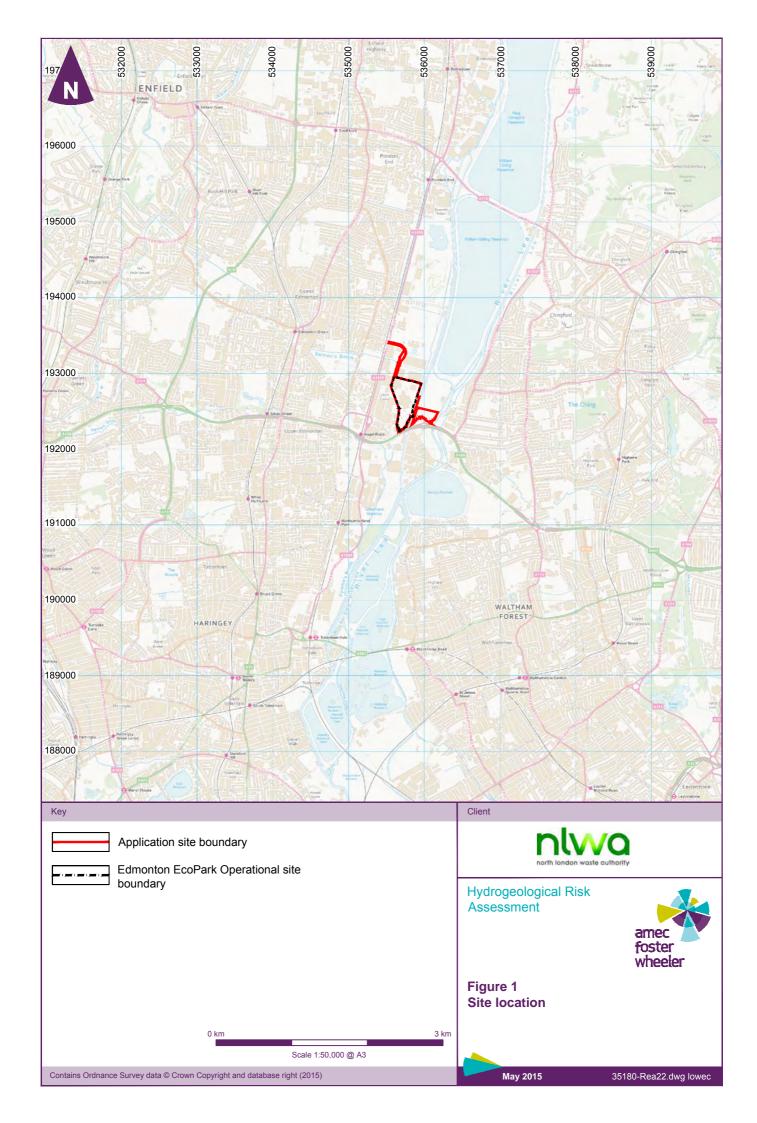
Table 7.5 Risk Matrix

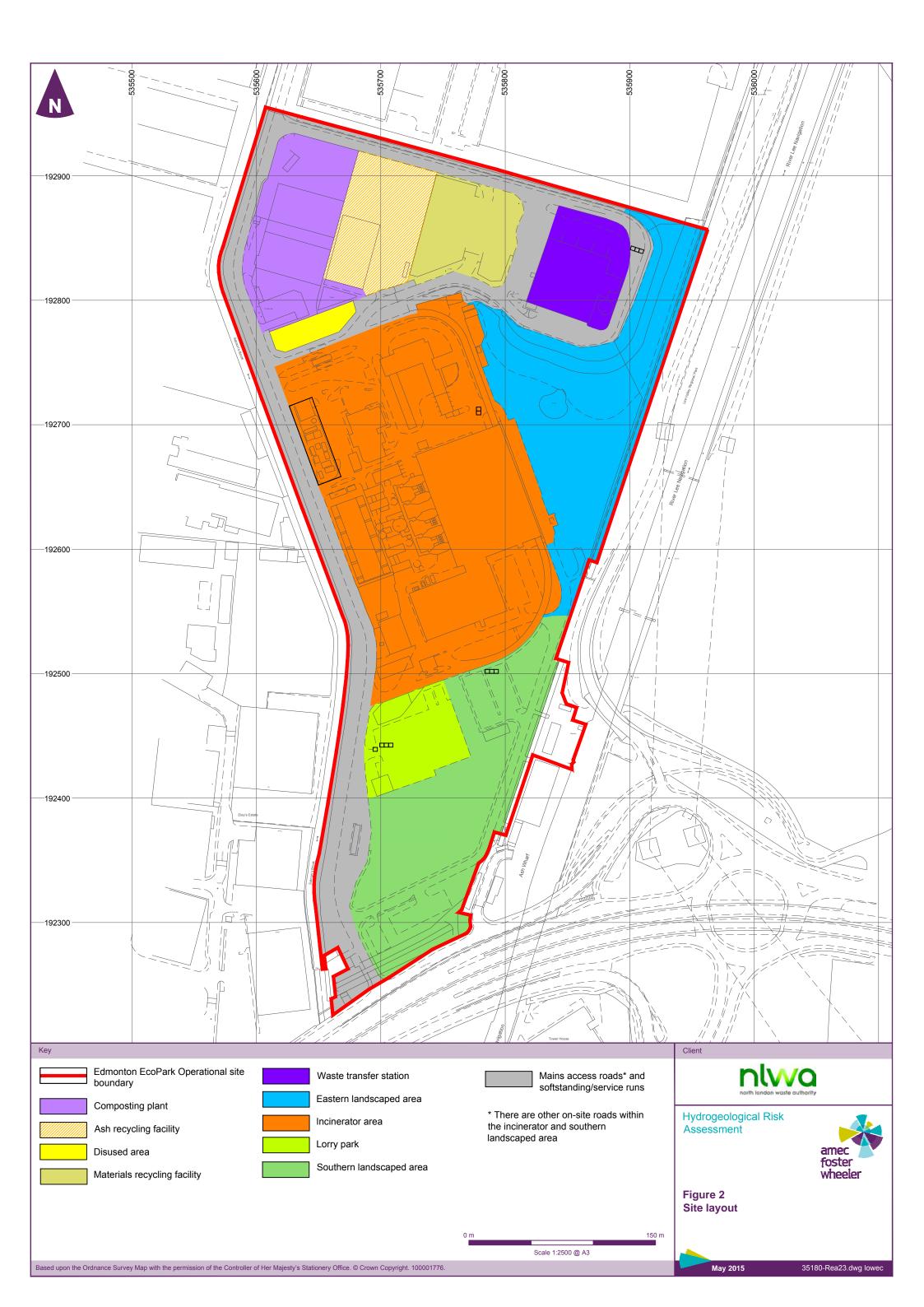
			1	2	3	4	5	6
			Remote	Highly Unlikely	Unlikely	Possible	Likely	Highly Likely
	A	Catastrophic	16	22	27	31	34	36
	В	Massive	11	17	23	28	32	35
	С	Major	7	12	18	24	29	33
	D	Moderate	4	8	13	19	25	30
	E	Minor	2	5	9	14	20	26
	F	Slight	1	3	6	10	15	21
	Risk Management Controls							

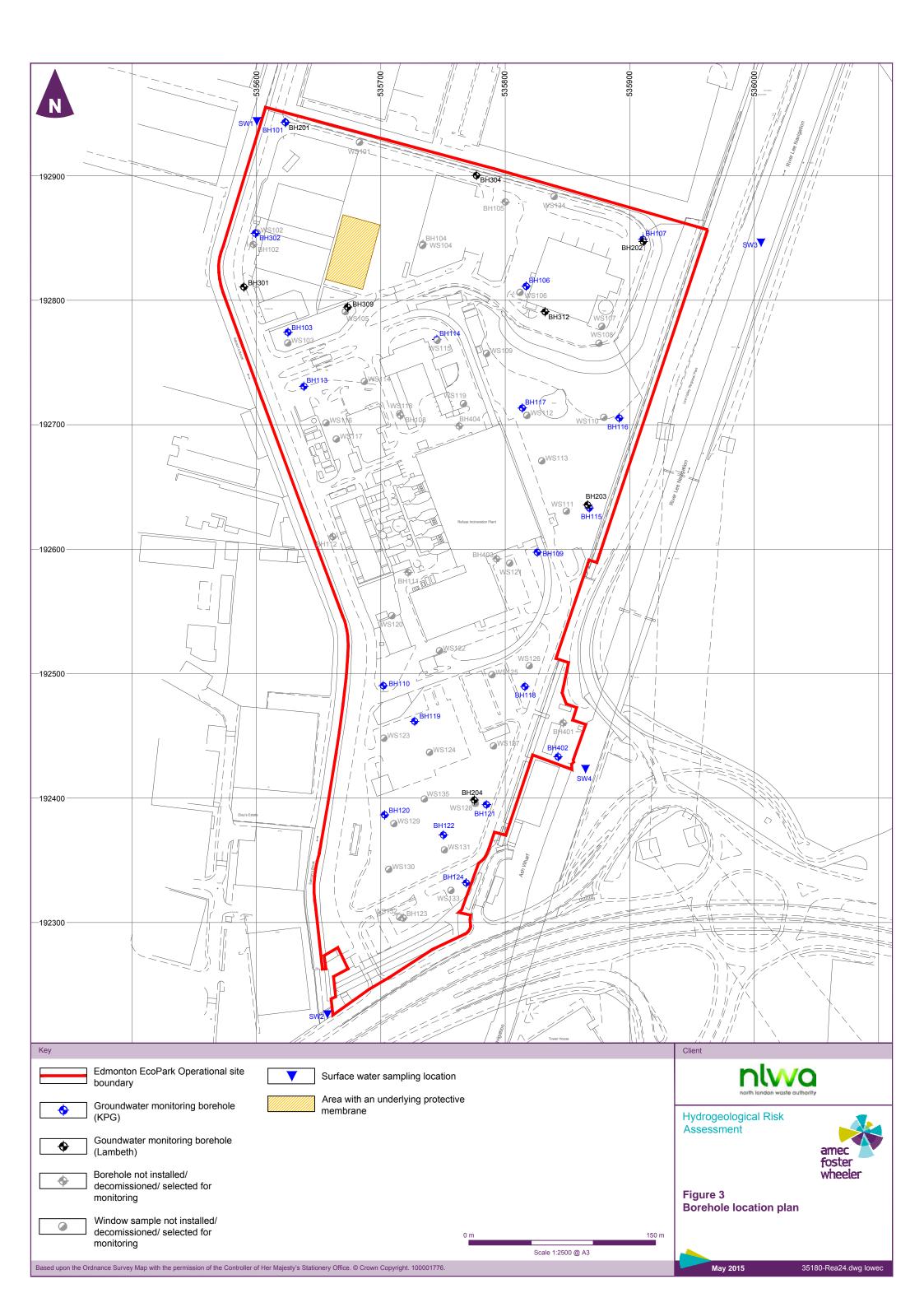
	Risk Management Controls						
27 - 36	CRITICAL	Risks must be reduced for Controlled Waters and other Risks. Significant and urgent actions required.					
16 - 26	HIGH	Assess risk in more detail and look to reduce further, as appropriate. In accordance with the ALARP principle for HSE Risks, identification of management control measures and further safeguards.					
7 - 25	MEDIUM	Look to reduce further in accordance with the ALARP principle for HSE Risks, identification of management control measures and further safeguards.					
1 - 6	LOW	Continue to manage and monitor risksby effective Risk Management.					

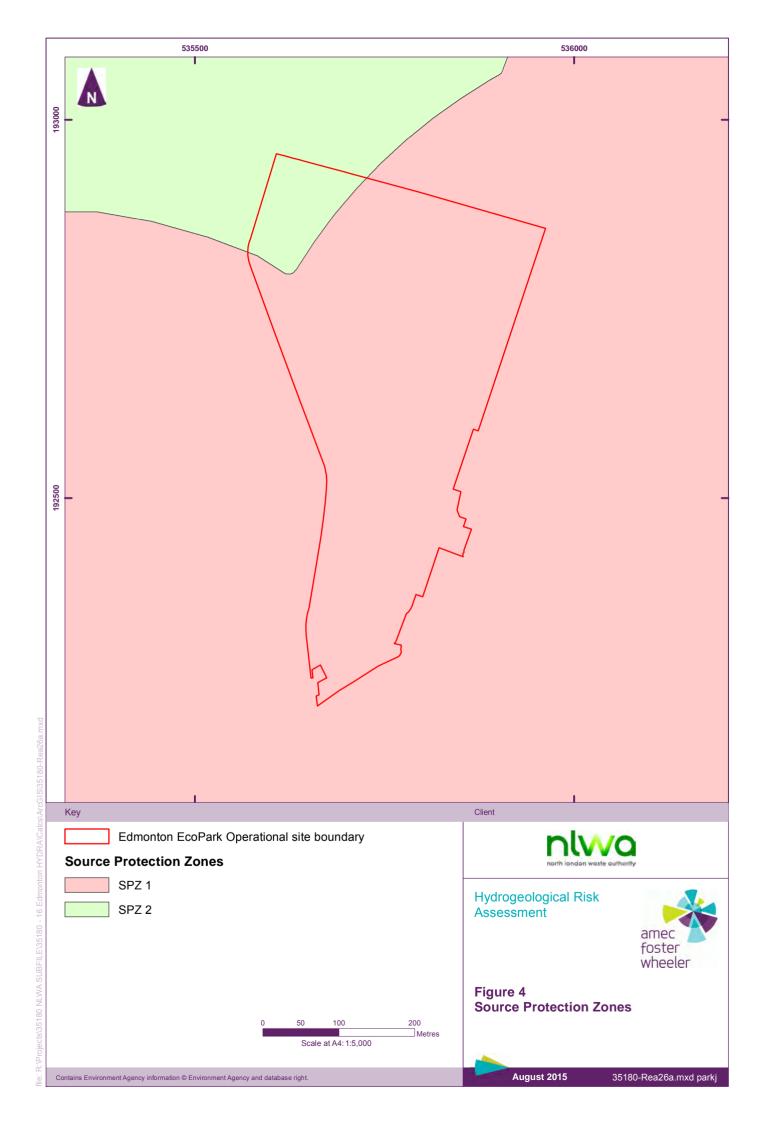
7.7 Results

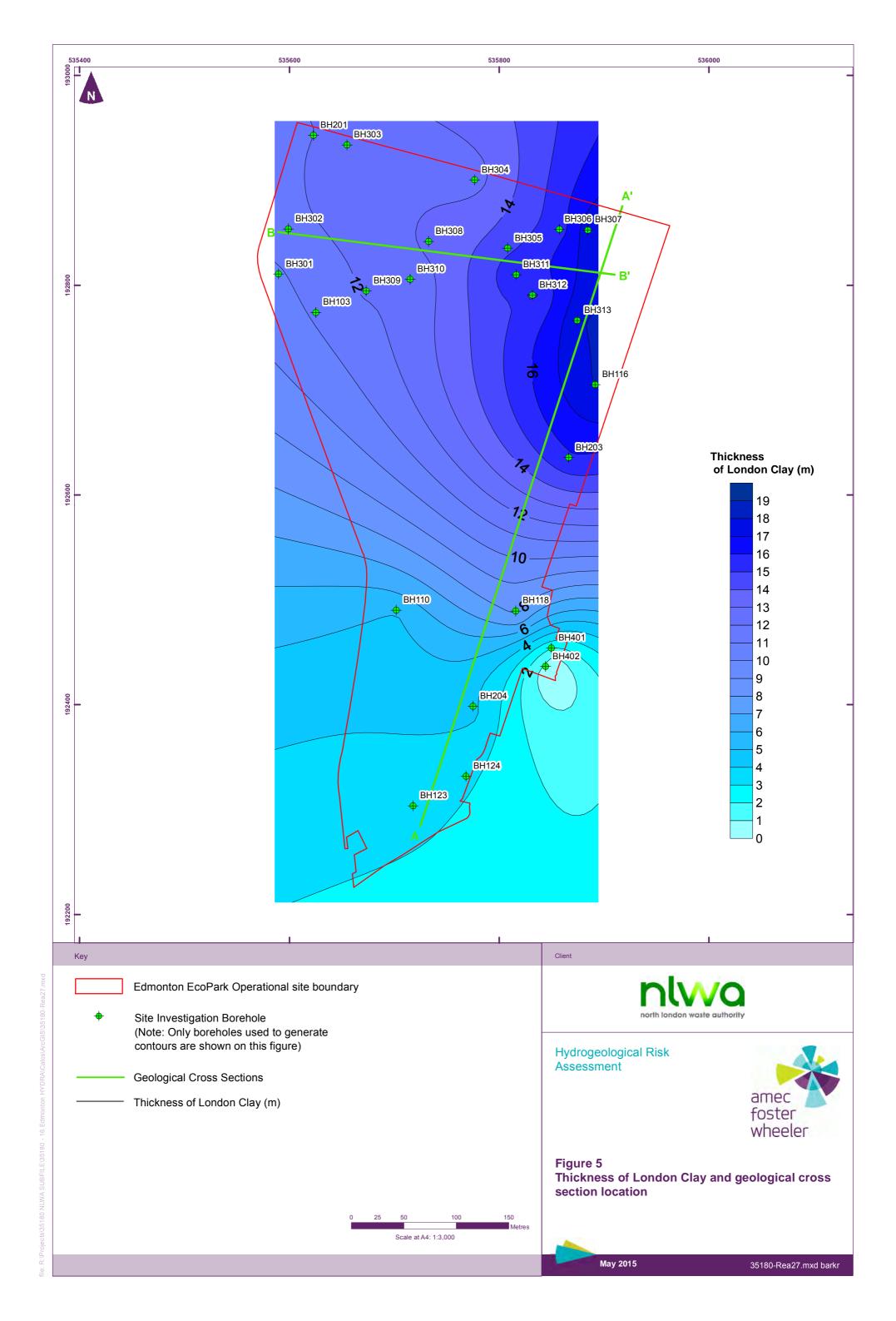
- 7.7.1 The results of the assessment are set out in the hazard risk register (Appendix G of Vol 2 Appendix 7.2 of the ES). The assessment identifies that, without mitigation measures, a number of hazard events could result in a moderate to high risk to groundwater and surface water receptors. After mitigation measures the risk for the majority of hazard events is low, with the exception of where the impermeable surface or bund is breached by subsidence in which case the risk is considered to be medium (Appendix F of Vol 2 Appendix 7.2 of the ES). Such an event would also need to coincide with another event (e.g. ruptures of a pipeline) and the likelihood of such an event is considered to be very remote.
- 7.7.2 The risk could further be reduced by:
 - a. regular inspection of bunds and impermeable surfaces; and
 - b. emergency response procedure in the event of a failure.
- 7.7.3 Residual effects are not considered for temporary works during the construction such as temporary excavations and stockpiling of soils. A CoCP will be produced to manage activities during construction, and it is expected that an Environmental Management Plan (EMP) will be produced for the operation of the Project. Mitigation measures outlined in the CoCP, EMP and FRA should aim to ensure that the EA's ability to achieve Good Potential in Salmon's Brook (under the WatFD) is not compromised.

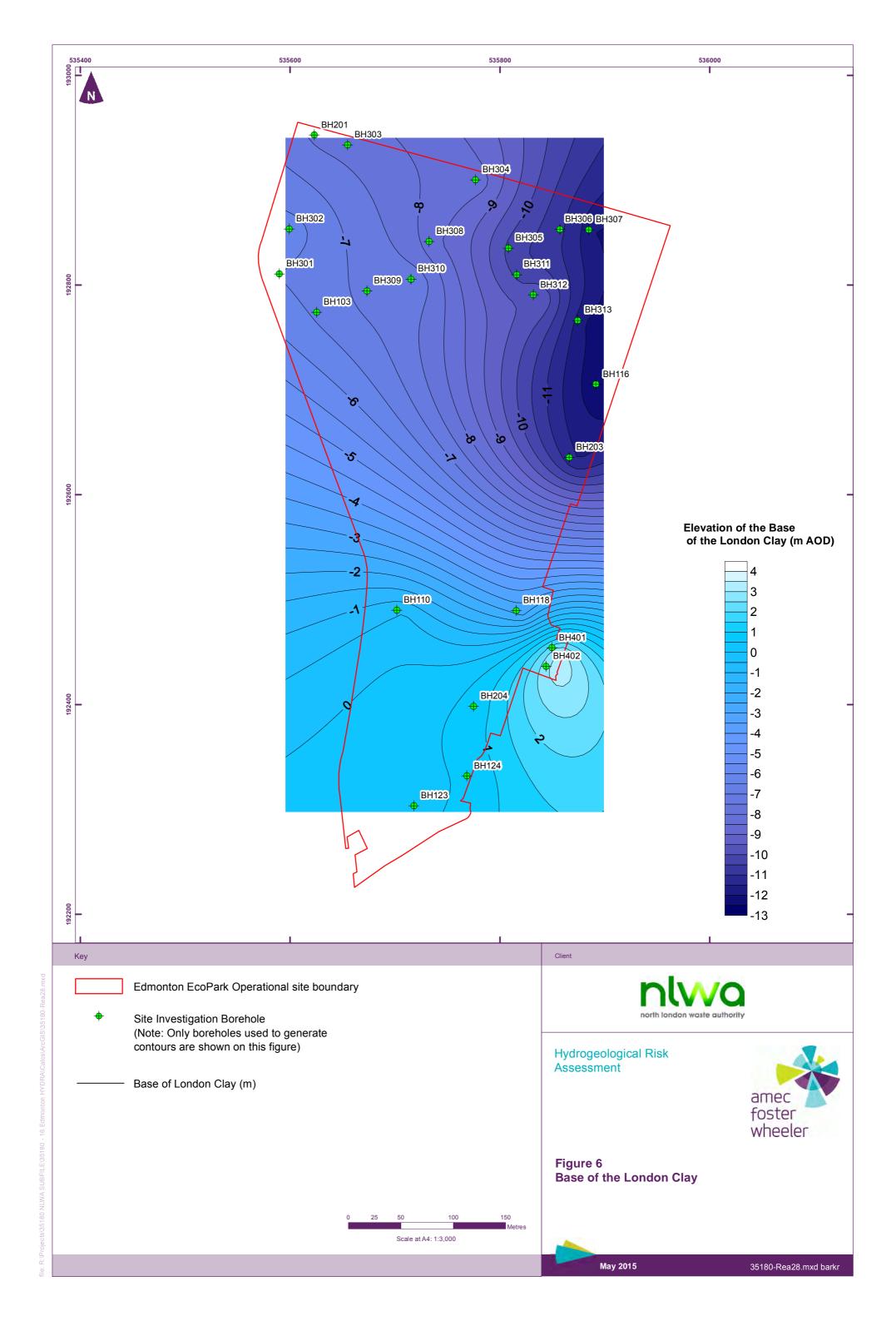

- 7.7.4 Consideration of the hydrogeological risks before Project layout design has allowed designers to minimise the risks from the proposed ERF bunker. The geological mapping at the Edmonton EcoPark identified that the London Clay is thickest in the north-east of the Edmonton EcoPark and therefore this location was selected for the proposed ERF bunker. The bunker design allows a thickness of London Clay greater than 5m below the bunker, therefore minimising risks of creating vertical pathways to the underlying aquifer.
- 7.7.5 The Project at the Edmonton EcoPark will require piling for building foundations in the north and south of the Edmonton EcoPark. The choice and piling technique will need to consider the risk to the deeper Tertiary and Chalk aquifers and will need to reference documents such as Piling and Preventative Ground Improvement Methods on Land Affected by Contamination: guidance on Pollution Prevention (National Groundwater and Contaminated Land Centre report NC/99/73) and Piling into contaminated sites (EA publication). The exact construction and foundation method will be determined during future design and will have to be confirmed by geotechnical and structural engineers. The design will require approval by the EA.

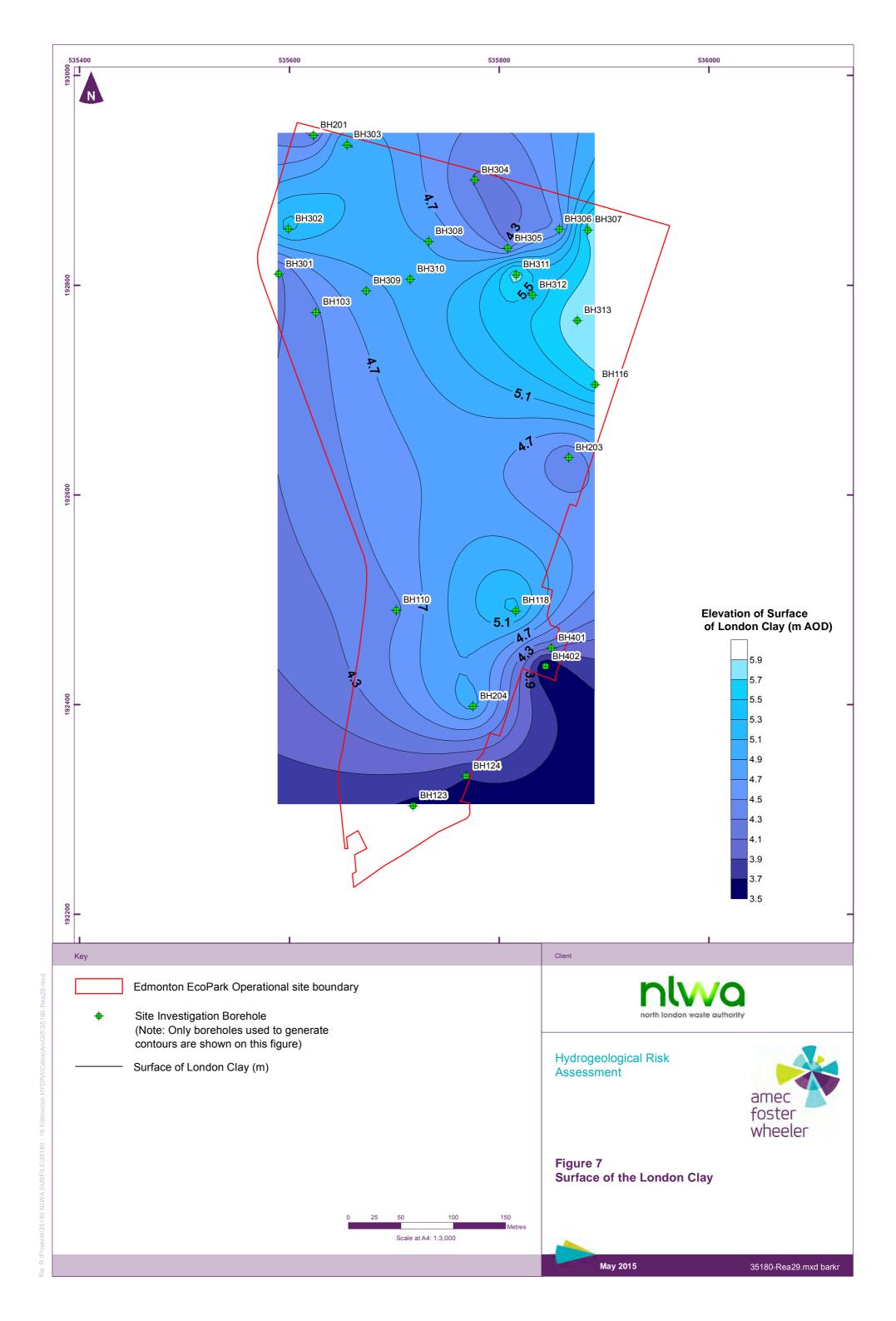

8 Conclusions


- 8.1.1 A qualitative risk assessment has been undertaken for the Project at Edmonton EcoPark in relation to groundwater, surface water and human health. The assessment first summarises the Edmonton EcoPark geology, hydrology and hydrogeology. This information is used to develop a conceptual site model that identifies the potential sources of contamination, pathways and receptors.
- 8.1.2 Through consultation with the EA and consideration of the hydrogeological risks, the location for the proposed ERF bunker was chosen in the northeast of the Edmonton EcoPark where the London Clay is the thickest. This reduces the potential to create a vertical pathway at the Edmonton EcoPark to the underlying aquifer with >5m London Clay underlying the planned ERF bunker.
- 8.1.3 A numerical groundwater model investigated the potential changes to the hydraulic gradient from the installation of the proposed ERF bunker in the northeast of the Edmonton EcoPark. The model predicts a slight increase in up-gradient groundwater levels immediately north of the bunker and a slight fall in to the south.
- 8.1.4 A Generic Quantitative Risk Assessment for human health considered risks from land contamination for sources from Made Ground and Ground Gas. It concluded that an exposure pathway for future site users is unlikely due to limited evidence of contamination and the absence of pathways due to the planned presence of hard standing and landscaping. However, any soils impacted by elevated contaminant concentrations should be placed at depth or beneath clean cover to further mitigate potential human exposure pathways.
- 8.1.5 The Generic Quantitative Risk Assessment assumes that construction workers will follow industry practice and use PPE to minimise potential exposure to contaminants. The contractor should be informed of asbestos identified in soils at BH116, WS1233, BH303 and BH404 (see Figure 3 for monitoring locations), so that they can take appropriate mitigation methods to prevent exposure.
- 8.1.6 The hydrogeological risk assessment has identified hazard events that could result in a release of contaminants to the environment, the consequence of the release and the likelihood of the event occurring. A number of significant hazard events have been identified and for each an appropriate set of mitigation measures (safeguards) have been proposed such that the residual risk is concluded to be low. The exception is where a hazard event (failure of a tank) coincides with a failure of a bund and/or impermeable surface as a result of subsidence. However, the likelihood of this event is considered to be very remote. A set of additional recommendations have been made to further reduce the risk.

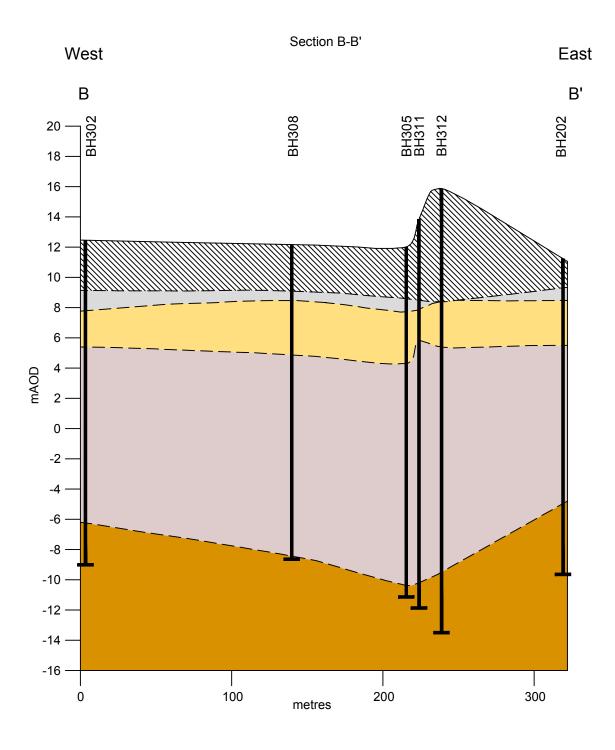

Appendix A: Borehole figures, logs and geotechnical analysis results


A1 Figures

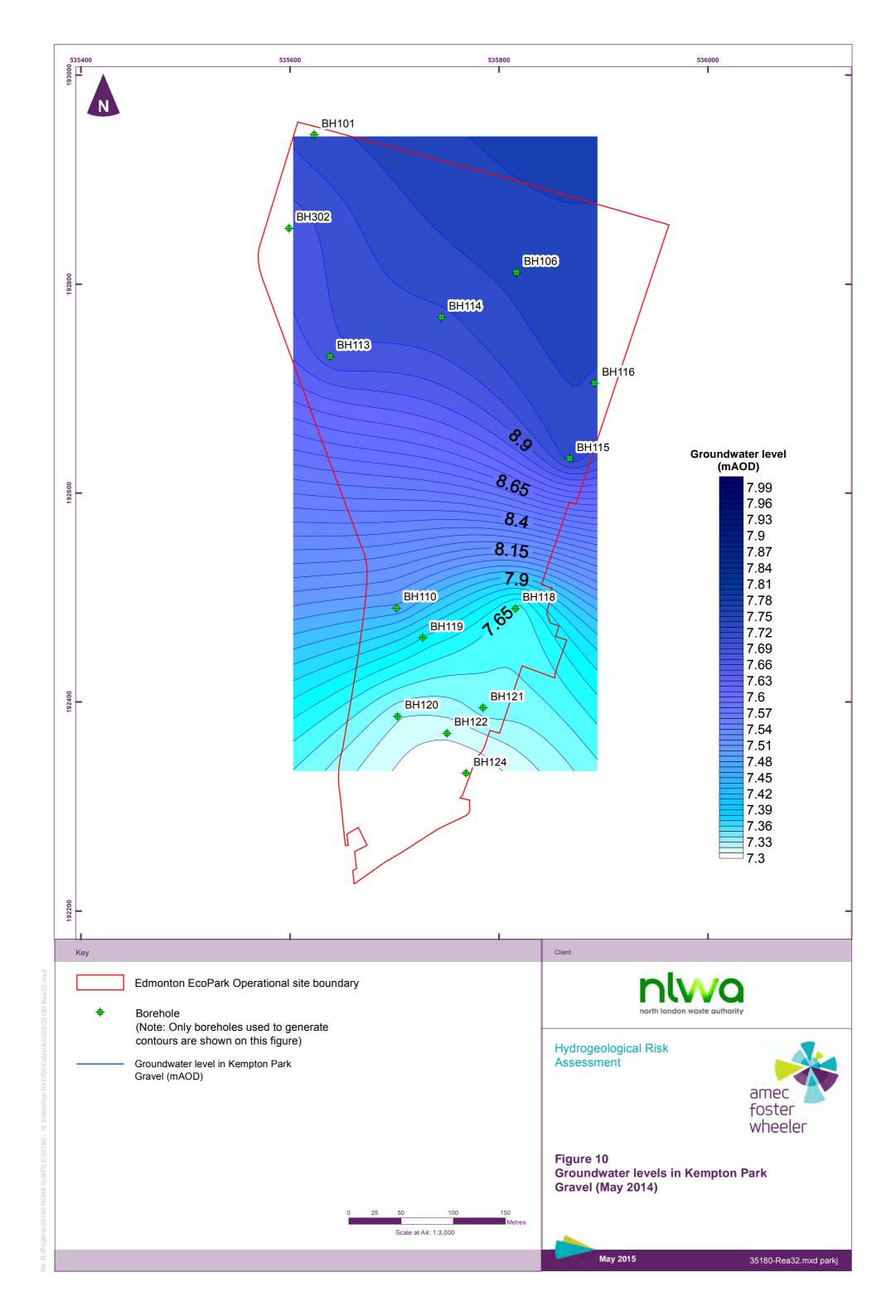


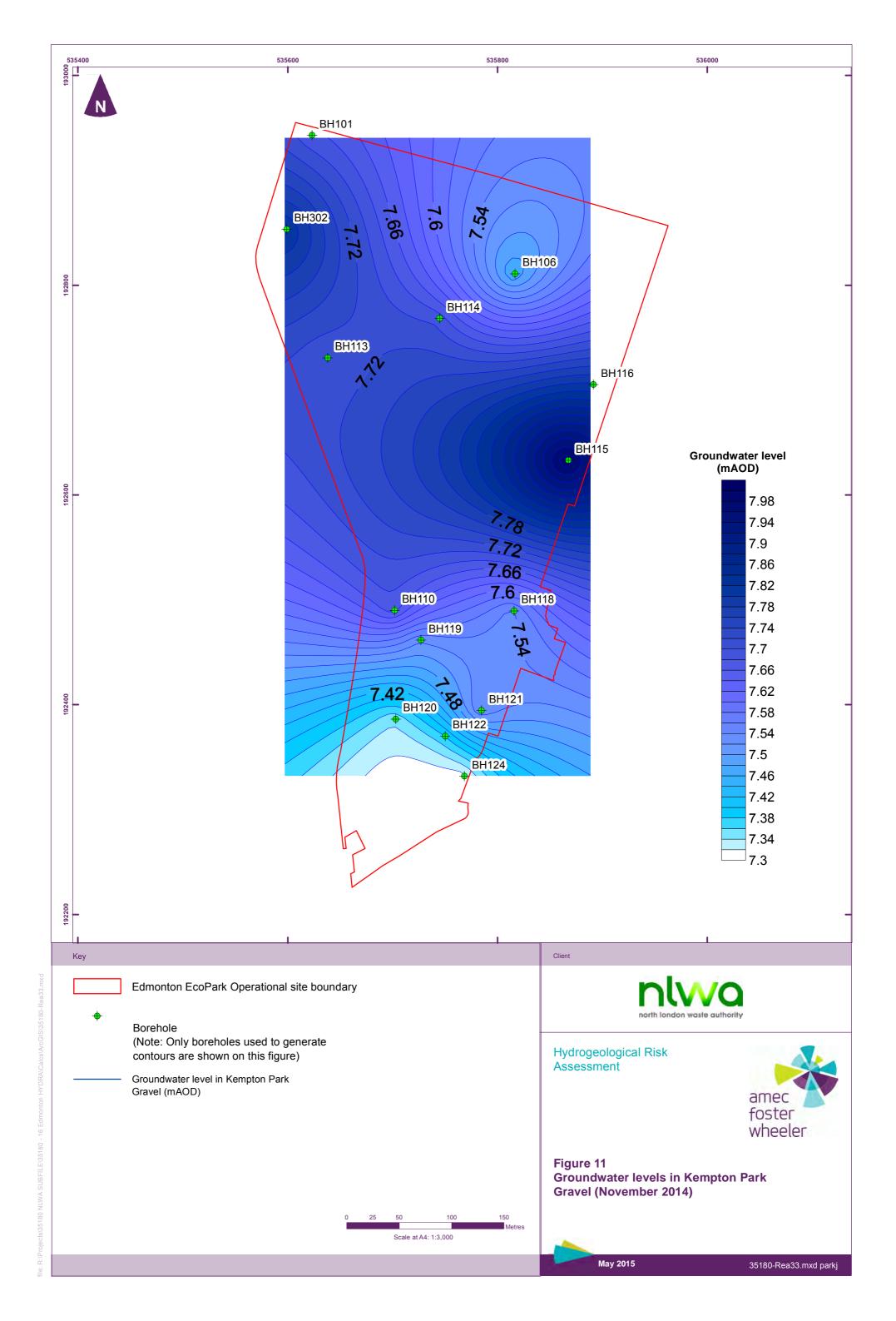


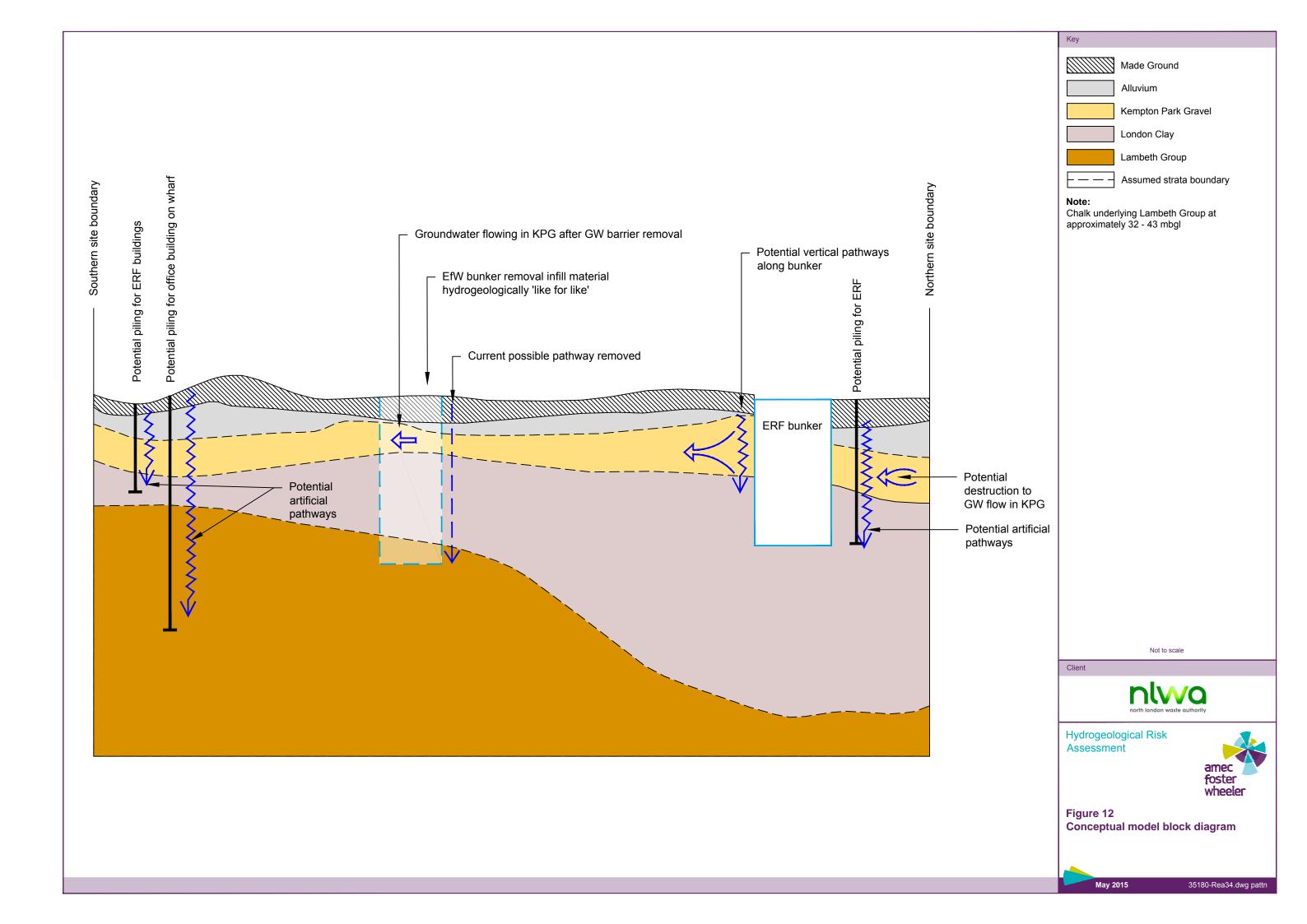


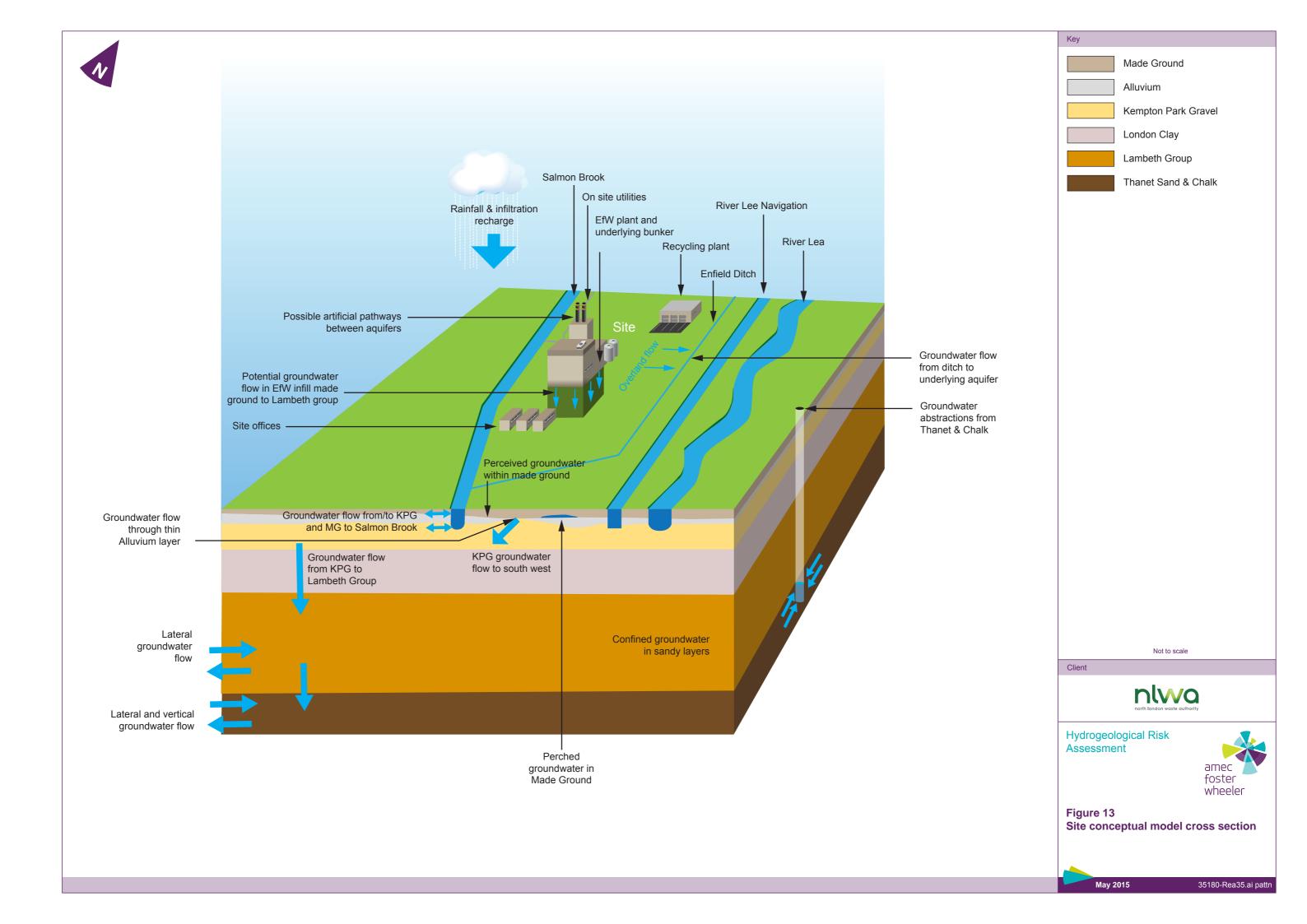












A2 Borehole logs and geotechnical analysis results

FINAL FACTUAL REPORT
Site Investigation Report No. SI1688
Site: LondonWaste EcoPark, Edmonton

Client: Entec UK Limited

FINAL FACTUAL REPORT

May Gurney Report No. SI1688

May 2011

Site:

LondonWaste EcoPark, Edmonton

Client:

Entec UK Limited

Prepared by:

May Gurney Professional Services
Site Investigation
Ayton Road, Wymondham
Norfolk, NR18 0RH
Tel: 01953 609844 Fax: 01953 609819
www.maygurney.co.uk

DOCUMENT CONTROL

May Gurney Report No.: SI1688

Site: LondonWaste EcoPark, Edmonton

Client: Entec UK Limited

Date: May 2011

Report Written by: P LEWIN BSc Geotechnical Engineer

Checked and Authorised for issue: B ARMSTRONG BSc MSc FGS Site Investigation Manager

GENERAL CONDITIONS / LIMITATIONS RELATING TO SITE INVESTIGATIONS

The recommendations of this report are based on the findings of a series of exploratory holes carried out at specified locations across the site. It is possible that conditions exist other than those encountered and therefore no guarantee can be given as to the extent to which the findings are representative.

It should be noted that groundwater conditions fluctuate according to seasonal and other factors, which cannot be predicted with certainty. In low permeability soils equilibrium ground water levels are rarely established during the period of fieldwork.

All recommendations made are subject to any relevant statutory regulations in force concerning design methods and safe construction practice. In addition unless specifically stated no account has been taken of possible subsidence due to mineral extraction.

This report is for the sole and specific use of the client and May Gurney Professional Services shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared and provided. Should the client require to pass copies of the report to other parties for information, the whole report should be so copied, but no professional liability or warranty shall be extended to other parties by May Gurney Professional Services in this connection without written consent.

The copyright of this report and other plans and documents prepared by May Gurney Professional Services are owned by them.

CONTENTS

1	IN	ITRODUCTION	1
2	T	HE SITE	1
	2.1 2.2 2.3 2.4	Location and Description Geology Hydrology Hydrogeology	2
3	F	IELDWORK	3
	3.1 3.2 3.3 3.4	Scope of WorksCable Percussive BoreholesWindow Sampler BoreholesInstrumentation and Monitoring	2
4.	L	ABORATORY TESTS	4
	4.1 4.2 5.1 5.2	Geotechnical Testing Chemical Testing Physical Soil and Groundwater Conditions Groundwater	5
6	R	EFERENCES	7

APPENDICES

APPENDIX A EXPLORATORY HOLE RECORDS AND FIELD TEST RESULTS

- Exploratory Hole Record Key
- Summary of Exploratory Holes
- Cable Percussive Borehole Records
- Window Sample Records

APPENDIX B INSTRUMENTATION

Summary of Instrumentation

APPENDIX C GEOTECHNCIAL LABORATORY TEST RESULTS

- Summary Chain of Custody
- Geotechnical Laboratory Test Results

APPENDIX C SITE PLANS

- Site Location Plan
- Exploratory Hole Location Plan

1 INTRODUCTION

May Gurney Professional Services were instructed by Entec UK Limited, to carry out a site investigation in order to obtain information on the geotechnical and chemical composition of the underlying soils at LondonWaste Ecopark, Edmonton, North London

The specification for the site investigation was completed by Entec UK Limited and details the full scope of works. May Gurney Professional Services were appointed as Ground Investigation Contractor for the intrusive investigation.

The site investigation comprised twenty two cable percussion boreholes and thirty four window sample boreholes. In addition, geotechnical laboratory testing was also completed on recovered samples. The fieldwork was carried out between the 7th and 25th March 2011.

This report contains a record of the fieldwork conducted, strata encountered and laboratory test results.

May Gurney Professional Services also provide onsite storage and office facilities, as part of the site investigation works.

2 THE SITE

2.1 Location and Description

The site is situated west of the River Lee Navigation and bordered to the south by the North Circular Road, in Edmonton within the London Borough of Enfield.

At the time of the intrusive investigation the site comprised a municipal waste incinerator and waste-to-energy power station which burns London's waste to provide electricity for the National Grid. The site was divided into various waste sorting locations, with numerous associated buildings to sort and contain waste. A composting facility was also present within the waste facility.

The site is centred on National Grid Reference 535750 192650, as shown on the site location plan presented within Appendix D.

2.2 Geology

The available information¹ indicates the solid geology underlying the site is the London Clay Formation, of the Eocene period. The London Clay Formation comprises grey, weathering to brown fine sandy silty CLAY and clayey SILT. The sequence becomes increasingly sandy towards the base, with occasional glauconitic sands.

Underlying the London Clay Formation is the Lambeth Group, which is made up of the Reading, Woolwich and Upnor Formations. The Reading Formation includes the Upper Mottled Clay and the Lower Mottled Clay; the Woolwich Formation includes the Upper Shelly Clay, the Laminated Beds, the 'Striped Loams' and the Lower Shelly Clay; the Upnor Formation includes the Pebble Bed.

This solid geology is masked by drift deposits of the Kempton Park Gravels which generally comprise sand and gravel, locally with lenses of clay, silt and peat. The post diversionary Thames deposit is generally 5-6m thick, however locally can be encountered deeper due to infilling of deep hollows.

Overlying the Kempton Park Gravels at the site, Alluvium is indicated associated with the River Lea and small tributaries of the River Lea.

2.3 Hydrology

The River Lea Navigation, which is canalised, forms part of the eastern boundary of the site flowing southwards. Within this area the River Lea is extensively managed and consequently the river does not follow its natural course. This main River Lea is tidal however due to canalisation in this area the River Lea Navigation is not influenced by tidal water fluctuations.

A tributary of the River Lea, identified as Salmons Brook, forms part of the western boundary of the site.

2.4 Hydrogeology

The Hydrogeology of the site is likely to be characterised by the Kempton Park Gravels, which is a Secondary A Aquifer. A secondary A Aquifer contains permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

The underlying solid geology of the London Clay Formation is designated as unproductive strata and acts as an aquiclude to the underlying Lambeth Group.

The hydrology of the Lambeth Group is dependant on the substrata but is also classified as a Secondary A Aquifer.

At depth below the site, the Upper Chalk Formation is designated a principle aquifer. A principle aquifer has high intergranular and/or fracture permeability - meaning that they usually provide a high level of water storage. These may support water supply and/or river base flow on a strategic scale.

The site is also situated within a Source Protection Zone One (SPZ1), inner zone protection defined as a 50 day travel time from any point below the water table to the source.

3 FIELDWORK

3.1 Scope of Works

The scope of the field work was specified by Entec UK Limited and was undertaken in general accordance with Eurocode 7 Part 2², The Steering Group Specification (1993)⁶ and where there is no conflict BS 5930:1999⁷ and BS10175:2001²¹. The soil descriptions used in the exploratory hole records are in broad accordance with the relevant European Standards^{3&4} and Section Six of BS 5930: 1999⁷. All exploratory hole records have been amended by Entec UK Limited and checked and approved for issue by May Gurney Professional Services

The prevailing ground conditions were determined by:

- 22 No. Cable Percussion Boreholes (BH)
- 34 No. Window Sampler Boreholes (WS)

A summary of the exploratory holes is presented within Appendix A. (To be included in the final report). The exploratory hole locations were positioned by Entec UK Limited as shown on the exploratory hole location plan presented in Appendix D.

Prior to any intrusive works a service and utility survey was completed by Site Vision Surveys Limited, appointed by Entec UK Limited. The location of services surrounding exploratory holes was marked up on the ground and all exploratory holes were positioned accordingly. Before commencement of drilling and excavation all the exploratory hole positions were scanned using a cable avoidance tool (CAT). Within all exploratory hole locations a 1.20m deep hand excavated trail pit was completed to check for the presence of any near surface services that may have been damaged by the investigation.

3.2 Cable Percussive Boreholes

Twenty two cable percussive boreholes (BH101-BH124, excluding BH111 and BH112) were sunk to a depth of 24.40mbgl (BH116), utilising a Dando 2000 Rig, between the 7th and 25th March 2011. These were supported, where necessary, by the use of 250mm, 200mm and 150mm diameter temporary steel casing.

Due to the environmental risks of creating a contamination pathway it was necessary to add bentonite seals at each reduction of casing. In instances where the Lambeth Group was to be encountered, a 2.00m seal of bentonite and cement grout was utilised, and allowed to set for between 12 and 48hrs before drilling commenced.

Standard Penetration Tests (SPT) were carried out at regular intervals using either a split spoon sampler or solid 60° cone (CPT). The results of these tests are given as an SPT or CPT "N" value or as a blow count for a given penetration at the appropriate position on the borehole record.

Undisturbed samples (U100s) were taken at regular depth intervals in cohesive materials. The sampling frequency was carried out as specified by Entec UK Limited. Blow counts for each sample were recorded. During the excavation of the boreholes evidence of any groundwater ingress and subsequent standing levels were recorded.

The exposed strata were recorded and disturbed samples recovered during boring, as an aid to the production of a detailed borehole record. The recovered samples were logged by an engineering geologist from May Gurney Professional Services or Entec UK Limited. The engineer verified logs are contained within Appendix A, and are based upon the laboratory test results and the descriptions of recovered samples.

On completion the boreholes were installed with gas and groundwater monitoring standpipes as detailed in section 3.4.

3.3 Window Sampler Boreholes

Thirty four window sampler boreholes (WS101 – WS135, excluding WS114) were sunk to a maximum depth of 6.00mbgl by the use of a drive-in window sampler (Terrier), between the 14th and 22nd March 2011.

The recovered core samples were logged (Appendix A) by an engineering geologist from Entec UK Limited. Environmental samples were obtained to allow chemical analysis to be completed. The depth and frequency of samples was determined by Entec UK Limited.

All obtained environmental samples were placed in cool boxes and dispatched to a chemical laboratory for storage until chemical schedules had been completed.

Window sample borehole WS118 was terminated at 2.00mbgl due to a possible drain being located at 1.80mbgl. Consequently the borehole was not installed and was backfilled with bentonite as requested by Entec UK Limited.

Following completion all window sample boreholes (with the exception of WS118) were installed with gas and groundwater monitoring standpipes as detailed in section 3.4.

3.4 Instrumentation and Monitoring

HDPE 50mm gas and groundwater monitoring standpipes were installed in all boreholes with response zones within the Kempton Park Gravels. HDPE 32mm gas and groundwater monitoring standpipes were installed within all boreholes (with the exception of WS118). A summary of the instrumentation is presented in Appendix B.

Reference should be made to the exploratory holes records in Appendix A for full details of the installations completed within the boreholes and window sampler boreholes

4. LABORATORY TESTS

4.1 Geotechnical Testing

A schedule of geotechnical laboratory testing was prepared and completed by Entec UK Limited. The scheduled tests were carried out in accordance with $BS1377:1990^5$ as noted below:

TEST DESCRIPTION	<u>PART</u>	<u>METHOD</u>
Moisture Content	2	3
Liquid Limit	2	4
Plastic Limit and Plasticity Index	2	5
Particle Size Distribution		
Coarse Grained (wet sieve)	2	9.2
Fine Grained (sedimentation)	2	9.4
Oedometer	5	3
Multi Stage Consolidated Drained Triaxial with measurement of pore pressure	8	8

In addition, forty four samples were also tested for a Brownfield Suite which includes pH, Water Soluble Sulfate, Water Soluble Magnesium, Water Soluble Chloride and Water Soluble Nitrate.

The results of the above tests are contained in Appendix C. A summary chain of custody identifies results that have been obtained up to the date of issue of this draft report. At present the received lab results have not been reflected within the borehole strata descriptions. Subsequent report revisions will be issued in include updated descriptions.

4.2 Chemical Testing

A detailed chemical testing regime was completed by Entec UK Limited on the environmental samples obtained during the investigation. The results from the chemical testing are not presented within this report.

5 GROUND CONDITIONS

5.1 Physical Soil and Groundwater Conditions

Reference should be made to the appended exploratory hole logs for full details of the strata encountered by this investigation, however a brief summary has been included below.

The site was underlain by a layer of Made Ground, which varied in thickness from 0.90 to 4.85mbgl (WS106). The Made Ground comprised mixed granular and cohesive layers and contained brick, concrete, flint, pottery, wood, metal, ash, quartzite, clinker. Occasional brick and concrete cobbles were noted.

Underlying the Made Ground, a thin layer of Alluvium was encountered in the vast majority of locations, which was subsequently underlain by the Kempton Park Gravel. All window sample boreholes were terminated in the drift deposits.

The Kempton Park Gravel was encountered from depths of between 2.80m and 5.50mbgl to a maximum depth of 8.60mbgl. This stratum comprised various layers of silty gravelly SAND, silty SAND and GRAVEL and silty sandy GRAVEL.

The solid geology of the London Clay Formation was encountered underlying the Kempton Park Gravel and was proven to a maximum depth of 24.20mbgl, although the full thickness was not proven in the majority or boreholes. The London Clay Formation comprised firm to very stiff, medium to very hight strength CLAY, locally silty and with occasional fine sand partings.

Below the London Clay Formation the Lambeth Group was encountered within BH103, BH110, BH116, BH118, BH123 and BH124. From depths of between 8.80m and 24.20mbgl to a maximum depth of 24.40mbgl. The Lambeth Group comprised various layer of dense silty fine and medium SAND and silty sandy CLAY. Occasional shell fragments were encountered locally.

5.2 **Groundwater**

Reference should be made to the exploratory hole records for full details of groundwater conditions encountered during drilling. The groundwater strikes encountered within the cable percussion boreholes have been summarised below, however equilibrium groundwater levels are rarely obtained while drilling. A detailed gas and groundwater monitoring scheme has been completed by Entec UK Limited and will provide more accurate information on the groundwater conditions.

Hole ID	Depth to groundwater strike (mbgl)	Standing groundwater level after 20 minutes (mbgl)	Flow Remarks
BH101	3.900	3.200	Slow
BH102	4.400	3.900	Slow
BH103	3.500	2.500	Medium
BH104	3.900	3.300	Slow
BH105	4.300	3.200	Slow
BH106	5.600	Not Recorded	Seepage
BH107	3.000	2.700	Slow
BH108	3.000	2.900	Seepage
BH109	2.800	2.400	Slow
BH110	3.400	Not Recorded	Slow
BH113	4.300	2.600	Medium
BH114	1.200	1.200	Seepage
BH115	1.400	1.950	Seepage
BH115	2.600	2.400	Seepage
BH115	3.500	1.900	Medium
BH116	3.600	3.100	Slow
BH117	4.300	4.100	Slow
BH118	4.400	3.400	Slow
BH118	14.500	11.800	Medium
BH119	2.000	1.900	Slow
BH119	4.700	4.000	Medium
BH120	4.100	4.000	Medium
BH121	4.300	4.100	Slow
BH122	5.400	5.300	Medium
BH123	10.600	9.800	Medium
BH124	4.000	3.900	Slow
BH124	10.500	9.500	Medium

6 REFERENCES

- 1. British Geological Survey England and Wales, 1:50,000, Sheet 256, (Solid & Drift Edition).
- 2. BS EN 1997-2 (2007): Eurocode 7 Geotechnical Design Part 2: Ground Investigation and testing.
- 3. BS EN ISO 14688-1: (2002): Geotechnical Investigation and Testing Identification and Classification of Soil Part 1: Identification and Description.
- 4. BS EN ISO 14688-2: (2004): Geotechnical Investigation and Testing Identification and Classification of Soil Part 2: Principles for a classification.
- 5. BS EN ISO 14688-3: (2005): Geotechnical Investigation and Testing Field Testing Part 3: Standard Penetration Test.
- 6. Specification for ground Investigation, Site Investigation Steering Group (1993).
- 7. BS5930: (1999) Site Investigation Code of Practice, British Standards Institution.

APPENDIX A

EXPLORATORY HOLE RECORDS AND FIELD DATA

Key to Site Investigation Records

Project: LondonWaste EcoPark, Edmonton

Project I.D.: SI1688

Client: Entec UK Limited

In Situ Testing & Observations

PID Photo Ionisation Detection test, reported in ppm.

S or C Standard Penetration Test as per BS1377:1190 'Methods of test for soils for civil

engineering purposes'. Uncorrected test result shown on the log at the relevant depth.

S – split spoon or C – solid cone.

HV Hand vane test, shear strength reported in kPa.

PP Pocket penetrometer test, shear strength reported in kPa.

Level to which groundwater has risen after the specified time. (Nominal 20 minutes).

Sampling

D Small disturbed sample, around 1kg.

B Bulk disturbed sample, around 5kg.

C Core undisturbed sample.

W Water sample.

ES Environmental soil sample, in more than one container if appropriate.

U 100 Undisturbed driven thinwall tube sample. Nominal 100mm diameter and 450mm length in

CP boreholes. The number of blows taken to drive the sample tube the full length is reported on the log sheet at the appropriate depth along with the percentage recovery. The U100 thinwall has an edge taper angle of 5 degrees, area ratio of 14.97 and an internal diameter of 104mm, which complies with BS EN ISO 22475-1 (2006), for a thin wall open drive sampler. The samples obtained within cohesive soil using a U100T are

deemed Class one in accordance with BS EN ISO 22475-1 (2006).

General Comments

- 1. Soil samples have been described in accordance with BS EN ISO 14688-2(2002), BS EN ISO 14688-2(2004) and BS5930:2007 'Code of practice for site investigation' Section 6.
- 2. Electronic data provided in relation to this project has been produced using the Association of Geotechnical & Geoenvironmental Specialists (AGS) data transfer format, with specific reference to their publication 'Electronic Transfer of Geotechnical and Geoenvironmental Data Edition 3.1, 2004 including addendum May 2005'. All legend and backfill codes are as per this document.

Summary of exploratory holes:

Exploratory hole ID	Type of Exploratory Hole*	Final depth mbgl	Easting	Northing	Elevation m aOD	Final depth m aOD
BH101	СР	15.00	535623.08	192943.02	11.658	-3.34
BH102	CP	8.45	535597.55	192844.90	12.512	4.06
BH103	СР	18.70	535625.32	192774.31	11.169	-7.53
BH104	СР	15.00	535733.78	192845.15	12.217	-2.78
BH105	СР	8.70	535800.00	192879.05	12.117	3.42
BH106	СР	17.00	535816.83	192811.33	13.603	-3.40
BH107	СР	10.00	535910.55	192849.06	11.294	1.29
BH108	СР	15.45	535715.72	192707.50	11.123	-4.33
BH109	СР	15.00	535825.82	192597.48	10.830	-4.17
BH110	СР	11.40	535701.94	192490.25	10.751	-0.65
BH113	СР	6.50	535638.19	192730.94	11.173	4.67
BH114	СР	7.00	535744.97	192768.64	10.785	3.79
BH115	СР	7.10	535867.51	192633.10	11.636	4.54
BH116	СР	24.40	535891.55	192705.40	11.747	-12.65
BH117	CP	6.00	535813.75	192713.45	11.709	5.71
BH118	СР	19.95	535815.68	192489.67	10.975	-8.98
BH119	СР	10.00	535727.16	192461.74	11.188	1.19
BH120	СР	9.45	535703.06	192386.51	11.060	1.61
BH121	СР	10.00	535784.87	192394.71	11.342	1.34
BH122	CP	10.25	535750.19	192370.34	12.637	2.39
BH123	СР	20.00	535717.97	192303.66	10.955	-9.05
BH124	СР	11.00	535768.62	192331.88	11.021	0.02
WS101	WS	5.00	535682.84	192927.00	12.227	7.23
WS102	WS	4.00	535600.48	192854.37	12.545	8.55
WS103	WS	3.00	535625.24	192765.76	11.293	8.29
WS104	WS	5.00	535733.51	192844.13	12.220	7.22
WS105	WS	3.00	535671.47	192790.96	10.884	7.88
WS106	WS	6.00	535811.82	192806.35	13.925	7.93
WS107	WS	4.70	535877.59	192779.10	14.373	9.67
WS108	WS	4.80	535875.26	192765.56	14.408	9.61
WS109	WS	2.00	535784.92	192757.33	10.928	8.93
WS110	WS	3.00	535879.17	192706.01	11.631	8.63
WS111	WS	3.00	535849.04	192630.59	11.664	8.66
WS112	WS	3.00	535817.36	192707.55	11.495	8.50
WS113	WS	3.00	535829.30	192671.03	11.285	8.29
WS115	WS	2.00	535745.22	192767.91	10.772	8.77
WS116	WS	2.00	535655.88	192701.48	10.415	8.42
WS117	WS	2.00	535664.23	192688.51	10.369	8.37
WS118	WS	2.00	535715.30	192708.95	10.984	8.98
WS119	WS	2.00	535766.40	192717.01	10.788	8.79
WS120	WS	3.00	535708.80	192546.54	10.741	7.74
WS121	WS	6.00	535803.55	192588.84	10.703	4.70
WS122	WS	5.00	535747.13	192518.46	10.744	5.74
WS123	WS	3.00	535702.36	192448.15	11.168	8.17
WS124	WS	3.00	535739.14	192436.79	11.207	8.21

Exploratory hole ID	Type of Exploratory Hole*	Final depth mbgl	Easting	Northing	Elevation m aOD	Final depth m aOD
WS125	WS	3.00	535789.27	192499.21	10.594	7.59
WS126	WS	2.00	535819.25	192506.31	10.886	8.89
WS127	WS	3.00	535790.50	192441.88	11.243	8.24
WS128	WS	2.00	535775.98	192395.75	12.055	10.06
WS129	WS	4.00	535710.48	192379.49	11.526	7.53
WS130	WS	4.00	535706.30	192342.70	12.820	8.82
WS131	WS	3.00	535751.04	192358.39	12.384	9.38
WS132	WS	2.00	535715.05	192304.25	10.968	8.97
WS133	WS	1.90	535756.32	192325.77	11.154	9.25
WS134	WS	3.00	535839.21	192883.53	12.035	9.04

^{*}CP=Cable Percussion Borehole, RC=Rotary Core Borehole, DP=Dynamic Probe, WS=Window Sampler Borehole, TP=Trial Pit, CBR = In-Situ California Bearing Ratio Test

Project ID: SI1688

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

1.20-1.65 1.20-2.00

1.20-1.65 1.50-1.70

2 00-2 45

2.00-2.45 2.00-2.45 2.00-2.45

2.20-2.40

2 50-3 00

2.70-2.90

3.00

3.50-3.60

4.00-4.45

4.00-5.00 4.00-4.45

4.30-4.50

5.00-5.45 5.00-6.00

5.00-5.45

5.80-6.00

6.00-6.45 6.00-7.00

6.00-6.45

7.00-7.45 7.00-7.70

7.00-7.45 7.20-7.30

7.40-7.60

8.00

8.40-8.50

9 00-9 45

9.00-10.00 9.00-9.45

2 00

5.00

6.00

7.00

B3 D3 ES3

s

B4 D4 ES4 B5

ES5

U1

D5

B6 D6

S B7

D7

ES7

S B8

D8

S B9

D9 D10

ES8

U2

D11

B10 D12

BH101

N=19 (1,1/3,4,3,9)

N=7 (5.1/2.1.2.2)

21 blows

(3.20) N=10 (1,1/1,3,3,3)

(3.10) N=11 (1,3/3,3,3,2)

(2.80) N=13 (2.2/3,2.4.4)

(5.10) N=9 (5,4/3,2,2,2)

HV=150.0kPa 51 blows

N=16 (6,4/3,4,4,5)

100%

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd

Ground Level: 11.658mAOD Coordinates:

535623.08E 192943.02N

Sheet 1 of 2

Engineer: N/A

Description	Legend	Depth	O.D.	Sample Test		SPT/CPT		-		
Description	Logona	(m)	Level (m)	Туре	Depth (m)	Casing Water Depth Depth (m) (m)	Test Results PI SPT/HV/PP (Recovery) (pp		Installations	
MADE GROUND: Tarmac.	*****	- 0.20	11.36	E04	0.20.0.50					
MADE GROUND: Type 1 red-grey silty fine to coarse SAND and angular to subangular fine and medium limestone and granite GRAVEL.		0.30	11.11	ES1 B1 D1 B2 D2	0.30-0.50 0.35-0.50 0.35-0.50 0.50-1.20 0.50-0.60					
MADE OBOUND AF 1 CK 15 LK	XXXXX	(III)		ES2	0.50-0.70					

1.30

2.00

2.50

3.40

3.90

4.30

5.00

6.00

7.20

10.36

9.66

9.16

8.26

7.76

7.36

6.66

5.66

4 46

MADE GROUND: Mixed stiff grey slightly (approximately 10%) gravelly CLAY and brown clayey gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint. MADE GROUND: Medium dense mixed yellow-brown

slightly silty very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint and firm to stiff brownish grey slightly gravelly (approximately 5%) CLAY. Gravel is angular to subangular fine to coarse flint and brick.

MADE GROUND: Mixed dark brown silty CLAY and loose yellowish grey clayey very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint with rare brick. Possible slight hydrocarbon odour.

Soft to firm low strength blue-green CLAY with some black organic mottling. (ALLUVIUM).

Firm dark brown organic rich silty CLAY. (ALLUVIUM).

Medium dense grey slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to subangular fine and medium flint. (KEMPTON PARK GRAVEL).

Medium dense grey slightly silty fine to coarse SAND and angular to subrounded fine to coarse flint

GRAVEL. (KEMPTON PARK GRAVEL). Medium slightly silty very sandy GRAVEL with some thin grey clay bands. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK

Grey slightly silty very sandy fine to coarse angular to subrounded fine to coarse flint GRAVEL. (KEMPTON PARK GRAVEL).

Stiff grey high strength slightly silty CLAY locally slightly sandy. (LONDON CLAY FORMATION). ..At 8.00mbgl very stiff locally thinly laminated

Water Level Observations

8.30

Hole Diameter Detail			Chiseling Details				Water		Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Standing Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.00 7.70 15.00	3.00 7.70 15.00				15/03/11 15/03/11 15/03/11 15/03/11	3.90 3.90 3.90 3.90	5 10 15 20	3.80 3.50 3.20 3.20	3.00 3.00 3.00 3.00	8.30 8.30 8.30 8.30

Client:

GRAVEL).

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

15/03/2011-16/03/2011

Plant:

Dando 2000

Drilled By: E. McNamara Logged By: J. Tomalin

Checked By: D. Dunn

Remarks: 1. Hand pit dug from GL to 1.20mbgl.
2. Installation Details: 50mm Standpipe installed from GL to 7.20mbgl Plain pipe from GL to 3.90mbgl and a slotted pipe from 3.90m to 7.20mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 3.90mbgl, gravel from 3.90m to 7.20mbgl and bentonite from 7.20m to 15.00mbgl. Hole finished with a flush cover and gas tap.

3. Bentonite pellet seal added at 3.00mbgl at reduction from 250mm to 200mm diameter casing.

4. Two meter bentonite / cement grout seal added at 7.70mbgl at reduction from 200mm diameter casing to 150mm diameter drilling tools. Bentonite / cement grout left overnight to set.

Borehole Record

BH101

Project: London Waste Ecopark, Edmonton

Project ID: SI1688

Client: Entec UK Ltd

Engineer: N/A

Ground Level: 11.658mAOD

Coordinates: 535623.08E

192943.02N

Sheet 2 of 2

	Liigiiie	71 . IN	<i>'</i> ^							1020	TO.0211
Description	Legend	Depth	O.D.	Sample Tes		SPT/CPT		Rema	arks and		
Description	Logona	Depth (m)	Level (m)	Type	Depth (m)	Casing Depth (m)	Water Depth (m)	SPT/HV/PP	Results (Recovery)	PID (ppm)	Installation
Stiff grey high strength slightly silty CLAY, locally slightly sandy. (LONDON CLAY FORMATION).	XX XX XX			U3 D13	10.00 10.40-10.50			64 blows	100%		
	X X X X X X X X X X X X X X X X X X X	411441414		S B11 D14	11.50-11.95 11.50-13.00 11.50-11.95	8.30		N=21 (3,4/3	5,5,6,7)		l
From 13.00mbgl becoming high strength slightly sandy.	X — X — X — X — X — X — X — X — X — X —			U4 D15	13.00 13.40-13.50			49 blows	100%		
	×x	11111111		ES9	14.00-14.20						
	<u>x-x</u> - <u>x</u> -x	15.00	-3.34	S D16	14.50-14.95 14.50-14.95	8.30		N=29 (5,5/6	5,7,8,8)		-
Borehole Complete at 15.00 m		- 10100 - 1	0.0 .								-
		-									- - - - - -
		-									- - - - - - - -

Hole	Diamete	er Detail	Chiseling Details				Water	Standing	Standing	Casing	Depth				
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)				
250 200 150	3.00 7.70 15.00	3.00 7.70 15.00				15/03/11 15/03/11 15/03/11	3.90 3.90 3.90	5 10 15	3.80 3.50 3.20 3.20	3.00 3.00 3.00 3.00	8.30 8.30 8.30 8.30				

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

15/03/2011-16/03/2011

Plant:

Dando 2000

Drilled By: Logged By: J. Tomalin

E. McNamara

Checked By: D. Dunn

Remarks: 1. Hand pit dug from GL to 1.20mbgl.
2. Installation Details: 50mm Standpipe installed from GL to 7.20mbgl. Plain pipe from GL to 3.90mbgl and a slotted pipe from 3.90m to 7.20mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 3.90mbgl, gravel from 3.90m to 7.20mbgl and bentonite from 7.20m to 15.00mbgl. Hole finished with a flush cover and gas tap.

3. Bentonite pellet seal added at 3.00mbgl at reduction from 250mm to 200mm diameter casing.

4. Two meter bentonite / cement grout seal added at 7.70mbgl at reduction

from 200mm diameter casing to 150mm diameter drilling tools. Bentonite / cement grout left overnight to set.

Borehole Record

BH102

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd Project ID: SI1688

Ground Level: 12.512mAOD Coordinates: 535597.55E

192844.90N

Sheet 1 of 1

Engineer:	N / /
Linginicoi .	11//

Α

				Sami	ole Test	SPT/CF	T Remarks and	<u> </u>	
Description	Legend	Depth (m)	O.D. Level	-			Toot Deculto		Installation
		(111)	(m)	Туре	Depth (m)	Casing Wa Depth De (m) (r	oth n) SPT/HV/PP (Recovery)	PID (ppm)	IIIStaliation
MADE GROUND: CONCRETE	XXXX	0.10	12.41 12.31	B1	0.20-0.40				-01
MADE GROUND: Weak CONCRETE		0.20	12.06	D1 ES1	0.20-0.30 0.30-0.40				3
MADE GROUND: Dark grey silty, gravelly fine to coarse ashy SAND. Gravel is angular to subangular fine and medium ash and flint with a little metal. At 0.45mbgl Geotextile mat.		N Y Y N		B2 D2 ES2	0.40-0.60 0.40-0.50 0.50-0.70 1.20-1.65		N=14 (2,2/2,4,4,4)		-
		*		B3 D3	1.20-2.00 1.20-1.65				=
MADE GROUND: Medium dense dark grey clayey gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint, brick and pottery, (approximately 10% brick cobbles). Occasional ash. Locally a sandy CLAY with fragments of wood and metal.		1.70	10.81	ES3 S B4 D4	1.70-1.90 2.00-2.45 2.00-3.00 2.00-2.45		N=7 (3,3/1,1,2,3)		
MADE GROUND: Stiff brown-grey slightly silty slightly gravelly (approximately 10%) sandy CLAY. Gravel is angular to subangular fine to coarse brick concrete, glass and flint.	××××××××××××××××××××××××××××××××××××××	3.10	9.41	S B5 D5 ES4	3.00-3.45 3.00-4.00 3.00-3.45 3.30-3.40	3.00	N=5 (1,1/1,1,2,1)		
Stiff blue-grey slightly silty CLAY with occasional fine brown decayed plant debris. (ALLUVIUM).	×	 		L34	3.30-3.40				
Medium dense grey slightly slity fine to coarse SAND and angular to subangular fine to coarse flint	=-x- xx	4.40	8.11	U1 W1 B6 D6	4.10 4.10 4.10-5.00 4.50-4.60		19 blows 80%		
GRAVEL. Locally a sandy GRAVEL and a gravelly SAND. (KEMPTON PARK GRAVEL)		ال		S ES5 B7 D7	5.00-5.45 5.00-5.20 5.00-6.00 5.00-5.45	5.00 (4.	00) N=13 (2,2/2,4,3,4)		
				S B8 D8	6.00-6.45 6.00-7.00 6.00-6.45	5.90 (3.	10) N=13 (5,4/3,3,4,3)		
From 7.00mbgl Some thin clay bands.				S ES6 B9 D9	7.00-7.45 7.00-7.20 7.00-8.00 7.00-7.45	7.00 (5.	60) N=0 (1,0/-,-,-)		
Stiff arou alightly goods CLAV with according		8.10	4.41	S D10	8.00-8.45 8.00-8.45	8.00 (5.	00) N=12 (2,2/3,3,2,4)		
Stiff grey slightly sandy CLAY with occasional angular to subangular fine and medium flint gravel. (REWORKED LONDON CLAY FORMATION).		8.45	4.06						
Borehole Complete at 8.45 m									
		E							

Water Level Observations

Hole	Diamete	neter Detail Chiseling Details)etails		Water	Standing	Standing	Casing	Depth	
Diameter	Depth	Casing	From	To	Time	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Strike (III)	Time (iiiiis)	Level (III)	Deput (III)	ocalca (III)
200 150	4.10 8.45	3.00 8.00				07/03/11	4.40	20	3.90	4.10	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor:

May Gurney Professional Services

Dates:

07/03/2011-08/03/2011

Plant: Drilled By: Dando 2000 E. McNamara

Logged By: J. Tomalin

Checked By: D.Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Water level standing at 5.00mbgl on completion.
3. Installation Details: 50mm HDPE Standpipe installed from GL to 8.00mbgl.
Plain pipe from GL to 4.00mbgl and a slotted pipe from 4.00m to 8.00mbgl.
Hole backfilled with concrete from GL to 0.30mbgl, bentonite from 0.30m to
4.00mbgl, gravel from 4.00m to 8.00mbgl and concrete to cement in flush cover and gas tap from 8.00m to 8.45mbgl. Hole finished with a flush cover and gas tap.

4.Bentonite pellets seal added at 4.10mbgl at reduction from 200mm to 150mm diameter casing. bentonite seal left to set overnight.

Borehole Record

BH103

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd Project ID: SI1688

Ground Level: 11.169mAOD Coordinates: 535625.32E

192774.31N

Sheet 1 of 2

Engineer: N/A

		1 1		1		CDT/	CDT	Daması			
Description	Legend	Depth	O.D.	Samp	ole Test	SPT/	CPI	Remark			
Description	Legenu	(m)	Level	Туре	Depth	Casing Depth	Water Depth	Test R		PID	Installations
	***	² - 0.05	(m) 11.12	B1	(m) 0.00-0.10	(m)	(m)	SPT/HV/PP (R	lecovery)	(ppm)	1924 193
MADE GROUND: Brown-grey silty very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse granite, glass and flint.		0.40	10.77	ES1 B2 ES2	0.10-0.30 0.10-0.40 0.40-0.60						
MADE GROUND: Red-grey silty very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse brick, concrete and flint.		1.20	9.97	B3 S	0.40-1.20 1.20-1.50			33 (3,17/14,19)		1
MADE GROUND: Yellow-brown slightly silty fine to coarse SAND and rounded to subangular fine to coarse flint GRAVEL. Occasional brick.		 		D1 B4 ES3	1.20-1.58 1.20-2.00 1.50-1.70						
MADE GROUND: Brown-grey clayey gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint, concrete and brick. Occasional cobble.		2.00	9.17	S D2 B5 ES4	2.00-2.45 2.00-2.45 2.00-2.50 2.30-2.50	2.00		N=4 (1,0/1,1,1 PP=15.0kPa	,1)		
Soft to firm mottled green-grey and yellow-grey CLAY with occasional decayed plant debris. (ALLUVIUM).				U1	3.00			10 blows	100%		
`From 3.30mbgl dark brown silty organic rich silty clay.	**************************************	3.50	7.67	D3 B6	3.45-3.55 3.50-4.00						
Medium dense grey slightly silty very sandy angular to rounded fine to coarse coarse flint GRAVEL. (KEMPTON PARK GRAVEL)From 4.00mbgl becoming fine to coarse sand and fine to coarse flint gravel.	x			S D4 ES5 B7	4.00-4.45 4.00-4.45 4.00-4.20 4.00-4.50	4.00	(2.80)	N=12 (1,2/2,3,	3,4)		
Loose grey sandy GRAVEL. Occasional thin clay.	* * * * *	5.50	5.67	S D5 B8	5.00-5.45 5.00-5.45 5.00-6.00	5.00	(3.00)	N=11 (1,1/3,3,:	2,3)		
(KEMPTON PARK GRAVEL).				S D6 ES6 B9	6.00-6.45 6.00-6.45 6.00-6.20 6.00-6.45	6.00	(3.20)	N=8 (1,1/2,2,2	,2)		
Stiff grey CLAY with occasional angular to subangular fine and medium flint gravel. Locally slightly sandy with mica flakes. (REWORKED LONDON		6.70	4.47	B10 D7 U2	6.70-7.00 6.70 7.00			28 blows	100%		
CLAY FORMATION).				D8	7.45-7.55						-
				ES7 B11	8.00-8.20 8.20-8.70						1
		9.00	2.17	U3	8.70			47 blows	88%		-
Very stiff and brown-grey CLAY. (LONDON CLAY FORMATION)				D9	9.15-9.25						
				l	l	1					

Water	Level	Observations
	_0.0.	0 000

	Hala Diamata Datail										
Hole	Diamete	Diameter Detail Chiseling Details			Water	Standing	Standing	Casing	Depth		
Diameter	Depth	Casing	From	Tο	Time	Date					•
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200	3.00 4.50	3.00				07/03/11	3.50	20	2.50	-	
150	4.50 18.70	4.50 9.00									
1											

Client:

Entec UK Ltd

Engineer:

N/A

Contractor:

May Gurney Professional Services

Dates:

07/03/2011-11/03/2011

Plant: Drilled By: Dando 2000 T. York

Logged By: J. Tomalin

Checked By: P.Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Hole cased at 9.00mbgl utilising 150mm diameter casing.
3. Installation details: 50mm HDPE Standpipe installed from GL to 6.70mbgl.
Plain pipe from GL to 3.50mbgl and a slotted pipe from 3.50m to 6.70mbgl.
Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to 3.50mbgl, gravel from 3.50m to 6.70mbgl and bentonite from 6.70m to

18.70mbgl. Hole finished with a flush cover and gas tap.
4. Bentonite pellet seal added at 3.50mbgl at reduction of 250mm to 200mm diameter casing. bentonite allowed to set for 2hrs.

5. Two meter bentonite/cement seal added at 8.20mbgl at reduction of 200mm diameter casing. Bentonite allowed to set overnight.

Project ID: SI1688

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

BH103

Project: London Waste Ecopark, Edmonton

Ground Level: 11.169mAOD

Coordinates: 535625.32E

Sheet 2 of 2

192774.31N

Engineer: N/A

Client: Entec UK Ltd

	Engine€	er: IN	/ A				192	//4.31N
Description	Legend	Depth	O.D.	Samp	ole Test	SPT/CP	T D	
Beschphon	Logona	(m)	Level (m)	Type	Depth (m)	Casing Wate Depth Dept (m) (m)	h PID SPT/HV/PP (Recovery) (ppm	Installations
Very stiff and brown-grey CLAY. (LONDON CLAY FORMATION)				S D10 B12 ES8	10.00-10.45 10.00-10.45 10.00-10.45 10.00-10.20	9.00	N=23 (3,4/4,6,6,7) PP=250.0kPa	-
				U4	11.50		62 blows 100%	- - - -
From 12.00mbgl bands of silty fine sand and sandy clay.		12.40	-1.23	D11 ES9	11.95-12.05 12.00-12.20		PP=250.0kPa	- - - -
Very stiff brown-grey, locally closely fissured and thinly laminated CLAY. (LONDON CLAY FORMATION).		12:40	1.20	S D12 B13	13.00-13.45 13.00-13.45 13.00-13.45	9.00	N=24 (3,4/4,7,6,7)	
				ES10	14.00-14.20		PP=200.0kPa	=
		Ē		U5	14.50		80 blows	
				D13	14.95-15.05			-
				S ES11 B14 D14	16.00-16.45 16.00-16.20 16.00-16.45 16.00-16.45	9.00	N=34 (4,5/6,9,9,10) PP=240.0kPa	
		17.80	-6.63	S D15 B15	17.50-17.95 17.50-17.95 17.70-18.45	9.00	N=47 (5,7/9,12,13,13)	-
Very stiff green-grey sandy CLAY with occasional subrounded fine and medium flint gravel. Occasional bands of silty fine sand. (LAMBETH GROUP - UNDIFFERENTIATED).				ES12	18.00-18.20			<u>-</u>
Borehole Complete at 18.70 m		18.70	-7.53					

Water Level Observations

Hole	Hole Diameter Detail Chiseling Details			Details		Water	Standing	Standing	Casing	Depth	
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.00 4.50 18.70	3.00 4.50 9.00				07/03/11	3.50	20	2.50	-	

Client:

Entec UK Ltd

Engineer:

Contractor: May Gurney Professional Services

Dates:

07/03/2011-11/03/2011

Plant:

Dando 2000

Drilled By: Logged By: J. Tomalin

T. York

Checked By: P.Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Hole cased at 9.00mbgl utilising 150mm diameter casing.
3. Installation details: 50mm HDPE Standpipe installed from GL to 6.70mbgl.
Plain pipe from GL to 3.50mbgl and a slotted pipe from 3.50m to 6.70mbgl.
Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to 3.50mbgl, gravel from 3.50m to 6.70mbgl and bentonite from 6.70m to

18.70mbgl. Hole finished with a flush cover and gas tap.4. Bentonite pellet seal added at 3.50mbgl at reduction of 250mm to 200mm diameter casing. bentonite allowed to set for 2hrs.

5. Two meter bentonite/cement seal added at 8.20mbgl at reduction of 200mm diameter casing. Bentonite allowed to set overnight.

Project ID: SI1688

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd

Ground Level: 12.217mAOD Coordinates: 535733.78E

BH104

192845.15N

Sheet 1 of 2

Engineer: N/A

Description	Legend	Depth	O.D.	Samp	ole Test	SPT/	CPT		rks and		
Description	Legena	(m)	Level	Туре	Depth	Casing Depth	Depth		Results	,PID (Installations
MADE GROUND: REINFORCED CONCRETE	1935		(m)		(m)	(m)	(m)	SPT/HV/PP	(Recovery)	(ppm)	
MADE GROUND: Dark grey silty fine to coarse SAND and angular to subangular fine and medium ash concrete brick and glass GRAVELAt 0.40mbgl Geotextile mesh.		0.20 0.50 0.70	12.02 11.72 11.52 11.22	B1 D1 ES1 B2 D2 ES2 B3	0.20-0.50 0.20-0.30 0.20-0.40 0.50-0.60 0.50-0.60 0.50-0.70 0.70-1.20						
MADE GROUND: Grey-brown clayey fine to coarse SAND and angular to subrounded fine to coarse brick, concrete and pottery (approximately 10%). Occasional concrete cobbles and plastic fragments. Occasional ash.		YXXXXX		D3 ES3 U1 B4 ES4 D4 S	0.70-0.80 0.70-0.90 1.20 1.20-2.00 1.20-1.40 1.70-1.80 2.00-2.45			21 blows N=8 (1,1/1,2	100%		1
MADE GROUND: Firm to stiff brown-grey and grey brown slightly gravelly CLAY. Gravel is angular fine to coarse brick flint and concrete with some dark brown sandy pockets and large fragments of		YYX XYX		B5 D5 ES5	2.00-3.00 2.00-2.45 2.30-2.50						-
wood. At 0.90mbgl wooden sleeper.		*		U2 B6 ES6	3.00 3.00-3.70 3.30-3.50			20 blows	100%	r	-
MADE GROUND: Stiff medium strength brown-grey CLAY, locally slightly sandy with occasional brick and fint gravel. Occasional plastic fragments.		3.70 3.80	8.52 8.42	D6 B7 ES7	3.50-3.60 3.70-3.80 3.70-3.90		(0.00)		0.5.0		
Firm to stiff brown silty CLAY. (ALLUVIUM).		3.90	8.32	W1 S D7	3.90 4.00-4.45 4.00-4.45	3.90	(3.80)	N=15 (2,2/3,	3,5,4)		E 製量額
Dark brown peaty SILT with some fine roots. (ALLUVIUM).				B8 ES8	4.00-4.45 4.00-5.00 4.00-4.20						
Medium dense grey very sandy angular to subangular, fine to coarse flint GRAVEL. Sand is fine to coarse. (KEMPTON PARK GRAVEL)From 5.00m to 7.00mbgl loose.		المرتابات المراتات		S D8 B9	5.00-5.45 5.00-5.45 5.00-6.00	5.00	(3.60)	N=8 (3,2/2,2	2,2,2)		
				S B10 D9	6.00-6.45 6.00-7.00 6.00-6.45	6.00	(3.10)	N=8 (3,2/2,2	2,2,2)		
		7.40	4.00	S D10	7.00-7.45 7.00-7.45	7.00	(3.40)	N=13 (5,4/4,	3,3,3)		
Firm to stiff grey CLAY. (LONDON CLAY FORMATION).		7.40	4.82	B11 D11	7.50-8.00 7.60-7.70						
Very stiff medium strength locally closely fissured		8.00	4.22	U3	8.00			51 blows	100%		
CLÁY. (LONDON CLAЎ FORMÁTION).		<u> </u>		D12	8.40-8.50			HV=160.0kP	a a		
				ES9 S B12 D13	8.80-9.00 9.00-9.45 9.00-10.00 9.00-9.45	8.20		N=18 (1,4/3, HV=140.0kP			
3		Ė									=======================================

Hole	Hole Diameter Detail Chiseling Details		etails		Water	Standing	Standing	Casing	Depth		
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	4.00 7.70 15.00	4.00 7.70 8.20				10/03/11 10/03/11 10/03/11 10/03/11	3.90 3.90 3.90 3.90	5 10 15 20	3.70 3.40 3.30 3.30	3.90 3.90 3.90 3.90	8.20 8.20 8.20 8.20

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

10/03/2011-11/03/2011

Plant:

Dando 2000

Drilled By:

E. McNamara

Logged By: J. Tomalin Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation Details: 50mm Standpipe installed from GL to 7.40mbgl.
Plain pipe from GL to 3.80mbgl and a slotted pipe from 3.80m to 7.40mbgl.
Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 3.80mbgl, gravel from 3.80m to 7.40mbgl and bentonite from 7.40m to 15.00mbgl. Hole finished with a flush cover and gas tap.

Water Level Observations

3. Bentonite pellet seal added at 4.00mbgl at reduction from 250mm to 200mm diameter casing.

4. Two meter bentonite / cement grout seal added at 7.70mbgl at reduction

from 200mm to 150mm diameter casing. Bentonite / cement grout left for two hours to set.

Borehole Record

Project: London Waste Ecopark, Edmonton

BH104

Project ID: SI1688

Client: Entec UK Ltd

Ground Level: 12.217mAOD Coordinates: 535733.78E

192845.15N

Sheet 2 of 2

Engineer: N/A

	U								
Description	Legend	Depth	O.D.	Samp	ole Test	SPT/CPT			
Description	Legena	(m)	Level (m)	Туре	Depth (m)	Casing Water Depth Depth (m) (m)		PID	Installations
Very stiff medium strength locally closely fissured CLAY. (LONDON CLAY FORMATION).				U4 D14	10.00 10.40-10.50		HV=200.0kPa 57 blows 1009	ó	-

			D14	10.40-10.50			- - - - -
Very stiff grey slightly brown-grey slightly sandy CLAY. (LONDON CLAY FORMATION).	11.	0.72	S B13 D15	11.50-11.95 11.50-13.00 11.50-11.95	8.20	N=22 (2,3/4,6,6,6) HV=210.0kPa	-
			D16 U5	13.00-13.50 13.00		HV=160.0kPa 51 blows 100%	
	15.	00 -2.78	ES10 S D17	14.30-14.50 14.50-14.95 14.50-14.95		N=20 (3,3/4,5,5,6) HV=180.0kPa	
Borehole Complete at 15.00 m							
							1

								\	Water Leve	Observation	าร			
Hole	Hole Diameter Detail Chiseling Details				Details		Water		Standing	Standir	na	Casing	Dept	h
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Fime (mins)	Level (r	_	Depth (m)	Sealed	
250 200 150	4.00 7.70 15.00	4.00 7.70 8.20				10/03/11 10/03/11 10/03/11 10/03/11	3.90 3.90 3.90 3.90		5 10 15 20	3.70 3.40 3.30 3.30		3.90 3.90 3.90 3.90	8.20 8.20 8.20 8.20)))

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

10/03/2011-11/03/2011

Plant:

Dando 2000

Drilled By:

E. McNamara

Logged By: J. Tomalin Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation Details: 50mm Standpipe installed from GL to 7.40mbgl. Plain pipe from GL to 3.80mbgl and a slotted pipe from 3.80m to 7.40mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 3.80mbgl, gravel from 3.80m to 7.40mbgl and bentonite from 7.40m to 15.00mbgl. Hole finished with a flush cover and gas tap.

3. Bentonite pellet seal added at 4.00mbgl at reduction from 250mm to 200mm diameter casing.

4. Two meter bentonite / cement grout seal added at 7.70mbgl at reduction from 200mm to 150mm diameter casing. Bentonite / cement grout left for two hours to set.

Project ID: SI1688

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd

Ground Level: 12.117mAOD Coordinates: 535800.00E

BH105

192879.05N

Sheet 1 of 1

Engineer: N/A

	Enginee	; I . IN	/ A						1920	7 3.0311
Description	Legend	Depth	O.D.	Samp	ole Test	SPT/		Remarks and Test Results		
Description	Logona	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	SPT/HV/PP (Recovery)	PID	Installation
MADE GROUND: CONCRETE.	XXXXX	0.15	11.97	B1	0.15-0.30	ì	,			- 6
MADE GROUND: Silty fine to coarse SAND and brick and concrete fine to coarse GRAVEL.		0.30 0.50 0.60	11.82 11.62 11.52	D1 ES1 B2 D2	0.15-0.30 0.30-0.50 0.30-0.50 0.30-0.40					-
MADE GROUND: Dark brown silty fine to coarse ash SAND and angular fine and medium ash GRAVEL.		<u>.</u>		ES2 B3 D3	0.60-0.80 0.60-1.20 0.60-1.20			N=4 (1,0/1,1,1,1)		<u>-</u> -
MADE GROUND: Brick rubbleAt 0.50mbgl geotextile mesh.		1.30	10.82	S B4 D4	1.20-1.65 1.20-2.00 1.20-1.65			14-4 (1,0/1,1,1,1)		
MADE GROUND: Stiff mottled brown-grey and grey-brown slightly gravelly (approximately 15%) CLAY. Gravel is angular to subangular fine to coarse flint, brick and pottery.		2.45	9.67	ES3 U1	1.80-2.00 2.00			31 blows 100%		1
MADE GROUND: Stiff brown-grey slightly gravelly (approximately 5%) CLAY. Gravel is rounded to angular fine to coarse flint with occasional brick.		2.73	3.07	D5 ES4 S	2.50-2.60 2.70-2.90 3.00-3.45	2.80		N=8 (8,2/1,2,2,3)		-
MADE GROUND: Loose yellow-brown slightly silty fine to coarse SAND and subangular to rounded fine to		3.25	8.87	D6 ES5	3.25-3.45 3.30-3.50			- (=== :)====)		
coarse flint GRAVEL.		Ė		B5	3.80-4.30					
Firm mottled grey and brown-grey CLAY. (ALLUVIUM).		-		U2	4.00			31 blows 100%		
Medium dense grey slightly silty very sandy subangular to rounded fine to coarse flint GRAVEL. (KEMPTON PARK GRAVEL).	× × × *	4.30	7.82	W1 B6 D7 ES6	4.30 4.30-5.00 4.50-4.60 4.60-4.80					
				S B7 D8	5.00-5.45 5.00-6.00 5.00-5.45	5.00	(4.10)	N=12 (2,2/2,2,4,4)		
	X X X X X X X X X X X X X X X X X X X			S B8 D9 ES7	6.00-6.45 6.00-7.00 6.00-6.45 6.50-6.70	6.00	(3.40)	N=10 (2,2/2,3,2,3)		
	× × × × × × × × × × × × × × × × × × ×			s	7.00-7.45	7.00	(3.50)	N=11 (2,2/3,3,2,3)		
	x			D10 B9	7.00-7.45 7.00-8.00					
	* * * * * *			S D11	8.00-8.45 8.00-8.45	8.00	(3.70)	N=13 (7,6/4,4,3,2)		
Stiff grey CLAY with occasional angular fine and medium flint gravel. (REWORKED LONDON CLAY FORMATION).	+ - +	8.50 8.70	3.62 3.42	D12 ES8	8.50-8.70 8.50-8.70					
Borehole Complete at 8.70 m										
		F]

Water Level Observations

Hole Diameter Detail Chiseling Details			Water	Standing	Standing	Casing	Depth				
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
(111111)	(111)	Deptil (III)	(111)	(111)	(Hours)		Cunto (III)	Time (mine)	Ector (III)	Dopan (III)	Coalca (III)
200 150	3.00 8.70	3.00 8.50				10/03/11	4.30	20	3.20	4.00	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates: 09/03/2011-10/03/2011

Plant:

Dando 2000

Drilled By:

E. McNamara

Logged By: J. Tomalin Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Water level standing at 4.70mbgl on completion.
3. Hole cased at 8.50mbgl utilising 150mm diameter casing.
4. Installation details: 50mm HDPE Standpipe installed from GL to 8.50mbgl.
Plain pipe from GL to 4.30mbgl and a slotted pipe from 4.30m to 8.50mbgl.
Hole backfilled with concrete from GL to 0.20mbgl, bentoniet from 0.20m to
4.30mbgl, gravel from 4.30m to 8.50mbgl and bentonite from 8.50m to
8.70mbgl. Hole finished with a flush cover and gas tap.
5. Bentonite pellet seal at 3.80mbgl at reduction from 200mm diameter
casing to 150mm casing, bentonite seal allowed to set overnight.

casing to 150mm casing. bentonite seal allowed to set overnight.
6. Intially bentonite seal was placed at 2.60mbgl, however Made Ground

below.

Borehole Record

BH106

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd Project ID: SI1688

Ground Level: 13.603mAOD Coordinates: 535816.83E

192811.33N

Sheet 1 of 2

Engineer: N/A

	Linginio	J	, , ,						
Description	Legend	Depth	O.D.	Sample Test		SPT/CPT	Remarks and Test Results		
Decomption	Logona	(m)	Level (m)	Туре	Depth (m)	Casing Water Depth Depth (m) (m)		PID (ppm)	Installations
MADE GROUND: Brick weave.	/XXXXX	0.08	13.52	D1	0.10	, , , , , , , ,			-
MADE GROUND: Dark grey sandy angular fine to coarse tarmac GRAVEL.		0.30	13.30 13.00	D2 B1	0.30-1.95 0.60-1.00				=
MADE GROUND: Red-grey slightly silty fine to coarse SAND and angular to subangular fine to coarse granite GRAVEL (TYPE 1).				D3 ES1 B2 ES2	0.60 0.70-0.90 1.00-1.50 1.30-1.50				-
MADE GROUND: Loose yellow-brown slightly silty fine to coarse SAND and angular to subrounded fine to coarse flint GRAVEL.		1.80	11.80	S D4 B3 ES3	1.50-1.95 1.50-1.95 1.80-2.50 2.00-2.20	1.50	N=3 (2,1/0,1,1,1)		
MADE GROUND: Stiff brown-grey slightly gravelly CLAY. Gravel is angular fine to coarse brick and flint. (Anticipated to be fill LONDON CLAY FORMATION).		MANANAM		S B4 D5	2.50-2.95 2.50-3.00 2.50-2.95	2.50	N=5 (1,0/1,1,1,2)		
MADE GROUND: Dense orange-brown slightly clayey fine to coarse SAND and angular to subrounded fine to coarse flint GRAVEL.		3.60	10.00	S D6 ES4 B5	3.50-3.95 3.50-3.95 3.60-3.80 3.60-4.00	3.50	N=45 (3,5/8,9,13,15)		
	$\times\!\!\times\!\!\times\!\!\times$	4.30	9.30	D7	4.30				=
MADE GROUND: Grey-brown and yellow-brown silty very gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint and brick. Occasional ash.		4.70	8.90	S D8 ES5 B6	4.50-4.95 4.50-4.95 4.70-4.90 4.70-5.10	4.50	N=4 (1,0/1,1,1,1)		
Firm mottled brown and grey CLAY with rare organic debrisAt 4.90mbgl dark brown compact amorphous peat.		5.50	8.10	U1 B7 D9	5.10 5.50-6.00 5.55		7 blows 100%		
Medium dense yellow-grey silty very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint. (KEMPTON PARK GRAVEL).			7.10	ES6	6.00-6.20				
Medium dense grey slightly silty fine to coarse SAND and angular to subangular fine to coarse flint GRAVEL. (KEMPTON PARK GRAVEL).		6.50	7.10	S D10 B8	6.50-6.95 6.50-6.95 6.50-7.00	6.50	N=14 (1,2/3,4,4,3)		
Medium dense grey slightly silty very sandy angular to subrounded fine to coarse flint GRAVEL. (KEMPTON PARK GRAVEL).	***	7.50	6.10	S D11 B9 D12	7.50-7.95 7.50-7.95 7.50-8.00 7.80	7.50 (5.10)	N=17 (2,3/3,3,5,6)		
Stiff brown-grey CLAY with occasional angular to subrounded fine to coarse flint gravel. (REWORKED LONDON CLAY FORMATION)		8.10	5.50	B10 D13 ES7 U2	8.10-8.50 8.10 8.20-8.40 8.50		41 blows 100%		
Stiff to very stiff brown-grey closely fissured CLAY. (LONDON CLAY FORMATION).		8.95	4.65	D14	8.95				<u>-</u>
				S B11 D15	9.50-9.95 9.50-10.00 9.50-9.95	9.00	N=16 (1,2/3,4,4,5)		

Water Level Observations

Hole Diameter Detail Chiseling Details			Water	Standing	Standing	Casing	Depth				
Diameter	Depth	Casing	From	To	Time	Date		5		5	- 1 -
(mm)	(ṁ)	Depth (m)	(m)	(m)	(hours)		Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250	5.00	5.00				21/03/11	5.60	-	_	5.60	
200	6.00	6.00									
150	17.00	9.00									

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates: 21/03/2011-22/03/2011

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: J. Tomalin

Checked By: D.Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 7.80mbgl. Installation details: summ HDPE Standpipe installed from G. Lto 7.80mbgl.
 Plain pipe from GL to 5.50mbgl and a slotted pipe from 5.50m to 7.80mbgl.
 Hole backfilled with concrete from GL to 0.40mbgl, bentonite from 0.40m to 5.50mbgl, gravel from 5.50m to 7.80mbgl and bentonite from 7.80m to 17.00mbgl. Hole finished with a flush cover, gas tap and top cap.
 Bentonite pellet seal added at 5.00m at reduction of 250mm to 200mm diameter casing. Bentonite left to set for 2hr.
 Bentonite pellet seal added at 9.00m at reduction of 200mm to 150mm diameter register. Portonite left to set for 2hr.

diameter casing. Bentonite left to set for 2hrs.

Borehole Record

BH106

Project: London Waste Ecopark, Edmonton

Project ID: SI1688

Client: Entec UK Ltd

Ground Level: 13.603mAOD Coordinates: 535816.83E

192811.33N

Sheet 2 of 2

Engineer: N/A

	Liginee	; I. IN	/ 🖰				192011.3311			
Description	Legend	Depth	O.D.		ole Test	SPT/CPT	Remarks and			
	Legena	(m)	Level (m)	Type	Depth (m)	Casing Water Depth Depth (m) (m)	Test Results SPT/HV/PP (Recovery)	PID (ppm) Installation		
Stiff to very stiff brown-grey closely fissured CLAY. (LONDON CLAY FORMATION).				110				1		
				U3 D16	11.00 11.45		40 blows 100%			
Stiff brown-grey very silty slightly sandy CLAY with occasional mica flakes. (LONDON CLAY FORMATION).	X - X X - X X - X X - X X - X		1.65	S B12 D17	12.50-12.95 12.50-13.00 12.50-12.95	9.00	N=19 (2,3/4,4,5,6)			
	X - X - X - X - X - X - X - X - X - X -			U4 D18	14.00 14.45		47 blows 100%			
	× - × - × - × - × - × - × - × - × - × -			S B13 D19 ES8	15.50-15.95 15.50-16.50 15.50-15.95 15.50-15.70	9.00	N=26 (3,4/5,6,7,8)			
	××	1111111 1		U5	16.50		48 blows 100%			
Borehole Complete at 17.00 m			-3.40	D20	17.00					

Water Level Observations

1											
Hole Diameter Detail Chiseling De		Details		Water	Standing	Standing	Casing	Depth			
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	5.00 6.00 17.00	5.00 6.00 9.00				21/03/11	5.60	-	-	5.60	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

21/03/2011-22/03/2011

Plant:

Dando 2000

Drilled By: A. Elshof Logged By: J. Tomalin

Checked By: D.Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 7.80mbgl. Installation details: summ HDPE Standpipe installed from G. Lto 7.80mbgl.
 Plain pipe from GL to 5.50mbgl and a slotted pipe from 5.50m to 7.80mbgl.
 Hole backfilled with concrete from GL to 0.40mbgl, bentonite from 0.40m to 5.50mbgl, gravel from 5.50m to 7.80mbgl and bentonite from 7.80m to 17.00mbgl. Hole finished with a flush cover, gas tap and top cap.
 Bentonite pellet seal added at 5.00m at reduction of 250mm to 200mm diameter casing. Bentonite left to set for 2hr.
 Bentonite pellet seal added at 9.00m at reduction of 200mm to 150mm diameter register. Portonite left to set for 2hr.

diameter casing. Bentonite left to set for 2hrs.

MAY GURNEY

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

Project: London Waste Ecopark, Edmonton

BH107

Project ID: SI1688

Client: Entec UK Ltd

Ground Level: 11.294mAOD Coordinates: 535910.55E

192849.06N

Sheet 1 of 1

Engineer: N/A

	Engine	er: N	/ A						192849.06N
Description	Legend	Depth			ole Test	SPT/0		Remarks and Test Results	
2 3331 \$4.000		(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	SPT/HV/PP (Recovery)	PID (ppm) Installation
MADE GROUND: TARMAC.		0.30	10.99	B1 D1	0.00-0.40 0.20				-
MADE GROUND: Red-brown silty very sandy angular to subangular fine to coarse granite GRAVEL.		0.50	10.99	B2 ES1	0.40-1.00 0.60-0.80				
MADE GROUND: Yellow-brown slightly silty fine to coarse SAND and angular to subrounded fine to coarse flint GRAVEL.		1.10	10.19	D2 B3 ES2	1.10 1.10-1.40 1.20-1.40				- - -
MADE GROUND: Stiff grey CLAY with rare angular to subrounded fine to coarse flint gravel and occasional brick fragments. (Anticipated to br fill derived from LONDON CLAY FORMATION)From 1.50mbgl mixed with dark brown sandy clay.		2.40	8.89	D3 S B4 D4 ES3 D5	1.40 1.50-1.95 1.50-2.00 1.50-1.95 1.80-2.00 2.00 2.40-2.60	1.50		N=50 (6,6/9,22,11,8)	111111111111111111111111111111111111111
Firm grey slightly sandy CLAY with rare flint gravel and occasional plant debris (POSSIBLE MADE GROUND).		2.90	8.39	D6 S B5 D7	2.40 2.50-2.95 2.50-2.90 2.50-2.95	2.50		N=11 (1,0/1,0,4,6)	
Medium dense grey slightly silty very gravelly fine to coarse SAND. Gravel is subrounded to angular fine to coarse flint. (KEMPTON PARK GRAVEL).	X	+		ES5 S B6 D8	3.40-3.60 3.50-3.95 3.50-4.00 3.50-3.95	3.50	(2.80)	N=13 (1,2/2,4,4,3)	
		5.00	6.29	S B7 D9	4.50-4.95 4.50-5.00 4.50-4.95	4.50	(0.30)	N=18 (1,3/3,4,5,6)	
Medium dense grey fine to coarse SAND and angular to subrounded fine to coarse flint GRAVEL. (KEMPTON PARK GRAVEL)		5.80	5.49	S D10 B8	5.50-5.95 5.50-5.95 5.50-5.80	5.50	(4.30)	N=15 (2,3/3,4,5,3)	
Stiff brown-grey CLAY. (LONDON CLAY FORMATION).				D11 ES6	5.80 6.00-6.20				
				U1	6.50			47 blows 90%	
At 6.95mbgl weak concretionary limestone.		7.00	4.29	D12	6.95				
Very stiff brown-grey closely fissured, locally thinly laminated CLAY. (LONDON CLAY FORMATION)				S D13 B9	7.50-7.95 7.50-7.95 7.50-8.00	7.50		N=13 (1,2/2,3,4,4)	
				U2	8.50			38 blows 100%	
				D14 ES7	8.95 9.00-9.20				
				S B10 D15	9.50-9.95 9.50-10.00 9.50-10.00	7.50		N=16 (2,2/2,4,4,6)	

Borehole Complete at 10.00 m

Hole Diameter Detail Chiseling Details Water Standing Standing Casing Depth Date Diameter Depth (m) Casing Depth (m) From (m) Time (hours) Strike (m) Time (mins) Level (m) Depth (m) Sealed (m) (mm) 3.00 7.50 200 3.00 17/03/11 3.00 20 2.70 2.50 7.00

Client:

Entec UK Ltd

Engineer:

N/A

May Gurney Professional Services Contractor:

Dates:

17/03/2011

Plant: Drilled By: Dando 2000 A. Elshof

Logged By: J. Tomalin

Checked By: D.Dunn

Water Level Observations

Remarks: 1. Hand pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 5.80mbgl.

Plain pipe from GL to 2.90mbgl and a slotted pipe from 2.90m to 5.80mbgl. Hole backfilled with concrete from GL to 0.40mbgl, bentonite from 0.40m to 2.90mbgl, gravel from 2.90m to 5.80mbgl and gravel from 5.80m to 10.00mbgl. Hole finished with a flush cover, gas tap and top cap.

Borehole Record

BH108

N=3 (1.0/1.0.1.1)

Project: London Waste Ecopark, Edmonton

D1

ES1 B2 D2 S ES2

B3 D3

R4

D4 ES3 D5

ES4

B5 D6 D7

Project ID: SI1688

Client: Entec UK Ltd

0.50

1.70

2.10

10.62

9.42

9.02

Ground Level: 11.123mAOD

Coordinates: 535715.72E 102707 FON

Sheet 1 of 2

Engineer: N/A

Liigiilee	; I . IN							1321	07.5014	
Legend	Depth			ole Test	SPT/0	CPT	Remarks Test Res			
Logona	(m)	Level (m)	Type	Depth (m)		Water Depth (m)	SPT/HV/PP (Reco	PID (ppm)	Installation	าร
$\times\times\times\times\times$	0.10	11.02	B1	0.00-0.30					- 7.0	S

1.50

0.10 0.30-0.50 0.30-1.00

0.30 0.51-0.96 0.70-0.90

1.00-1.50 1.00

1 50-1 80

1.50-1.95 1.70-1.90

1.80

2.10-2.30

2.10-2.40 2.10 2.30

coarse SAND. Gravel is angular to subrounded fine to coarse flint. MADE GROUND: Brown grey clayey very gravelly SAND.

MADE GROUND: Brown-grey silty very gravelly fine to

Description

Gravel is angfular to rounded fine to coarse flint and brick with some sandy clay pockets. ...From 2.30mbgl Dark brown organic SILT

MADE GROUND: Firm brownish grey and yellowish grey sandy slightly gravelly (approximately 10%) CLAY. Gravel is angular to rounded fine to coarse flint with rare brick and concrete.

...From 13.50mbgl Locally silty slightly sandy MADE GROUND: Mixed grey clayey fine and medium SAND and sandy CLAY.

Firm very low strength mottled grey and yellowish grey CLÁY. (ALLUVIUM).

Medium dense brown-grey slightly silty very sandy angular to rounded fine to coarse flint GRAVEL Sand is fine to coarse. (KEMPTON PARK GRAVEL).

Stiff grey CLAY with occasional angular to subangular fine and medium flint gravel. (REWORKED LONDON CLAY FORMATION).

Very stiff high strength slightly silty slightly sandy CLAY. (LONDON CLAY FORMATION).

	2.80	8.32	B6 D8 ES5 D9	2.80-3.20 2.95 3.00-3.20 3.00					
			S D10 B7	3.50-3.95 3.50-3.95 3.50-4.00	3.50	(3.20)	N=17 (1,1/4,4,4,5)		
			S D11 B8	4.50-4.95 4.50-4.95 4.50-5.00	4.70	(2.80)	N=21 (3,4/5,5,5,6)		
	5.30	5.82	D12 B9 S D13 ES6	5.30 5.30-6.00 5.50-5.95 5.50-5.95 5.60-5.80	3.20	(5.50)	N=8 (2,3/2,2,2,2) HV=11.0kPa		
			U1	6.50			35 blows 100%		
× - ×	7.00	4.12	D14	6.95			HV=206.0kPa	3	
× × - × - × - × - × - × - × - × - ×			S B10 D15	7.50-7.95 7.50-8.00 7.50-7.95	7.00		N=14 (2,2/2,3,4,5)	-	

Water Level Observations

7.00

24 blows

N=22 (2,2/4,5,6,7) HV=150.0kPa

100%

Hole	Diamete	meter Detail Chiseling Details				Water	Standing	Standing	Casing	Depth	
Diameter	Depth	Casing	From	To	Time	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Olike (III)	Time (iiiiis)	Level (III)	Deptil (III)	Sealed (III)
250 200 150	2.00 6.30 15.00	2.00 3.00 7.50				14/03/11	3.00	20	2.90	3.00	7.00

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

14/03/2011-15/03/2011

Plant: Drilled By: Dando 2000 A. Elshof

Logged By: J. Tomalin

Checked By: D. Dunn

112

D16

D17

8.50

8.95

9.50-9.95

9.50-9.95

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 5.80mbgl. Plain pipe from GL to 2.80mbgl and a slotted pipe from 2.80m to 5.80mbgl. Hole backfilled with concrete from GL to 0.40mbgl, bentonite from 0.40m to 2.80mbgl, gravel from 2.80m to 5.30mbgl and bentonite from 5.30m to 15.45mbgl. Hole finished with a flush cover, gas tap and top cap.

3. Bentonite pellet seal added at 2.30mbgl at reduction from 250mm to 200mm diameter casing. Bentonite seal left for two hours to set.

4. Bentonite pellet seal added at 6.30mbgl at reduction from 250mm to 150mm

diameter casing. Bentonite seal left two hours to set.

Borehole Record

BH108

Project: London Waste Ecopark, Edmonton

40 blows

N=22 (2,3/4,5,6,7)

41 blows

N=23 (3,3/5,5,6,7)

Project ID: SI1688

Client: Entec UK Ltd

10.50

Engineer: N/A

Ground Level: 11.123mAOD Coordinates: 535715.72E

100%

100%

192707.50N

Sheet 2 of 2

	_								
Description	Legend	Depth	O.D.	Samı	ple Test	SPT/CPT	Remarks and		
Becomption	Logona	(m)	Level	Туре	Depth	Casing Water		PID	Installations
	77.04		(m)	71.	(m)	Depth Depth (m) (m)	SPT/HV/PP (Recovery)	(ppm)	

0.62

Very stiff brown-grey slightly silty CLAY. (LONDON CLAY FORMATION).

Very stiff high strength slightly silty slightly sandy CLAY. (LONDON CLAY FORMATION).

..From 12.00mbgl Locally thinly laminated and closely fissured.

Borehole Complete at 15.45 m

12.00-12.45 B12 D19 12.00-12.50 12.00-12.45

U3

D18

10.50

10.95

13.50

14.20-14.40

14.50-15.00

15.00-15.45 15.00

U4

D20 ES7

B13

S D21

15.45 -4.33

Water Level Observations

								Water Lever	JUSEI VALIONS		
Hole	Diamete	er Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.00 6.30 15.00	2.00 3.00 7.50				14/03/11	3.00	20	2.90	3.00	7.00

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

14/03/2011-15/03/2011

Plant: Drilled By: Dando 2000 A. Elshof

Logged By: J. Tomalin

Checked By: D. Dunn

Remarks: 1.

Starter pit dug from GL to 1.20mbgl. Installation details: 50mm HDPE Standpipe installed from GL to 5.80mbgl. Plain pipe from GL to 2.80mbgl and a slotted pipe from 2.80m to 5.80mbgl. Hole backfilled with concrete from GL to 0.40mbgl, bentonite from 0.40m to 2.80mbgl, gravel from 2.80m to 5.30mbgl and bentonite from 5.30m to 15.45mbgl. Hole finished with a flush cover, gas tap and top cap.

3. Bentonite pellet seal added at 2.30mbgl at reduction from 250mm to 200mm diameter casing. Bentonite seal left for two hours to set.

4. Bentonite pellet seal added at 6.30mbgl at reduction from 250mm to 150mm

diameter casing. Bentonite seal left two hours to set.

Borehole Record

BH109

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd Project ID: SI1688

Ground Level: 10.830mAOD Coordinates: 535825.82E

192597.48N

Sheet 1 of 2

Engineer: N/A

	4 <u> </u>									
Descriptio-	1	Depth	O.D.	Samp	ole Test	SPT/	CPT	Remarks a		
Description	Legend	(m)	Level	Туре	Depth	Casing	Water	Test Resu	lts PID	Installations
	1.100.2	` '	(m)	1 700	(m)	Depth (m)	Depth (m)	SPT/HV/PP (Recove	ery) (ppm)	
MADE GROUND: Dark grey-brown silty gravelly fine and medium SAND. Gravel is angular to subangular fine to coarse brick and flint.		0.40	10.43	B1 D1 ES1 B2 D2	0.00-0.40 0.10 0.10-0.30 0.40-0.80 0.40		, ,			
MADE GROUND: Grey-brown clayey gravelly fine and medium SAND. Gravel is angular to subangular fine to coarse flint brick and concrete.		0.80	10.03 9.63	ES2 B3 ES3 D3	0.40 0.40-0.60 0.80-1.00 0.80-1.00 1.00					111111111111111111111111111111111111111
MADE GROUND: Grey-brown silty very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint and brick with occasional brick cobbles.		1.50	9.33 9.13	B4 D4 ES4 B5 S D5	1.00-1.20 1.20 1.20-1.40 1.20-1.50 1.50-1.95 1.50-1.95	1.50		N=4 (1,1/1,0,2,1)		1
MADE GROUND: Loose dark grey and brown-grey clayey very gravelly fine to coarse SAND. Gravel is angular fine to coarse brick and flint. Locally mixed with sandy clay. Slight hydrocarbon odour.		2.80	8.03	ES5 B6 D6 B7 ES6 S	1.50-1.70 1.50-1.70 1.70 1.70-2.00 2.00-2.20 2.50-2.95	2.50		N=8 (1,0/1,0,2,5)		
MADE GROUND: Firm brown-grey sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse brick and flint with rare organic debis and slight hydrocarbon odour.		11111111		D7 W1 B8 ES7 S D8	2.50-2.95 2.80 2.80-3.50 3.20-3.40 3.50-3.95 3.50-3.95	3.50	(3.20)	N=14 (2,2/2,4,4,4)		
MADE GROUND: Firm to stiff grey slightly gravelly CLAY. gravel is angular to subangular fine to coarse brick concrete and flint with a little black organic debris.	* * * * * * * * * * * * * * * * * * *			B9 S	3.50-4.00 4.50-4.95	4.50	(2.40)	N=18 (1,2/2,4,5,7)		
Medium dense grey silty very gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL).	X)	5.20	5.63	B10 D9	4.50-5.00 4.50-4.95 5.20-5.65	5.20	(2.80)	N=8 (1,2/1,2,2,3)		
Stiff to very stiff brown-grey CLAY, locally thinly bedded and closely fissured. (LOWER COAL FORMATION).				D10 B11 ES8	5.20-5.65 5.20-6.00 5.80-6.00		(,	2 (7 7 7 7 7 7		
				U1	6.50			40 blows 10	00%	111111
At 6.80mbgl Very weak concretionary limestone.				D11	6.95					- - - -
				S B12 D12	7.50-7.95 7.50-8.00 7.50-7.95	7.50		N=14 (1,2/2,3,4,5)	200.0	00 = = = = -
				U2	8.50			36 blows 10	00%	-
Stiff to very stiff brown-grey and locally slightly green-grey and slightly sandy CLAY. (LONDON CLAY FORMATION).		8.95	1.88	D13 S	8.95 9.50-9.95	7.70		N=18 (2,2/3,4,5,6)	210.0	00 <u></u>
· 				B13 D14	9.50-9.95 9.50-10.00 9.50-9.95	7.70		14-10 (2,2/3,4,3,0)		
				1/	Vater Leve	ol Oheo	rvatio	ne		

Water Leve	d Observation:	c

Hole	Hole Diameter Detail Chiseling Details				Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.20 6.20 15.00	2.20 6.20 7.70	(,	()	(riouro)	15/03/11	2.80	20	2.40	2.00	7.50

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

15/03/2011

Plant: Drilled By: Dando 2000

Logged By: J. Tomalin

A. Elshof

Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation Details: 50mm Standpipe installed from GL to 5.30mbgl.
Plain pipe from GL to 2.80mbgl and a slotted pipe from 2.80m to 5.30mbgl.
Hole backfilled with concrete form GL to 0.40mbgl, bentonite form 0.20m to 2.80mbgl, gravel from 2.80m to 5.30mbgl and bentonite from 5.30m to 15.00mbgl. Hole finished with a flush cover and gas tap.

3. Pentonite pellet seed added at 2.20mbgl at reduction from 2.50mm to 2.00mm

Bentonite pellet seal added at 2.20mbgl at reduction from 250mm to 200mm diameter casing.
 Two meter bentonite pellet seal added at 6.20mbgl at reduction from

200mm to 150mm diameter casing. Bentonite / cement grout left to set for two hours.

Borehole Record

BH109

Project: London Waste Ecopark, Edmonton

Project ID: SI1688

Client: Entec UK Ltd

Ground Level: 10.830mAOD Coordinates: 535825.82E

192597.48N

Sheet 2 of 2

Engineer: N/A

	5	-									
Description	Legend	Depth (m)	O.D. Level (m)	Sam _l Type	Depth (m)	SPT/0 Casing Depth (m)		T	arks and Results (Recovery)		Installation
Stiff to very stiff brown-grey and locally slightly green-grey and slightly sandy CLAY. (LONDON CLAY FORMATION).			(111)	U3 D15	10.50	(m)	<u>(m)</u>	39 blows	100%		-
				S B14 D16	12.00-12.45 12.00-12.45 12.00-12.45	7.70		N=22 (2,3/4	1 ,6,6,6)		
		#		U4 ES9 D17	13.50 13.80-14.00 13.95			36 blows	100%	250.0	0 -
		15.00	-4.17	S B15 D18	14.50-14.95 14.50-15.00 14.50-15.00	7.70		N=24 (2,5/5	5,5,6,8)		- - - - - -
Borehole Complete at 15.00 m											
											1

Water Level Observations

Hole	Hole Diameter Detail Chiseling Details				Details		Water	Standing	Standing	Casing	Depth
Diameter	Depth	Casing	From (m)	To	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
(mm)	(m)	Depth (m)	(111)	(m)	(Hours)		ounte (III)	Time (mine)	Ector (III)	Dopur (III)	Coalca (III)
250 200 150	2.20 6.20 15.00	2.20 6.20 7.70				15/03/11	2.80	20	2.40	2.00	7.50

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

15/03/2011

Plant: Drilled By: Dando 2000

Logged By: J. Tomalin

A. Elshof

Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl. 2. Installation Details: 50mm Standpipe installed from GL to 5.30mbgl. Plain pipe from GL to 2.80mbgl and a slotted pipe from 2.80m to 5.30mbgl. Hole backfilled with concrete form GL to 0.40mbgl, bentonite form 0.20m to 2.80mbgl, gravel from 2.80m to 5.30mbgl and bentonite from 5.30m to 15.00mbgl. Hole finished with a flush cover and gas tap.

3. Bentonite pellet seal added at 2.20mbgl at reduction from 250mm to 200mm diameter casing.

4. Two meter bentonite pellet seal added at 6.20mbgl at reduction from 200mm to 150mm diameter casing. Bentonite / cement grout left to set for two hours.

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

Project: London Waste Ecopark, Edmonton

BH110

Client: Entec UK Ltd

Ground Level: 10.751mAOD Coordinates: 535701.94E

192490.25N

Sheet 1 of 2

Engineer: N/A

	Linginicoi .		, ,							102 1	00.2011
Description	Lamand D	epth	O.D.	Samp	le Test	SPT/	CPT		rks and		
Description		(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Donth	Test F	Results (Recovery)	PID (ppm)	Installations
MADE GROUND: CONCRETE.		0.08	10.67 10.55	B1 D1 ES1	0.10-0.40 0.10 0.10 0.10-0.20	(111)	(111)	<u> </u>	(,	(PP)	= 3
MADE GROUND: Dark brown silty very gravelly fine to coarse SAND. Gravel is angular fine to coarse flint and concreteFrom 0.10mbgl becoming clayey.		0.40	10.35	B2 D2 ES2 ES3 B3	0.40-1.00 0.40 0.50-0.70 0.80-1.00						
MADE GROUND: Brick rubble in sandy matrix.		1.10	9.65	D3 B4	1.00-1.20						-
MADE GROUND: Mixed firm dark brown silty gravelly CLAY. Gravel is angular fine and medium brick and flint and brown gravelly clayey fine to coarse coarse SAND with approximately 15% brick cobbles.		1.90 2.00	8.85 8.75	ES4 S D4 B5 D5 B6	1.20-1.50 1.30-1.50 1.50-1.95 1.50-1.95 1.50-2.00 1.90 2.00-2.20	1.50		N=4 (2,2/1,1,	,1,1)		
MADE GROUND: Grey silty very gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint.		2.40	8.35 7.95	ES5 D6 D7 U1	2.20-2.40 2.20 2.40 2.50			28 blows			
MADE GROUND: Grey and dark grey sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse flint rare brick and concrete.	* * * * E	3.20	7.55	D8 ES6 B7	2.80 3.00-3.20 3.30-3.50						
MADE GROUND: Firm dark brown and grey slightly gravelly CLAY. Gravel is subangular to angular fine to coarse flint and brick.				S B8 D9 W1	3.50-3.95 3.50-4.00 3.50-3.95 3.60	3.50		N=18 (3,3/4,4	4,5,5)		
Firm mottled grey and yellow-grey CLAY. (ALLUVIUM)	=										
Firm dark brown organic rich CLAY withrare decayed plant debris (fragments of wood). (ALLUVIUM)				S B10 D10	4.50-4.95 4.50-5.00 4.50-4.95	4.50	(3.60)	N=17 (1,3/4,4	4,4,5)		
Medium dense grey silty very gravelly fine to coarse coarse SAND. Gravel is angular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL).				B11 ES7 S	5.30-6.00 5.40-5.60 5.50-5.95	5.50	(3.50)	N=21 (2,3/4,5	5,6,6)		
Grey slightly silty medium and coarse SAND and angular to rounded fine to coarse flint GRAVEL.				D11	5.50-5.95						
Stiff brown-grey closely fissured CLAY with occasional angular to subangular fine to coarse flint gravel. (REWORKED LONDON CLAY FORMATION).		6.30	4.45	S B12 D12 ES8	6.30-6.75 6.30-7.00 6.30-6.75 6.80-7.00	6.30	(3.70)	N=11 (3,1/3,	3,2,3)		
Very stiff brown-grey slightly sandy CLAY. (LONDON CLAY FORMATION)		7.00	3.75								<u>-</u>
From 7.50m to 8.20mbgl silty fine sand bands.				U2	7.50			30 blows			=
				D13	7.95						<u>-</u> -
Very stiff brown-grey closely fissured CLAY. (LONDON CLAY FORMATION).		8.50	2.25	S B13 D14	8.50-8.95 8.50-9.00 8.50-8.95	7.50		N=16 (1,3/3,4	4,4,5)		-
				U3	9.50			43 blows			- - - - -
				D15	9.95						(-

Water	I evel	Obser	vations

Hole	Diamete	er Detail	Ch	Chiseling Details			Water	Standing	Standing	Casing	Depth					
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)					
200 250 150	3.00 7.00 11.40	1.00 3.00 7.50				23/03/11	3.40	-	-	3.40						

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

23/03/2011-24/03/2011

Plant: Dando 2000 Drilled By: A. Elshof Logged By: J. Tomalin Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 6.30mbgl. Plain pipe from GL to 2.80mbgl and a slotted pipe from 2.80m to 6.30mbgl. Hole backfilled with concrete from GL to 0.40mbgl, bentonite from 0.40m to 2.80mbgl, gravel from 2.80m to 6.30mbgl and bentonite from 6.30m to 11.40mbgl. Hole finished with a flush cover, gas tap and top cap.

Borehole Record

BH110

Project: London Waste Ecopark, Edmonton

Project ID: SI1688

Client: Entec UK Ltd

11.40

-0.65

Ground Level: 10.751mAOD Coordinates:

535701.94E 192490.25N

Sheet 2 of 2

Engineer: N/A

Lilginico									1021	00.2011
Legend	Depth	O.D.	Samp	ole Test	SPT/	CPT	Rema	arks and Results		
Logona	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	SPT/HV/PP			Installations

becoming slightly sandy.

Remaining Detail: 9.90m - 9.90m: ...From 9.90mbgl

Description

Stiff to very stiff slightly green-grey sandy to very sandy CLAY with some degraded shell and silty fine sand bands. (LAMBETH GROUP - UPPER SHELLY BEDS).

Borehole Complete at 11.40 m

		B14 D16	10.50-10.95 10.50-11.00 10.50-10.95	N=22 (3,3/4,5,6,7)
11.20	-0.45 -0.65	B15 ES9	11.20-11.40 11.20-11.40	

ı									Water Level (Observations		
I	Hole	Diamete	er Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
	Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
	200 250 150	3.00 7.00 11.40	1.00 3.00 7.50				23/03/11	3.40	-	-	3.40	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

23/03/2011-24/03/2011

Plant: Dando 2000 Drilled By: A. Elshof Logged By: J. Tomalin Checked By: D. Dunn

Remarks: 1.

Starter pit dug from GL to 1.20mbgl.
 Installation details: 50mm HDPE Standpipe installed from GL to 6.30mbgl. Plain pipe from GL to 2.80mbgl and a slotted pipe from 2.80m to 6.30mbgl. Hole backfilled with concrete from GL to 0.40mbgl, bentonite from 0.40m to 2.80mbgl, gravel from 2.80m to 6.30mbgl and bentonite from 6.30m to 11.40mbgl. Hole finished with a flush cover, gas tap and top cap.

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

BH113

Project: London Waste Ecopark, Edmonton

Ground Level: 11.173mAOD Coordinates: 535638.19E

192730.94N

Sheet 1 of 1

Engineer: N/A

Client: Entec UK Ltd

	Enginee	I. IN	A							1927	30.94N
Description	Legend	Depth	O.D.	Samp	ole Test	SPT/			rks and Results		
Beschpiton	Logona	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	SPT/HV/PP		PID (ppm)	Installations
MADE GROUND: Dark brown silty, fine to coarse SAND and angular to rounded fine to coarse flint GRAVEL.		0.10	11.07	B1 B2 ES1	0.00-0.10 0.10-0.40 0.20-0.40		()				
MADE GROUND: Dark brown silty, very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse brick and flint with some rare clay pockets.		0.70	10.47	B3 ES2 ES3 B4	0.40-0.70 0.50-0.70 0.70-0.90 0.70-1.20			N=5 (1,0/1,1	1 2)		
MADE GROUND: Brown-grey clayey gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint, brick and ash.			9.91	D1 ES4 B5	1.20-1.65 1.20-1.40 1.20-1.65			14-5 (1,0/1,1	, ı, <i>z)</i>		
MADE GROUND: Stiff grey slightly sandy, slightly gravelly (approximately 10%) CLAY, Gravel is angular to subangular fine to coarse brick and	XXXXX Z	2.00	9.17	U1 D2	2.00			9 blows	100%		
flint. MADE GROUND: Firm to stiff grey slightly silty CLAY		2.90	8.27	ES5 S	2.70-2.90 3.00-3.45	3.00		N=2 (1,0/0,1	0.1)		
with occasional angular to subangular fine to coarse flint gravel.	x × x x	3.30	7.87	D3 B6	3.00-3.45 3.10-3.50	3.00		14-2 (1,0/0,1	,0,1)		=
Soft to firm mottled grey and green-grey CLAY with occasional decayed plant debris and gravel. (ALLUVIUM).	*			ES6	3.70-3.90						= = 13 = 54
Grey silty shelly fine to coarse SAND. (ALLUVIUM).	×××××	4.30	6.87	U2	4.00						
Soft dark brown slightly sandu organic rich SILT with occasional angular fine to coarse flint (gravel. (ALLUVIUM).		4.30	0.07	D4 B7	4.45-4.55 4.50-5.50						
Medium dense grey silty fine to coarse SAND and angular to rounded fine to coarse flint GRAVEL. (KEMPTON PARK GRAVEL).				S D5 ES7	5.00-5.45 5.00-5.45 5.00-5.20	5.00	(3.00)	N=11 (4,3/3,	3,2,3)		
Stiff grey CLAY. (POSSIBLE LONDON CLAY FORMATION). Borehole Complete at 6.50 m		6.30	4.87 4.67	S D6 B8 ES8 B9 ES9	6.00-6.45 6.00-6.45 6.00-6.30 6.00-6.20 6.30-6.50 6.30-6.50	6.00	(3.00)	N=15 (1,0/1,	2,5,7)		

Water Level Observations

Hole	Diamete	iameter Detail Chiseling Details)etails		Water	Standing	Standing	Casing	Depth	
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
200 150	2.50 6.50	2.50 6.50				08/03/11	4.30	20	2.60	3.00	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates: 08/03/2011-09/03/2011

Plant:

Dando 2000

Drilled By:

T.York Logged By: J. Tomalin

Checked By: P.Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Water level standing at 3.10mbgl on completion.
3. Installation details: 50mm HDPE Standpipe installed from GL to 6.30mbgl.
Plain pipe from GL to 3.80mbgl and a slotted pipe from GL to 6.30mbgl.
Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to

3.80mbgl, gravel from 3.80m to 6.30mbgl and bentonite from 6.30m to 6.50mbgl. Hole finished with a flush cover and gas tap.

4. Bentonite pellet seal added at 2.50mbgl at reduction of 200mm to 150mm diameter casing. Bentonite seal allowed two hours to set.

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd

Ground Level: 10.785mAOD Coordinates: 535744.97E

BH114

192768.64N

Sheet 1 of 1

Engineer: N/A

	g	o						
Description	Legend	Depth	O.D.	Samp	ole Test	SPT/CPT	Remarks and	
Везеприон	Logona	(m)	Level (m)	Туре	Depth (m)	Casing Water Depth Depth (m) (m)	Test Results SPT/HV/PP (Recovery) (p	Installations
MADE GROUND: Concrete rubble	*****	0.10	10.69	B1 ES1	0.10-0.60 0.10-0.30			
MADE GROUND: Brown silty vey gravelly fine and medium SAND. Gravel is angular to subangular to subangular fine to coarse brick, concrete and flint.		0.50	10.29 9.99	B2 ES2 ES3	0.60-1.20 0.60-0.80 0.80-1.00			
MADE GROUND: Firm to stiff brown-grey slightly gravelly CLAY. Gravel is angular to subangular fine to coarse brick, concrete and flint.		1.70	9.09	S D1 B3 B4	1.20-1.65 1.20-1.65 1.20-1.65 1.70-2.00		N=8 (1,1/0,2,2,4)	
MADE GROUND: Loose dark brown clayey gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse brick flint and concrete (approximately 10%) concrete cobbles with some sandy clay pockets.		2.30	8.49	ES4 S D2 B5 ES5	1.70-1.90 2.00-2.45 2.00-2.45 2.30-3.00 2.50-2.70		N=13 (1,2/2,3,5,3)	
From 1.30mbgl becoming sandy CLAY with sandy pockets. Firm mottled yellow-grey and yellow-brown CLAY. (ALLUVIUM)From 1.90mbgl Mottled grey and dark grey.		11111111		S D3 B6	3.00-3.45 3.00-3.45 3.00-3.45	3.00 (2.70)	N=44 (4,5/10,11,14,9)	
Medium dense grey silty fine to coarse SAND and angular to subrounded fine and medium flint GRAVEL. (RIVER TERRACE DEPOSITS).		المرابا المرابات		S D4 B7 ES6	4.00-4.45 4.00-4.45 4.00-4.45 4.50-4.70	4.00 (3.00)	N=13 (1,2/3,4,3,3)	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		S D5 B8	5.00-5.45 5.00-5.45 5.00-5.45	5.00 (3.00)	N=11 (1,1/2,3,3,3)	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.22	S D6 B9	6.00-6.45 6.00-6.45 6.00-6.45	6.00 (3.10)	N=12 (1,2/2,3,4,3)	
Grey firn to soft grey CLAY. (POSSIBLE LONDON CLAY FORMATION).		6.80 7.00	3.99 3.79					
Borehole Complete at 7.00 m								

Water Level Observations

Hole	Diamete	er Detail	etail Chiseling Details)etails		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
200 150	2.00 7.00	2.00 7.00				10/03/11	1.20	20	1.40	-	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

10/03/2011-11/03/2011

Plant: Drilled By: Dando 2000

T. York

Logged By: J. Tomalin

Checked By: D. Dunn

Remarks: 1. Handpit dug form GL to 1.20mbgl.
2. Hole cased at 7.00mbgl utilising 150mm diameter casing.
3. Installation details: 50mm HDPE Standpipe installed from GL to 6.80mbgl.
Plain pipe from GL to 0.50mbgl, slotted pipe form 0.50m to 2.30mbgl and a plain pipe from 2.30m to 7.00mbgl. Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to 2.30mbgl, gravel from 2.30m to 6.80mbgl and bentonite from 6.80m to 7.00mbgl. Hole finished with a flush cover and gas tan

4. Bentonite pellet seal added at 2.00mbgl at reduction of 200mm to 150mm diameter casing. Bentonite seal left two hours to allow to set.

Borehole Record

BH115

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd Project ID: SI1688

Ground Level: 11.636mAOD Coordinates: 535867.51E

192633.10N

Sheet 1 of 1

Engineer: N/A

Description	Legend	Depth	O.D.	Samp	ole Test	SPT/	CPT	Remarks and		
Description	Legenu	(m)	Level	Туре	Depth	Casing Depth	Water Depth	Test Results	,PID (Installations
Grass over dark brown sandy SILT (Topsoil) with roots and some flint gravel.	XXXX	0.10	(m) 11.54	B1 D1	0.10-0.40 0.10	(m)	(m)	SPT/HV/PP (Recovery)	(ppm)	
MADE GROUND: Brown gravelly slihtly gravelly SAND. Gravel is angular to rounded fine to coarse brick,flint and occasional ash wth occasional brick cobble.		0.50 0.60 1.00	11.14 11.04 10.64	ES1 D2 B2 D3 ES2 B3 D4	0.20-0.30 0.50 0.60-0.90 0.60 0.70-0.90 1.00-1.40 1.00					
MADE GROUND: Light brown clayey silty SAND with some fine to coarse wood, brick, concrete and flint gravel.		1.40	10.24	D5 S ES3 B4	1.40 1.50-1.95 1.50-1.70 1.50-2.00			N=10 (1,1/2,2,3,3)		
MADE GROUND: Soft brown gravelly sandy CLAY with much wood, brick and some roots.	*****	2.00	9.64	W1	1.90					
MADE GROUND: Firm to stiff brown CLAY with some flint, brick and root fragments.		2.60	9.04	S B5 D6	2.50-2.95 2.50-3.00 2.50-2.95	2.50	(2.40)	N=5 (1,0/1,1,1,2)		
MADE GROUND: Firm to stiff CLAY with some flint, brick and root fragments.		3.20	8.44	B6 D7 D8	3.00-3.50 3.00 3.20					
MADE GROUND: Concrete Obstruction		3.50	8.14	S ES4	3.50-3.95 3.50-3.70	3.50	(3.30)	N=9 (3,2/2,2,2,3)		
Loose grey soft CLAY with occasional roots. (ALLUVIUM).		3.70	7.94	В7	3.50-4.00					
Loose grey slightly sandy fine to coarse angular to subangular GRAVEL of flint. (KEMPTON PARK GRAVEL).		-		S B8	4.50-4.95 4.50-5.00	4.50	(1.90)	N=9 (1,1/2,2,2,3)		
Loose grey gravelly (approximately 20%) fine to coarse SAND. Gravel is angular rounded fine to coarse flint. (KEMPTON PARK GRAVEL).				D9	4.50-4.95					
Firm grey CLAY. (LONDON CLAY FORMATION).				C ES5 B9	5.50-5.95 5.50-5.70 5.50-6.00	5.50	(2.70)	N=5 (1,0/1,1,1,2)		
				S B10 D10	6.50-6.95 6.50-7.00 6.50-7.00	6.50	(2.40)	N=13 (1,2/3,3,3,4)		
Borehole Complete at 7.10 m		7.10	4.54	D11	7.10					

Water Level Observations

Hole Diameter Detail Chiseling Details Water Standing Standing	Casing Depth
Diameter Depth Casing From To Time Date Strike (m) Depth (m) (m) (m) (m) (hours) Strike (m) Time (mins) Level (m)	Casing Depth Depth (m) Sealed (m)
200 3.50 3.50 08/03/11 1.40 20 1.95	-
150 7.10 7.10 08/03/11 2.60 20 2.40 08/03/11 3.50 20 1.90	-

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates: Plant:

08/03/2011

Drilled By:

Dando 2000 A. Elshof

Logged By: J. Tomalin

Checked By: D.Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Unable to carry out U100 sample at 2.50m to 3.50mbgl due to concrete

obstruction.

3. Groundwater level standing at 2.10mbgl on completion.

4. Installation details: 50mm HDPE Standpipe installed from GL to 7.10mbgl. Plain pipe from GL to 3.50mbgl and a slotted pipe from 3.50m to 7.10mbgl. Hole backfilled with concrete from GL to 0.40mbgl, bentonite from 0.40m to 3.50mbgl and gravel from 3.50m to 7.10mbgl. Hole finished with a flush cover and gas tap.

5. Bentonite seal added at 3.50mbgl at reduction from 200mm to 150mm diameter casing. Bentonite allowed to set for two hours.

Borehole Record

BH116

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd Project ID: SI1688

Ground Level: 11.747mAOD Coordinates: 535891.55E

192705.40N

Sheet 1 of 3

Engineer: N/A

	Liigiilee	51 . IN	/ A						1321	03.4011
Description	Legend	Depth	O.D.	Samı	ple Test	SPT/	CPT	Remarks and		
Description	Legena	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	Test Results SPT/HV/PP (Recovery)	PID	Installations
MADE GROUND: Grass over slightly gravelly silty fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint and rare clay pipe fragments.		0.50	11.25	ES1 ES2 ES3	0.10-0.30 0.60-0.80 0.70		,			
MADE GROUND: Clayey gravelly fine to coarse SAND. Gravel is fine to coarse with occasional cobble flint, brick, wood, plastic, metal, glass and possible asbestos fragments.		1.50	10.25	W1	1.00					-
MADE GROUND: Firm brown CLAY with occasional gravel of flint.	CXXXX	1.70 1.90	10.05 9.85							-
Soft to firm brown-grey sandy gravelly CLAY. Gravel is angular to subangular fine to coarse flint. (ALLUVIUM).	salte salte salte	2.70	9.05	U1 ES4	2.50 2.50-2.70			22 blows		
Soft to firm grey CLAY with occasional brown mottling and rare plant matter. (ALLUVIUM).	sales sales sales	-	8.55							-
Soft brown PEAT. (recovered from U100). (ALLUVIUM).		E	0.00	S B6	3.40-3.85 3.40-4.00	3.20	(0.00)	N=22 (6,8/2,6,7,7)		
Medium dense grey-brown gravelly fine to coarse SAND. Gravel is angular to rounded fine and medium flint. (KEMPTON PARK GRAVEL).		130	7.45	D8 ES5	3.40-3.85 3.50-3.70					
Medium dense grey-brown sandy fine to coarse GRAVEL of flint. (KEMPTON PARK GRAVEL).		4.30	7.45	S B7 D9	4.50-4.95 4.50-5.00 4.50-4.95	4.50	(3.10)	N=16 (1,2/3,3,5,5)		
				S D10 B8	5.50-5.95 5.50-5.95 5.50-6.00	5.50	(3.30)	N=28 (2,2/5,6,8,9)		
Firm to stiff grey CLAY. (LONDON CLAY FORMATION).		6.10	5.65	S D11 D12 B9 ES6	6.10-6.55 6.10 6.10-6.50 6.10-6.50 6.30-6.50	6.10	(3.30)	N=18 (2,3/4,3,5,6)		13=30
Firm to stiff CLAY. (LONDON CLAY FORMATION).		7.00	4.75	ES7	7.00-7.20					-
	===			U2	7.50			26 blows		=
Very stiff grey CLAY. (LONDON CLAY FORMATION).		8.00	3.75	D13	7.95					- - - -
				S B10 D14	8.50-8.95 8.50-9.00 8.50-8.95	7.50		N=16 (1,2/3,3,5,5)		
i i		+		U3	9.50			30 blows		
		£		D15	9.95					()

Water	I evel	Obser	vations

1											
Hole	Diamete	er Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	4.00 6.10 24.40	4.00 6.10 7.50				08/03/11	3.60	20	3.10	-	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

08/03/2011-10/03/2011

Plant:

Dando 2000

Drilled By: Logged By: K. Boswell

A. Elshof

Checked By: D.Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Hole cased at 4.00mbgl utilising 150mm diameter casing.
3. Installation details: 50mm HDPE Standpipe installed from GL to 6.10mbgl.
Plain pipe from GL to 3.20mbgl and a slotted pipe from 3.20m to 6.10mbgl.
Hole backfilled with bentonite from GL to 3.20mbgl, gravel from 3.20m to
6.10mbgl and bentonite from 6.10m to 24.40mbgl. Hole finished with a flush

cover and gas tap.

4. Bentonite pellet seal added at 3.40mbgl at reduction from 250mm to 200mm diameter casing. Bentonite allowed two hours to set.

5. Bentonite / cement seal added at 7.00mbgl at reduction from 200mm to 150mm diameter casing. Bentonite allowed eighteen hours to set.

Borehole Record

BH116

Project: London Waste Ecopark, Edmonton

Project ID: SI1688

Client: Entec UK Ltd

Engineer: N/A

Ground Level: 11.747mAOD

Coordinates: 535891.55E

102705 40N

Sheet 2 of 3

	Enginee	er: N	/ A				1	92705.40N
D toff	1	Denth	O.D.	Samı	ole Test	SPT/CPT	Remarks and	
Description	Legend	(m)		Туре		Casing Water Depth Depth (m) (m)	Test Results	Installations
			(m)	•	(m)	(m) (m)	SPT/HV/PP (Recovery)	(ppm)
Very stiff grey CLAY. (LONDON CLAY FORMATION).				S B11 D16	10.50-10.95 10.50-11.00 10.50-10.95	7.50	N=19 (1,2/3,4,6,6)	-
				U4 D17	12.00 12.45		37 blows	
Stiff slightly sandy grey CLAY with occasional fine		13.70	-1.95	S B12 D18	13.50-13.95 13.50-14.00 13.50-13.95	7.50	N=17 (2,3/3,4,4,6)	
to medium shell fragments and granite gravel. (LONDON CLAY FORMATION).				D19 U5	14.00 15.00		30 blows	
				D20	15.45 16.50-16.95	7.50	N=22 (2,3/5,5,5,7)	
				S B13 D21	16.50-16.95 16.50-17.00 16.50-16.95			
				U6	18.00		47 blows	-
				D22	18.45			
				S B14 D23	19.50-19.95 19.50-20.00 19.50-19.95	7.50	N=17 (2,3/3,4,4,6)	-

Water Level Observations

Hole	Diamete	er Detail	Chi	iseling [Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250	4.00	4.00	(111)	(111)	(Hours)	08/03/11	3.60	20	3.10		- Coulou ()
200	6.10	6.10				00/03/11	3.00	20	3.10	_	
150	24.40	7.50									

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

08/03/2011-10/03/2011

Plant: Drilled By: Dando 2000 A. Elshof

Logged By: K. Boswell Checked By: D.Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Hole cased at 4.00mbgl utilising 150mm diameter casing.
3. Installation details: 50mm HDPE Standpipe installed from GL to 6.10mbgl.
Plain pipe from GL to 3.20mbgl and a slotted pipe from 3.20m to 6.10mbgl.
Hole backfilled with bentonite from GL to 3.20mbgl, gravel from 3.20m to
6.10mbgl and bentonite from 6.10m to 24.40mbgl. Hole finished with a flush

cover and gas tap.

4. Bentonite pellet seal added at 3.40mbgl at reduction from 250mm to 200mm diameter casing. Bentonite allowed two hours to set.

5. Bentonite / cement seal added at 7.00mbgl at reduction from 200mm to 150mm diameter casing. Bentonite allowed eighteen hours to set.

Borehole Record

Project: London Waste Ecopark, Edmonton

BH116

Project ID: SI1688

Client: Entec UK Ltd

Engineer: N/A

Ground Level: 11.747mAOD

Coordinates: 535891.55E

192705.40N

Sheet 3 of 3

SPT/CPT Remarks and Sample Test Depth O.D. Legend Description Test Results Casing Water Depth Depth (m) (m) (m) Level Installations Type Depth SPT/HV/PP (Recovery) (ppm) (m) (m) Stiff slightly sandy grey CLAY with occasional fine to medium shell fragments and granite gravel. (LONDON CLAY FORMATION). U7 21.00 48 blows 22.50-22.95 22.50-23.00 22.50-22.95 N=31 (2,5/6,7,8,10) B16 D25 24.20 -12.45 D26 24.20 Stiff grey-green sandy CLAY with occasional shells. (LAMBETH GROUP - UPPER SHELLY BEDS). -12.65 24.40 Borehole Complete at 24.40 m

Nater	I evel	Observations

Но	le Diamete	er Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
Diamete (mm)	r Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	4.00 6.10 24.40	4.00 6.10 7.50				08/03/11	3.60	20	3.10	-	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor:

May Gurney Professional Services

Dates:

08/03/2011-10/03/2011

Plant: Drilled By: Dando 2000 A. Elshof

Logged By: K. Boswell

Checked By: D.Dunn

Remarks: 1.

Starter pit dug from GL to 1.20mbgl.
 Hole cased at 4.00mbgl utilising 150mm diameter casing.
 Installation details: 50mm HDPE Standpipe installed from GL to 6.10mbgl. Plain pipe from GL to 3.20mbgl and a slotted pipe from 3.20m to 6.10mbgl. Hole backfilled with bentonite from GL to 3.20mbgl, gravel from 3.20m to 6.10mbgl and bentonite from 6.10m to 24.40mbgl. Hole finished with a flush cover and gas to be.

cover and gas tap.

4. Bentonite pellet seal added at 3.40mbgl at reduction from 250mm to 200mm diameter casing. Bentonite allowed two hours to set.

5. Bentonite / cement seal added at 7.00mbgl at reduction from 200mm to 150mm diameter casing. Bentonite allowed eighteen hours to set.

Borehole Record

BH117

Project: London Waste Ecopark, Edmonton

Project ID: SI1688

Client: Entec UK Ltd

Ground Level: 11.709mAOD Coordinates:

535813.75E 192713.45N

Sheet 1 of 1

Engineer: N/A

Linginio											
Legend	Depth			ole Test	SPT/	CPT	Rema	arks and Results			
Logona	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth	SPT/HV/PP			Installations	í
XXXXX	E	,	D1	0.10	()	(111)		-	,	-	ı

MADE GROUND: Grass over brown gravelly SILT (Topsoil). Gravel is angular to subangular, fine and medium brick and flint with occasional brick

Description

MADE GROUND: Very soft brown very gravelly CLAY. Gravel is angular to subrounded, fine and medium brick and some flint.

MADE GROUND: Brown soft slightly gravelly CLAY. Gravel is angular to subrounded, fine to coarse brick, wood and flint.

MADE GROUND: Soft to firm grey-brown gravelly CLAY. Gravel is angular to subrounded fine brick and ash. Some black staining and possible hydrocarbon odour.

MADE GROUND: Soft to firm grey-brown slightly gravelly CLAY with occasional brick cobble and approximate 20mm tyre fragment. Soft low strength grey CLAY with occasional organic

plant matter and black staining. Possible mild hydrocarbon odour. (ALLUVIUM). Medium dense grey slightly silty sandy angular to subangular, fine to coarse flint GRAVEL. (KEMPTON PARK GRAVEL).

...From 5.50mbgl loose.

Borehole Complete at 6.00 m

	0.40	11.31 10.91 10.71 10.21	B1 ES1 B2 ES2 D2 B3 D3 ES3 B4 D4 ES4 S B5 D5 ES5	0.20-0.40 0.20-0.40 0.40-0.80 0.40-0.70 0.50 0.80-1.00 1.00-1.20 1.00 1.00-1.20 1.50-1.85 1.50-2.00 2.10 2.20-2.40	1.50		50 (1,0/1,16,33 for 45mm)			
			U1	2.50			5 blows	-		
			W1 D6	2.90 2.95						
	3.90	7.81	S B6 D7 B7 ES6	3.50-3.95 3.50-3.90 3.50-3.95 3.90-4.50 4.00-4.20	3.50		N=20 (1,0/3,5,5,7)		10.00	
			S B8 D8	4.50-4.95 4.50-5.00 4.50-4.95	4.50	(4.10)	N=22 (3,5/5,5,6,6)			
	6.00	5.71	S B9 D9 D10 ES7	5.50-5.95 5.50-6.00 5.50-5.95 6.00 6.00-6.20	5.50	(3.60)	N=7 (2,3/2,1,2,2)			

Water Level Observations

Hole	Diamete	er Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
Diameter	Depth	Casing	From	To	Time	Date		"]	5	•
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
200	3.00	3.00				10/03/11	4.30	20	4.10	-	
150	6.00	5.50									

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

10/03/2011-11/03/2011

Plant: Drilled By: Dando 2000 A. Elshof

Logged By: K. Boswell Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 6.00mbgl. Plain pipe from GL to 3.90mbgl and a slotted pipe from 3.90m to 6.00mbgl. Hole backfilled with bentonite from GL to 3.90mbgl and gravel from 3.90m to 6.00mbgl. Hole finished with a flush cover and gas tap.

3. Bentonite pellet seal added at 3.00mbgl at reduction from 200mm to 150mm diameter casing. Bentonite allowed two hours to set.

Borehole Record

BH118

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd Project ID: SI1688

Ground Level: 10.975mAOD Coordinates: 535815.68E

192489.67N

Sheet 1 of 2

Engineer: N/A

	Lilginee	51 . IN	<i>/</i> ^				1.	72403.07 N
Description	Legend	Depth	O.D.		ole Test	SPT/CPT	Remarks and Test Results	la et elletie a e
·	and the same	(m)	Level (m)	Туре	Depth (m)	Casing Water Depth Depth (m) (m)		Installations
MADE GROUND: Grass over sandy slightly gravelly SILT (topsoil) with roots.		0.10	10.88	B1 D1 ES1	0.10-0.40 0.10-0.20 0.10-0.30			3 3
MADE GROUND: Brown silty gravelly fine to coarse SAND. Gravel is angular to subrounded fine to medium brick, flint and concrete.		0.40 > > 1.00	10.58 9.98	B2 D2 B3	0.40-1.00 0.40-0.50 1.00-1.20			
MADE GROUND: Yellow-brown sandy rounded to subangular fine to coarse GRAVEL of flint and wood.				D3 U1	1.20 1.50		11 blows	=
Soft to firm medium strength mottled gravelly CLAY with rare shell fragments. (ALLUVIUM).		111111111		D4 S B4 D5	1.95-2.00 2.00-2.45 2.00-2.80 2.00-2.45		N=4 (1,0/1,1,1,1)	
Black clayey SILT with organic flint. (ALLUVIUM).	XXXXX	2.80	8.18 7.98	U2	3.00		9 blows	=
Soft brown PEAT. (ALLUVIUM).	عالم عالم عالم قد عالم عالم عالم عالم عالم	Ē		B5 W1	3.00-3.50 3.40			
	la alla alla alla alla alla	3.90	7.08	D6	3.45-3.50			
Grey slightly silty sandy GRAVEL. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL).	× × × × × × × × × × × × × × × × × × ×	0.50	7.00	S B6 D7	4.00-4.45 4.00-4.50 4.00-4.45	3.00	N=16 (1,3/4,4,4,4)	
	× × × ×			S B7 D8	5.00-5.45 5.00-5.60 5.00-5.45	5.00 (3.80)	N=12 (1,3/3,3,3,3)	
Firm to stiff high strength grey CLAY. (LONDON CLAY FORMATION).		5.60	5.38	B8	5.60-6.00			
				U3	6.50		35 blows	=
				D9 S D10 B9	6.95-7.00 7.00-7.45 7.00-7.45 7.00-8.00	6.50	N=15 (1,2/3,3,4,5)	
From 8.00mbgl very high strength				U4	8.00		52 blows	=
				D11	8.45-8.50			
				S B10 D12	9.00-9.45 9.00-10.00 9.00-9.45	7.00	N=15 (1,2/3,3,4,5)	
								3

Water Level Observations

Hole	Diamete	er Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
Diameter	Depth	Casing	From	To	Time	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Strike (III)	Tillie (IIIIIIs)	Level (III)	Deptil (III)	Scalcu (III)
200	6.00	6.00				18/03/11	4.40	20	3.40	-	
150	19.95	16.00				21/03/11	14.50	20	11.80	-	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

18/03/2011-24/03/2011

Plant: Drilled By:

Dando 2000 T. York

Logged By: T. Kidd

Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 5.60mbgl. Installation details: 50mm HDPE Standpipe Installed from Gt to 5.60mbgl.
 Plain pipe from GL to 3.90mbgl and a slotted pipe from 3.90m to 19.95mbgl.
 Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to 3.90mbgl, gravel from 3.90m to 5.60mbgl and bentonite from 5.60m to 19.95mbgl. Hole finished with a flush cover and gas tap.
 Bentonite seal added at 6.00mbgl at reduction from 200mm to 150mm diameter casing. Bentonite allowed to set for fourty six hours.

	May Gurney Limited Geotechnical - Site Investigation		Bo	rehol	e Re	ecord		BH118	Sheet 2
MAY GURNEY	Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk	Project:	Lon	don W	aste E	Ecopark,	Edmontor	ו	
Project ID: SI1688		Client :	Ented	: UK Lt	d			Ground Level: 10.	
		Engineer	: N	/ A				192	5815.68E 2489.67N
Descriptio	ın	Legend	Depth	O.D.		ple Test	SPT/CPT	Remarks and Test Results	
2000.1940		Logona	(m)	Level (m)	Туре	Depth (m)	Casing Water Depth Depth (m) (m)		Installati
Firm to stiff high strength grey	/ CLAY. (LONDON CLAY			()	U5	10.00	(m) (m)	47 blows	
FORMATION).		===			D13	10.45-10.50			=
			-						
			-				= 00		=
					S B11 D14	11.50-11.95 11.50-12.00 11.50-11.95	7.00	N=19 (1,2/4,4,5,6)	=======================================
			-		W2	11.80			<u> </u>
			-						
					U6	13.00		66 blows	
					00	13.00		loo blows	
Dense grey clayey silty fine a	nd modium SAND with		13.50	-2.53	D15	13.45-13.50			=
occasional shell fragments. (I	LAMBETH GROUP -								
JNDIFFERENTIATED). From 13.50mbgl shell fra	agments.		-						
· ·					s	14.50-14.88	7.00	50 (3,6/9,10,22,9 for 5mm)	
					B12 D16	14.50-16.00 14.50-14.95			
			-						
			-		S	16.00-16.45	16.00 (8.20)	N=32 (3,4/5,7,8,12)	=
From 16.00m to 19.00ml	ogl medium dense.	712150			B13 D17	16.00-17.50 16.00-16.45			=
									=
									=
		745	1						
					D18 U7	17.45-17.50 17.50		132 blows	3
					U1	17.50			=
									=
					B14	18.50-19.50			
					D19	18.50			=
			<u>l</u>						
									-
					S D20	19.50-19.95 19.50-19.95	17.50	N=50 (3,5/7,8,16,19)	_ _
2			19.95	-8.98					1=
Borehole Complete at 19.95	o m				\	Water Leve	l Observatio	ns	
Hole Diameter Detail Diameter Depth Casing	Chiseling Details From To Time	Date		Water	\	Standing	Standir		Depth
Diameter (mm) Depth (m) Casing Depth (m) 200 6.00 6.00	(m) (m) (hours)	18/03/11	+	Strike (ı 4.40	m) 1	ime (mins) 20	2.40	m) Depth (m)	Sealed (n
150 19.95 16.00		21/03/11		14.50	- 1	20	11.80	_	

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

18/03/2011-24/03/2011

Plant: Drilled By: Dando 2000

T. York Logged By: T. Kidd Checked By: D. Dunn Starter pit dug from GL to 1.20mbgl.
 Installation details: 50mm HDPE Standpipe installed from GL to 5.60mbgl.
Plain pipe from GL to 3.90mbgl and a slotted pipe from 3.90m to 19.95mbgl.
Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to
3.90mbgl, gravel from 3.90m to 5.60mbgl and bentonite from 5.60m to
19.95mbgl. Hole finished with a flush cover and gas tap.
 Bentonite seal added at 6.00mbgl at reduction from 200mm to 150mm
diameter casing. Bentonite allowed to set for fourty six hours.

0		-
MAY	HIRN	IFY

Borehole Record

BH119

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd Project ID: SI1688

Ground Level: 11.188mAOD Coordinates: 535727.16E

192461.74N

Sheet 1 of 1

Engineer: N/A

	9	J	, , ,					
Description	Legend	Depth		Samı	ole Test	SPT/CP	T Remarks and Test Results	
2 cconput.	Logona	(m)	Level (m)	Туре	Depth (m)	Casing Wat Depth Dep (m) (m	eri	Installations
MADE GROUND: TARMAC.		0.20	10.99					=
MADE GROUND: Grey-brown silty gravelly fine to coarse SAND. Gravel is angular to subangular fine and medium flint and concrete.		0.50	10.69 10.39	B1 ES1 B2 ES2	0.30-0.50 0.50-0.70 0.50-0.80 0.80-1.00			
MADE GROUND: Brown silty very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse brick and flint. approximately 15% brick cobbles.		}		B3 S D1 B4	0.80-1.20 1.20-1.65 1.20-1.65 1.20-1.40		N=36 (3,6/8,9,7,12)	
MADE GROUND: Medium dense dark grey silty fine to coarse SAND and angular to subrounded fine to coarse flint GRAVELFrom 1.40mbgl becoming grey.	/****	2.20	8.99	S D2 B5 ES3 B6	2.00-2.45 2.00-2.45 2.10-2.50 2.20-2.40 2.50-2.80	2.00	N=7 (3,2/2,2,1,2)	
MADE GROUND: Firm dark grey slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse flint and brick with locally rare fresh water shell debris.	* * * * * * * * * * * * * * * * * * *	2.60 2.80 3.00 3.20	8.59 8.39 8.19 7.99	ES4 S D3 B7	2.60-2.80 2.60-2.80 3.00-3.45 3.00-3.45 3.20-4.00	3.00 (2.8	0) N=4 (1,1/0,1,1,2)	
Firm mottled grey and yellow-grey CLAY. (ALLUVIUM).	**** × × × × × × × × × × × × × × × × ×	F						
Brown silty shell SAND (fresh water shell debris). (ALLUVIUM).	×××4/4	4.00	7.19	U1 D4	4.00 4.00-4.20		8 blows 100%	
Grey silty fine and medium SAND. (ALLUVIUM).	73.00	Ē						=
Firm dark brown peaty SILT with some light grey silt mottling and rare fresh water shell debris.	× × × × ×	4.50	6.69 6.39	ES5 B8	4.50-4.70 4.50 5.00-5.45	5.00 (4.0	0) N=21 (1,3/5,5,6,5)	3
Grey clayey slightly gravelly fine and medium SAND. Gravel is angular to subangular fine and medium flint. (ALLUVIUM).	X			D5 ES6 B9	5.00-5.45 5.00-5.20 5.00-5.45	3.00 (4.0	0) (4–21 (1,0/0,0,0,0)	
Firm brown organic rich SILT. (ALLUVIUM).	x: × .x	=		s	6.00-6.45	6.00 (5.8	0) N=9 (2,1/2,2,2,3)	
Grey slightly silty medium and coarse SAND and angular to rounded fine to coarse flint GRAVEL. (KEMPTON PARK GRAVEL).	*** :X	6.10	5.09	D6 B10 ES7	6.00-6.45 6.10-6.50 6.40-6.60		-, - (-,, -, -, -, -, -, -, -, -, -, -, -,	
Stiff brown-grey locally slightly sandy CLAY. (LONDON CLAY FORMATION).		7.00	4.19	U2	7.00		15 blows 100%	= =
Very stiff closely fissured slightly sandy and locally thinly laminated CLAY. (LONDON CLAY FORMATION).				D7	7.45-7.55			= = = = = = = = = = = = = = = = = = = =
Very stiff closely fissured slightly silty CLAY. (LONDON CLAY FORMATION).	X X X X X X X X X X X X X X X X X X X	8.00	3.19	S B11 D8	8.00-8.45 8.00-8.45 8.00-8.45	6.20 (7.9	0) N=18 (2,3/3,5,4,6)	-
	X X X X X X X X X X X X X X X X X X X	×		ES8 U3	8.80-9.00 9.00		17 blows 77%	=
	<u>x x x x x x x x x x x x x x x x x x x </u>	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×		D9	9.45-9.55			

Borehole Complete at 10.00 m

Chiseling Details Hole Diameter Detail Water Standing Standing Casing Depth Date Diameter Depth (m) Casing Depth (m) From (m) Time (hours) Strike (m) Time (mins) Level (m) Depth (m) Sealed (m) (mm) 2.80 10.00 2.80 6.20 23/03/11 22/03/11 2.00 4.70 20 20 4.00 6.20

Client:

Entec UK Ltd

Engineer:

Contractor:

May Gurney Professional Services

Dates:

22/03/2011-23/03/2011

Plant: Drilled By: Dando 2000 T. York

Logged By: J. Tomalin

Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 6.10mbgl. Plain pipe from GL to 4.80mbgl and a slotted pipe from 4.80m to 6.10mbgl.

Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to

4.80mbgl, gravel from 4.80m to 6.10mbgl and bentonite from 6.10m to

10.00mbgl. Hole finished with flush cover and gas tap.

Water Level Observations

Bentonite pellet seal added at 2.80mbgl at reduction of 200mm to 150mm diameter casing. Bentonite allowed to set for 2hrs.

Borehole Record

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd Project ID: SI1688

Ground Level: 11.060mAOD Coordinates: 535703.06E

BH120

192386.51N

Sheet 1 of 1

Engineer: N/A

5		Depth	O.D.	Samo	ole Test	SPT/0	CPT	Remarks		
Description	Legend	(m)	Level	Туре	Depth	Casing	Water	Test Re	sults	Installations
	1000	. ,	(m)		(m)	Depth (m)	Depth (m)	SPT/HV/PP (Red	covery) (ppm)	
MADE GROUND: Brown silty gravelly fine and medium SAND. Gravel is angular to subangular fine to coarse flint.		0.10	10.96	D1 B1 D2 ES1	0.05-0.10 0.10-0.65 0.10-0.30 0.40-0.60					
MADE GROUND: Grey-brown slightly clayey gravelly fine and medium SAND. Gravel is angular to subrounded fine to coarse flint, brick and concrete.		1.00	10.41	B2 D3 ES2 B3 ES3 D4	0.65-1.00 0.70-0.80 0.80-1.00 1.00-1.20 1.00-1.20 1.00-1.10			N=12 (3,4/4,4,2,	2)	
MADE GROUND: Yellow-brown slightly silty very gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint with approximately 10% brick rubble.		1.70	9.36 8.86	S B4 D5 B5 D6 ES4	1.20-1.65 1.20-1.70 1.20-1.65 1.70-2.00 1.70-1.80 1.80-2.00	1.70		N=5 (1,1/1,1,1,2)	
MADE GROUND: Medium dense dark grey silty very gravelly fine to coarse SAND. Gravel is angular to rounded fine to coarse flint.	× × × ×	1114		S B6 D7 ES5 B7	2.00-2.45 2.00-2.20 2.00-2.20 2.20-2.40 2.20-3.00					
MADE GROUND: Firm grey slightly sandy slightly gravelly (approximately 10%) CLAY. Gravel is angular to subrounded fine to coarse flint and occasional brick fragment.	× sile × × × × × × × × × × × × × × × × × × ×	3.20	8.06 7.86 7.46	D8 S B8 D9 ES6	2.20-2.30 3.00-3.45 3.00-4.00 3.00-3.45 3.40-3.80	2.50		N=4 (1,0/1,1,1,1)	
Firm dark grey and brown silty CLAY, organic rich with occasional angular to subangular fine and medium flint gravel with occasional plant debris.	(6.96	S W1 D10 B9	4.00-4.45 4.00 4.10-4.45 4.10-5.00	3.00		N=21 (1,3/6,5,6,	4)	
Brown very shelly (fresh water) peaty SILT.	×××	*		ES7	4.30-4.50					日袋里袋
Firm dark brown ammorphous silty PEAT.	×××	-			500545	5.00	(4.00)	N 45 (0.0/0.0.4	5 \	自然目的
Firm brown sandy SILT.	X X	F		S B10 D11	5.00-5.45 5.00-6.00 5.00-5.45	5.00	(4.20)	N=15 (2,3/3,3,4,	5)	日袋田袋
Medium dense grey silty fine to coarse SAND and angular to subrounded fine to coarse flint GRAVEL. (KEMPTON PARK GRAVEL).	x X X	5.50	5.56	DII	5.00-5.45					
Medium dense grey medium and coarse SAND and angular to rounded fine to coarse flint GRAVEL.		100		S B11 D12	6.00-6.45 6.00-7.00 6.00-6.45	6.00	(4.20)	N=12 (4,2/3,2,3,	4)	
Stiff brown-grey CLAY with occasional angular to subangular fine and medium flint gravel. (REWORKED LONDON CLAY FORMATION).		35	200	S B12 D13 B13 D14 ES8	7.00-7.45 7.00-7.40 7.00-7.45 7.40-8.00 7.50-7.60 7.60-7.80	7.00	(4.20)	N=11 (2,4/4,3,2,		
Stiff brown-grey slightly sandy CLAY.		8.00	3.06	U1	8.00			34 blows	100%	=
		E		D15	8.45-8.50					=
		£		ES9	8.80-9.00					
V				S D16	9.00-9.45 9.00-9.45	7.50		N=19 (2,3/4,4,5,	6)	- - -
Borehole Complete at 9.45 m		9.45	1.61							
		Ė								

Water	Ohea	rvation

Hole	Diamete	er Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
200 150	2.30 9.45	1.70 7.50				23/03/11	4.10	20	4.00	3.00	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor:

May Gurney Professional Services

Dates:

21/03/2011-23/03/2011

Plant:

Dando 2000

Drilled By:

J. Elliott

Logged By: J. Tomalin Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 7.10mbgl.
Plain pipe from GL to 3.80mbgl and a slotted pipe from 3.80m to 7.10mbgl.
Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 3.80mbgl, gravel from 3.80m to 7.10mbgl and bentonite from 7.10m to 9.45mbgl. Hole finished with a flush cover and gas tap.

Bentonite pellet seal added at 2.30mbgl at reduction from 200mm to 150mm diameter casing. Bentonite allowed to set for 2hrs.

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

BH121

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd

Ground Level: 11.342mAOD Coordinates: 535784.87E

192394.71N

Sheet 1 of 1

Engineer: N/A

	Engineer: N/A						192394.7 IN		
Description	Legend	Depth	O.D.	Samp	ole Test	SPT/C	CPT	Remarks and Test Results	
Description	Legena	(m)	Level (m)	Туре	Depth (m)	Casing 1 Depth I (m)	Water Depth (m)	PID SPT/HV/PP (Recovery) (ppn	Installations
MADE GROUND: Grass over slightly gravelly sandy SILT (topsoil). Gravel is angular to subrounded fine to medium flint.		0.30	11.04	B1 ES1 B2 ES2	0.00-0.30 0.10-0.30 0.30-0.90 0.40-0.60	()	<i>()</i>		
MADE GROUND: Brown gravelly SAND. Gravel is angular to subrounded fine to coarse brick, flint and concrete.		1.00	10.34	B3 S	1.00-1.20 1.20-1.65			N=7 (1,1/1,2,2,2)	=
MADE GROUND: Soft to firm grey CLAY with rare fine fragments of red and yellow brick.		*/ */ */		D1 ES3 B4	1.20-1.65 1.20-1.40 1.20-1.65				
		2.30	9.04	U1	2.00			15 blows	
Soft to firm CLAY with occasional black organic staining. (ALLUVIUM)		_ 2.00	0.01	D2 ES4 B5	2.45-2.55 2.50-2.70 2.55-3.00				
				S D3	3.00-3.38 3.00-3.45	3.00		N=4 (1/1,1,1,1)	
Soft dark brown SILT with occasional fine organic matter. (ALLUVIUM).	× × × × × × × × × × × × × × × × × × ×		7.94	B6 ES5	3.40-4.00 3.60-3.80				-
Medium dense grey very gravelly medium to coarse	X 3/2 x 4/8 X 3/2 x 4/8 X 3/2 x 4/8		7.04	S D4 B7	4.00-4.45 4.00-4.45 4.30-5.00	3.00		N=14 (1,0/2,3,4,5)	
SAND. Gravel is angular to subrounded fine to coarse flint with occasional flint cobbles. (KEMPTON PARK GRAVEL).				ES6	4.50-4.70	5.00	(4.00)	N=18 (3,4/4,4,4,6)	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		S D5 B8	5.00-5.45 5.00-5.45 5.00-5.45	5.00	(4.60)	N=10 (3,4/4,4,4,0)	
Soft to firm grey CLAY. (LONDON CLAY FORMATION).		6.20	5.14	S D6 B9 ES7	6.00-6.45 6.00-6.45 6.20-7.00 6.40-6.60	6.00	(4.80)	N=10 (1,1/1,2,3,4)	
				U2	7.00			24 blows	=======================================
3				D7	7.45-7.55				=
				S B10 D8	8.00-8.45 8.00-8.45 8.00-8.45	6.40		N=18 (2,3/4,4,5,5)	<u>-</u> - - -
				U3	9.00			32 blows	-
				D9	9.45-9.55				-
6.3									Ę

Borehole Complete at 10.00 m

Water Level Observations

Hole	Diamete	r Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
Diameter	Depth	Casing	From	To	Time	Date		"			· ·
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
200	2.50	2.50				15/03/11	4.30	20	4.10	4.00	
150	10.00	6.40									

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates: Plant:

15/03/2011-16/03/2011

Drilled By:

Dando 2000 T. York

Logged By: J. Tomalin

Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 6.20mbgl. Plain pipe from GL to 4.30mbgl and a slotted pipe from 4.30m to 6.20mbgl. Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to 4.30mbgl, gravel from 4.30m to 6.20mbgl and bentonite from 6.20m to 10.00mbgl. Hole finished with a flush cover, gas tap and top cap.

Bentonite pellet seal added at 2.50mbgl at reduction from 200mm to 150mm diameter casing. Bentonite seal allowed to set for 2hrs.

Borehole Record

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd Project ID: SI1688

Ground Level: 12.637mAOD Coordinates: 535750.19E

BH122

192370.34N

Sheet 1 of 2

Engineer: N/A

	J -	-									
Description	Legend	Depth	O.D.	Samp	ole Test	SPT/0	CPT		rks and		
Description	Legend	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	l est i SPT/HV/PP	Results (Recovery)	PID	Installations
MADE GROUND: Brown silty gravelly fine and medium SAND. Gravel is angular to subrounded fine to coarse flint, brick and concrete.		0.60	12.04	B1 ES1 B2	0.10-0.60 0.10-0.30 0.60-1.20						
MADE GROUND: Firm brown-grey sandy slightly gravelly (approximately 10%) CLAY. Gravel is angular to subangular flint, brick and concrete.		5.50	12.04	ES2 S	0.60-0.80			N=3 (1,0/1,0	.1.1)		= = = = = = = = = = = = = = = = = = = =
From 1.30mbgl soft with approximately 10% brick rubble.		1.80	10.84	D1 B3 ES3 ES4	1.20-1.65 1.20-2.00 1.30-1.50 1.80-2.00			(),	,		
stiff mottled brown and brown-grey slightly sandy slightly gravelly (approximately 6%) CLAY. Gravel is angular fine to coarse flint.			10.04	S D2 B4	2.00-2.45 2.00-2.45 2.00-3.00			N=6 (1,1/1,1	,2,2)		
MADE GROUND: Stiff brown-grey CLAY (Anticipated to be fill derived from LONDON CLAY FORMATION).		2.90	9.74	U1 B5	3.00 3.00-3.40			10 blows	100%		= = = = = = = = = = = = = = = = = = = =
MADE GROUND: Firm to stiff grey sandy slightly gravelly (approximately 10%) CLAY. Gravelis		3.45	9.19	B6 D3 ES5	3.40-3.80 3.45-3.50 3.50-3.70						-
angular to subrounded fine to coarse flint with fragments of concrete and brick. From 4.40m to 4.60mbgl pockets of gravelly		<u>}</u>		S D4 B7 ES6	4.00-4.45 4.00-4.45 4.00-4.60 4.40-4.60	4.00		N=29 (1,1/1,	3,23,2)		
sand.	××××	4.60	8.04	B8	4.60-5.00						=
Dark brown slightly sandy SILT with some fine fresh water shell debris. (ALLUVIUM).	* * * * * *	5.20	7.44	D5 B9 W1	5.00-5.45 5.20-6.00 5.30						
Medium dense grey slightly silty very gravelly medium and coarse SAND. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK	*	E		ES7	5.50-5.70						
GRAVEL).				S B10 D6	6.00-6.45 6.00-7.00 6.00-6.45	6.00		N=16 (3,4/4,	4,4,4)		
	× × × × × × × × × × × × × × × × × × ×	7		S B11 D7	7.00-7.45 7.00-8.00 7.00-7.45	7.00	(5.70)	N=11 (1,2/3,	2,3,3)		
From 8.00mbgl becoming loose sand and gravel.				S D8	8.00-8.45 8.00-8.45	8.00	(5.70)	N=9 (1,2/2,2	,3,2)		
Stiff brown-grey slightly sandy CLAY with occasional angular to subrounded fine and medium		8.60	4.04	B12 D9 ES8	8.60-9.20 8.60-8.70 8.80-9.00						
flint gravel. (REWORKED LONDON CLAY FORMATION).				U2	9.20			40 blows	100%		=
				D10 S D11	9.65-9.80 9.80-10.25 9.80-10.25	9.20		N=19 (2,3/4,	4,5,6)		

Water Level Observations

Hole	Diamete	er Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200	5.00 10.25	5.00 9.20	, ,	` ,		24/03/11	5.40	20	5.30	5.40	8.60

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

23/03/2011-24/03/2011

Plant:

Dando 2000

Drilled By:

J. Elliott

Logged By: J. Tomalin

Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 8.60mbgl. Plain pipe from GL to 5.00mbgl and a slotted pipe from 5.00m to 8.60mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 5.00mbgl, gravel from 5.00m to 8.60mbgl and bentonite from 8.60m to 10.25mbgl. Hole finished with a flush cover and gas tap.

Initial bentonite seal added at 3.80m. Made Ground found below seal.
 Borehole redrilled in 250mm diameter.

4. Bentonite pellet seal added at 5.00mbgl at reduction of 200mm to 250mm diameter casing. Bentonite allowed to set for 2hrs.

Borehole Record

BH122

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd

Ground Level: 12.637mAOD Coordinates: 535750.19E

192370.34N

Sheet 2 of 2

Engineer: N/A

		1	İ	1		1
Description	Legend Depth	O.D.	Sample Test	SPT/CPT	Remarks and	
Description	Legena (m)	Level	Type Depth	Casing Water	Test Results	Installations

occasional angular to subrounded fine and medium flint gravel. (REWORKED LONDON CLAY FORMATION).

(m) (m) Depth Depth (m) SPT/HV/PP (Recovery) (ppm) Stiff brown-grey slightly sandy CLAY with 10.25 2.39 Borehole Complete at 10.25 m

Water Level Observations

Hole	Diamete	r Detail	Ch	iseling D	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200	5.00 10.25	5.00 9.20				24/03/11	5.40	20	5.30	5.40	8.60

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

23/03/2011-24/03/2011

Plant: Drilled By: Dando 2000 J. Elliott

Logged By: J. Tomalin

Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 8.60mbgl. Plain pipe from GL to 5.00mbgl and a slotted pipe from 5.00m to 8.60mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 5.00mbgl, gravel from 5.00m to 8.60mbgl and bentonite from 8.60m to 10.25mbgl. Hole finished with a flush cover and gas tap.

Initial bentonite seal added at 3.80m. Made Ground found below seal. Borehole redrilled in 250mm diameter.

4. Bentonite pellet seal added at 5.00mbgl at reduction of 200mm to 250mm diameter casing. Bentonite allowed to set for 2hrs.

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

BH123

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd

Ground Level: 10.955mAOD Coordinates: 535717.97E

192303.66N

Sheet 1 of 2

Engineer: N/A

Description L	_egend	Depth (m)	O.D. Level	Samp Type	ole Test Depth	SPT/CPT Casing Water	Remarks and Test Results	Installations
MADE GROUND: Dark grey slightly silty gravelly SAND of angular to subangular fine to medium flint, glass, brick, metal fragments and ceramics.		0.30	(m) 10.66	B1 ES1 B2 ES2	(m) 0.00-0.30 0.00-0.30 0.30-0.80 0.30-0.80	Casing Water Depth Depth (m) (m)	SPT/HV/PP (Recovery) (pp	m)
(weed magnionio:		1.20	9.76	S D1 B3 ES3	1.20-1.65 1.20-1.65 1.20-1.65 1.20-1.60		N=3 (1,1/1,1,1,0)	-
Very soft (spongy) black pseudo fibrous (peaty) SILT with organic odour. (ALLUVIUM).	**** ****		9.64	B4 ES4 S D2	1.65-2.00 1.70-2.00 2.00-2.45 2.00-2.45		N=3 (1,0/1,0,1,1)	-
Soft to very soft grey-green mottled dark brown slightly gravelly clayey SILT. Gravel is subrounded to rounded medium to coarse flint. (ALLUVIUM).	***** *******************************	2.35	8.61 8.16	B5 S	2.80-3.00 3.00-3.45	3.00	N=8 (1,0/1,0,3,4)	-
Dark brown soft PEAT with occasional organic matter. (ALLUVIUM).	ه مالاه مالاه مالاه مالاه مالاه مالا مالا	3.40	7.56	D3 B6	3.00-3.45 3.40-4.00	3.00	IN-0 (1,0/1,0,3,4)	= = = = = = = = = = = = = = = = = = = =
Loose dark brown clayey fine to coarse SAND. (ALLUVIUM).		- - - - - 4.20	6.76	S D4	4.00-4.45 4.00-4.45	4.00	N=16 (3,4/4,4,4)	
Medium dense grey-brown silty SAND and GRAVEL. Gravel is angular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL).		- 4.20 - - - -	0.70	В7	4.20-5.00			
From 5.00mbgl becoming silty very sandy GRAVEL				S D5 B8	5.00-5.45 5.00-5.45 5.00-5.45	5.00 (4.30)	N=9 (1,2/2,2,2,3)	
				S D6 B9	6.00-6.45 6.00-6.45 6.00-6.45	6.00 (4.50)	N=10 (1,1/2,2,3,3)	
Firm to stiff grey CLAY. (LONDON CLAY FORMATION).		7.30	3.66	S B10 D7	7.20-7.65 7.20-8.00 7.20-7.45	7.20 (7.00)	N=13 (3,2/3,3,3,4)	
		-		U1	8.50		31 blows	=
From 8.50mbgl high strength				D8	8.95-9.05			-
								=

Water Level Observations

Hole	Diamete	r Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
200 150	7.50 20.00	7.50 16.50				21/03/11	10.60	20	9.80	-	13.00

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

21/03/2011-24/03/2011

Plant:

Dando 2000

Drilled By:

T. York

Logged By: T. Kidd Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Water level standing at 4.10mbgl on completion.
3. Installation details: 50mm HDPE Standpipe installed from GL to 7.30mbgl.
Plain pipe from GL to 4.20mbgl and a slotted pipe from 4.20m to 7.30mbgl.
Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to

4.20mbgl, gravel from 4.20m to 7.30mbgl and bentonite from 7.30m to 20.00mbgl. Hole finished with a flush cover and gas tap.

4. Bentonite / cement seal added at 8.00mbgl during reduction from 200mm to 150mm diameter casing. Bentonite allowed to set for fourty eight hours.

Borehole Record

BH123

Project: London Waste Ecopark, Edmonton

Project ID: SI1688

Client: Entec UK Ltd

Engineer: N/A

Ground Level: 10.955mAOD

Coordinates: 535717.97E

192303.66N

Sheet 2 of 2

Depth O.D. Sample Test SPT/CPT Remarks and

Description	Legend	Depth	O.D.	Sam	ole Lest	01 17	· .	Took Describe		
·	Legend	(m)	Level (m)	71	Depth (m)	Casing Depth (m)	Water Depth (m)	Test Results SPT/HV/PP (Recovery)	PID	Installations
Firm to stiff grey CLAY. (LONDON CLAY FORMATION).	===			S B11 D9	10.00-10.45 10.00-10.45 10.00-10.45	8.50		N=22 (3,3/4,6,6,6)		
Stiff green sandy SILT. (LAMBETH GROUP).	××××	10.60	0.36	D10	10.60					
Grey very silty fine to medium SAND. LAMBETH GROUP).	x × x	11.00	-0.05	D11	11.00-11.20					
	x			S B12 D12 ES5	11.50-11.50 11.50-12.00 11.50-11.82 11.50-12.00	11.50	(7.50)	()		
Stiff green-grey sandy CLAY with occasional black flint angular to rounded gravels. (LAMBETH GROUP).		12.10	-1.15 -1.45	D13 D14	12.10-12.20 12.40-12.60					=
Stiff green-grey slightly sandy silty CLAY. (LAMBETH GROUP).	XX	E								
, , , , , , , , , , , , , , , , , , ,	xx-x			S B13 D15	13.00-13.45 13.00-13.45 13.00-13.45	13.00	(7.50)	N=32 (5,5/6,8,8,10)		
	×x									= -
	××	<u> </u>		U2	14.50			83 blows		
Stiff grey mottled orange and brown very sandy	××××>	14.80	-3.85	D16	14.95-15.05					=
SILT. (LAMBETH GROUP). Very dense light grey clayey silty fine to medium SAND with rare fine and medium gravel (LAMBETH	× × ×	15.20	-4.25	B14	15.20-16.00					= =
SAND with rare fine and medium gravel (LAMBETH GROUP).	X X X X X X X X X X X X X X X X X X X			S B15 D17	16.00-16.38 16.00-17.00 16.00-16.38 16.00-17.00	16.00		50 (6,9/12,18,20)		1
	* * * * * * * * * * * *			ES6	16.00-17.00					-
	*			S B16 D18	17.50-17.50 17.50-18.00 17.50-17.80	16.50	(5.50)	0		-
				S B17 D19	19.00-19.00 19.00-20.00 19.00-19.30	16.50	(6.00)	0		-

Borehole Complete at 20.00 m

Water Level Observations

Hole	Diamete	r Detail	Ch	iseling [Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
200 150	7.50 20.00	7.50 16.50				21/03/11	10.60	20	9.80	-	13.00

Client:

Entec UK Ltd

Engineer: N/A

Contractor: May Gurney Professional Services

Dates:

21/03/2011-24/03/2011

Plant: Drilled By: Logged By: T. Kidd

Dando 2000 T. York

Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Water level standing at 4.10mbgl on completion.
3. Installation details: 50mm HDPE Standpipe installed from GL to 7.30mbgl.
Plain pipe from GL to 4.20mbgl and a slotted pipe from 4.20m to 7.30mbgl.
Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to 4.20mbgl, gravel from 4.20m to 7.30mbgl and bentonite from 7.30m to 20.00mbgl. Hole finished with a flush cover and gas tap.

4. Bentonite / cement seal added at 8.00mbgl during reduction from 200mm to 150mm diameter casing. Bentonite allowed to set for fourty eight hours.

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk

Borehole Record

Project: London Waste Ecopark, Edmonton

Client: Entec UK Ltd

BH124

Ground Level: 11.021mAOD Coordinates: 535768.62E

192331.88N

Sheet 1 of 2

Engineer: N/A SPT/CPT Remarks and Sample Test O.D Depth Description Legend **Test Results** Casing Water Depth Depth (m) (m) Level Installations (m) Depth Type SPT/HV/PP (Recovery) (ppm (m) (m) 0.00-0.10 MADE GROUND: Light brown gravelly sandy SILT ES1 B2 ES2 0.00-0.10 0.00-0.20 0.20-0.60 0.40-0.60 10.82 0.20 (topsoil). Gravel is angular to subrounded fine to medium brick and flint. MADE GROUND: Light brown slightly silty gravelly ВЗ 0.90-1.20 SAND. Gravel is angular to subrounded fine to coarse brick, ash and flint. 1.20-1.65 1.20-1.65 1 20 9.82 N=10 (1,1/2,2,3,3) ..At 0.80mbgl many cobbles of brick and ES3 B4 concrete. 1.20-1.40 1.20-1.65 Soft grey CLAY. (ALLUVIUM) 2 00-2 45 2 00 N=3 (1,0/1,0,1,1) D2 B5 2.00-2.45 2.00-2.45 В6 2.80-3.30 2.80 8.22 silve silve Soft dark brown fibrous PEAT. (ALLUVIUM) 3.00 3.00-3.20 31 blows Alla Alla 3.30 ES5 B7 7.72 3.30-3.50 Loose grey gravelly medium to coarse SAND. Gravel 3.30-4.00 is angular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL). 4.00-4.45 N=5 (1,2/1,2,1,1) 4.00 D3 B8 4.00-4.45 4.00-4.45 5.00-5.45 5.00-5.45 (4.00) N=8 (1,1/2,2,2,2) 5.00 S D4 B9 5.00-5.45 (4.50) N=10 (1.1/2.2.3.3) 6.00-6.45 6.00-6.45 6.00 S D5 ...from 6.00m becoming medium dense. 6.40 4.62 B10 6.40-6.80 Soft to firm grey CLAY with occasional flint gravel. (KEMPTON PARK GRAVEL). 6.80 4.22 B11 6.80-7.30 Grey very gravelly fine to coarse SAND. Gravel is S D6 7.00-7.45 7.00-7.45 7.00 (4.50) N=9 (1,1/1,2,2,4) angular to subrounded fine to coarse flint. 7.30 3.72 (KEMPTON PARK GRAVEL) Firm to stiff grey CLAY. (LONDON CLAY FORMATION). 112 8.50 41 blows 8.80 2.22 Dark grey-green sandy SILT. Sand is fine. (LONDON CLAY FORMATION) D7 8.95-9.05 Water Level Observations

vvalei	Level	Obser	valions

Hole	Diamete	er Detail	Ch	iseling [etails		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
150	11.00	9.00				14/03/11 16/03/11	4.00 10.50	20 20	3.90 9.50	4.00 9.00	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates: 14/03/2011-24/03/2011

Plant:

Dando 2000

Drilled By:

T. York

Logged By: J. Tomalin

Checked By: D. Dunn

Remarks: 1.

Starter pit dug from GL to 1.20mbgl. Installation details: 50mm HDPE Standpipe installed from GL to 7.30mbgl. Plain pipe from GL to 3.30mbgl and a slotted pipe from 3.30m to 7.30mbgl. Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to 3.30mbgl and gravel from 3.30m to 7.30mbgl. Hole finished with a flush cover and gas tap.

Bentonite pellet seal added at 1.60mbgl at reduction from 250mm to 200mm diameter borehole. Bentonite allowed to set for 2hrs.

4. Two meter bentonite/cement grout seal added at 8.00mbgl at reduction from 200mm to 150mm diameter casing. Bentonite allowed to set for 36hrs.

Borehole Record

BH124

Project: London Waste Ecopark, Edmonton

Project ID: SI1688

Client: Entec UK Ltd

Ground Level: 11.021mAOD Coordinates: 535768.62E

192331.88N

Sheet 2 of 2

Engineer: N/A

	_										
Description	Legend	Depth (m)	LCVCI	Samp Type	Depth	SPT/ Casing Depth	Water	Test	Results	PID	Installations
Dark grey-green sandy SILT. Sand is fine. (LONDON CLAY FORMATION) Dark green silty fine SAND with some shell fragments. (LAMBETH GROUP - UPPER SHELLY BEDS) Grey-green fine SAND. (LAMBETH GROUP - POSSIBLE UPPER MOTTLED BED CHANNELS). Borehole Complete at 11.00 m	****	, (,,,,	0.62 0.42 0.02	S B12 ES6 D8 ES7 D9	Depth (m) 10.00-10.45 10.00-10.40 10.00-10.25 10.40-10.60 10.40-10.60	Depth (m)	Water Depth (m)		(Recovery)	PID	
											11111

Vater	l evel	Observations	

Hole	Diamete	er Detail	Ch	iseling [etails		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
150	11.00	9.00				14/03/11 16/03/11	4.00 10.50	20 20	3.90 9.50	4.00 9.00	

Client:

Entec UK Ltd

Engineer:

N/A

Contractor: May Gurney Professional Services

Dates:

14/03/2011-24/03/2011

Plant:

Dando 2000

Drilled By:

T. York

Logged By: J. Tomalin

Checked By: D. Dunn

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. Installation details: 50mm HDPE Standpipe installed from GL to 7.30mbgl. Plain pipe from GL to 3.30mbgl and a slotted pipe from 3.30m to 7.30mbgl. Hole backfilled with concrete from GL to 0.50mbgl, bentonite from 0.50m to 3.30mbgl and gravel from 3.30m to 7.30mbgl. Hole finished with a flush cover and gas tap.

Bentonite pellet seal added at 1.60mbgl at reduction from 250mm to 200mm diameter borehole. Bentonite allowed to set for 2hrs.

4. Two meter bentonite/cement grout seal added at 8.00mbgl at reduction from 200mm to 150mm diameter casing. Bentonite allowed to set for 36hrs.

Sheet 1 of May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH Tel: 01953 609869 Fax: 01953 609819 **Borehole Record** WS101 Project: London Waste Ecopark, Edmonton **MAY GURNEY** Web: www.maygurney.co.uk Ground Level: 12.227mAOD Client: Entec UK Ltd Project ID: SI1688 Coordinates: 535682.84E 192927.00N Engineer: N/A SPT/CPT Remarks and Sample Test O.D Depth Description Legend **Test Results** Casing Water Depth Depth (m) (m) Level Installations (m) Type Depth PID SPT/HV/PP (Recovery) (ppm) (m) (m) MADE GROUND: Tarmac 0.25 11.98 ES1 0.30-0.50 MADE GROUND: Red-grey silty fine to coarse SAND and 0.45 11.78 В1 0.50-0.90 angular fine and medium granite GRAVEL. (Type 1). MADE GROUND: Yellow-brown slightly silty fine to 0.90 11.33 B2 ES2 0.90-1.20 1.00-1.20 coarse SAND and subangular to rounded fine to 11.03 1.20 B3 1.20-2.00 coarse flint gravel. MADE GROUND: Stiff grey CLAY with a little amgular to subrounded fine to coarse flint and concrete ES3 1.80-1.90 2.00-3.00 B4 MADE GROUND: Very Stiff CLAY. 2.50 9.73 ES4 2.60-2.70 MADE GROUND: Orange-brown very gravelly SAND. Gravel is angular fine to coarse flint. 3 00-4 00 3.00 9.23 B5 MADE GROUND: Stiff and very stiff black and brown slightly sandy slightly gravelly CLAY with brick cobbles. Gravel is angular to subangular fine to 3.60-3.70 ES5 coarse brick, clinker and flint. 3.70 8.53 3.85 8.38 MADE GROUND: Soft white and grey (chalky) SILT with 4.10 rare shelly fragments. 8.13 Light grey silty gravelly SAND. Gravel is 4.45 7.78 subrounded to rounded fine and medium chert and many shelly fragments with decayed organic matter below 4.00mbgl. (ALLUVIUM). 5.00 7.23 Very soft grey SILT with decayed organic matter. Grey sandy angular to rounded fine to coarse flint GRÁVEL. (KEMPTON PARK GRAVEL). Borehole Complete at 5.00 m Water Level Observations Hole Diameter Detail Chiseling Details Water Standing Standing Casing Depth Date Diameter Depth (m) Casing Depth (m) From To Time Strike (m) Time (mins) Level (m) Depth (m) Sealed (m) (mm) 3.00 4.00 3.00 4.00 102 15/03/11 3.80 20 3.20 5.00 Client: Entec UK Ltd Remarks: 1. Hand pit dug from GL to 1.20mbgl. Groundwater standing at 3.20mbgl on completion.
 Installation Details: 40mm Standpipe installed from GL to 3.70mbgl. N/A Engineer: Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 3.70mbgl. May Gurney Professional Services Contractor: Hole backfilled with concrete form GL to 0.20mbgl, bentonite from 0.20m to

Dates:

15/03/2011

Plant: Drilled By: Terrier

M. Lane Logged By: J. T / T. K Checked By: D.Dunn

0.50mbgl, gravel from 0.50m to 3.70mbgl and bentonite from 3.70m to 4.00mbgl.

4. Hole collpsed 4.00m to 5.00mbgl.

5. Hole cased at 3.00mbgl utilising 128mm diameter casing.

6. Standing groundwater level only recorded after 20 minutes.

May Gurney Limitt Geotechnical - Site Aylon Road, Wym	Windo	ow Sa	mple R	ecord			WS101 Sheet 1 of 1		
MAYGURNEY Tel: 01953 609856 Web: www.maygu	5 Fax: 01953 609819 rney.co.uk	Project:	London	Waste Ed	copark, Ed	dmonton			
Project ID: SI1688		Client:	Entec U	IK Ltd				nd Level: 12. dinates: 53	
Contractors ID:		Engineer:	N/A				0001		2927.00N
Description		Legend	Depth	O.D. Level	Sample			Remarks and	Installations
MADE GROUND: Tarmac	- 15	XXXXX	(m)	(m)	Туре	Depth (m)	Те	st Results (pp	
MADE GROUND: Red-grey silty fine to	coarse SAND	>>>>>	0.25	11.98	ES1	0.30-0.50			
and angular fine and medium granite G (Type 1).			0.45	11.78	B1	0.50-0.90			
MADE GROUND: Yellow-brown slightly coarse SAND and subangular to round coarse flint gravel.			- - 0.90	11.33	B2 ES2	0.90-1.20 1.00-1.20			
MADE GROUND: Stiff grey CLAY with a amgular to subrounded fine to coarse fl concrete gravel.			- - 1.20 -	11.03	В3	1.20-2.00			
MADE GROUND: Very Stiff CLAY.			- - -		ES3	1.80-1.90			
					B4	2.00-3.00			
MADE GROUND: Orange-brown very gravel is angular fine to coarse flint.	gravelly SAND.		- - 2.50 -	9.73	ES4	2.60-2.70			
MADE GROUND: Stiff and very stiff bla brown slightly sandy slightly gravelly Cl brick cobbles. Gravel is angular to suba	_AY with		3.00	9.23	B5	3.00-4.00			_
fine to coarse brick, clinker and flint. MADE GROUND: Soft white and grey (chalky) SILT		3.70	8.53	ES5	3.60-3.70			
with rare shelly fragments. Light grey silty gravelly SAND. Gravel is	/	××××××××××××××××××××××××××××××××××××××	3.85	8.38 8.13					
subrounded to rounded fine and mediumany shelly fragments with decayed on matter below 4.00mbgl. (ALLUVIUM).	m chert and	××××× ×××××	4.10	7.78					-
Very soft grey SILT with decayed organ (ALLUVIUM).	ic matter.								=
Grey sandy angular to rounded fine to of flint GRAVEL. (KEMPTON PARK GRAV Window Sample Complete at 5.00 m			5.00	7.23					-
			- - - - -						- - - - - - - -
			- - -						
Drive Records				\A/=4		el Observat		0	B
Diameter (mm) To (m)	Recovery (%)	Date		Water rike (m)	Standing Time (Mins		l (m)	Casing Depth (m)	Depth Sealed (m)
102 86 76 3.00 4.00 5.00		15/03/11		3.80	20	3.20	J	-	
Client: Entec UK Ltd Engineer: N / A Date: 15/03/2011		2. Groundw 3. Installation from GL	rater standing on Details: 40 . to 0.50mbgl	g at 3.20mbgl Omm Standpip and a slotted	on completi pe installed i d pipe from 0	from GL).50m to	to 3.70mbgl. Pla 3.70mbgl. Hole b o 0.50mbgl, grav	ackfilled with	
Plant: Terrier Drilled By: M. Lane		to 3.70n 4. Hole coll 5. Hole cas	nbgl and beni psed 4.00m t ed at 3.00mb	tonite from 3.	70m to 4.00 28mm diame	mbgl. eter casi	ng.	o. 110111 0.00111	
	1			,					

		e Investigation ondham, NR18 0RH	Wind	ow Sa	mple R	ecord		WS102 Sheet 1 of 1				
MAY GURNEY	Tel: 01953 60985 Web: www.maygu	6 Fax: 01953 609819 irney.co.uk	Project:	London	Waste Ed	opark, E	dmonton					
Project ID: SI1688			Client:	Entec U	JK Ltd						45mAOD	
Contractors ID:			Engineer	: N/A		,		Coord	inates:		00.48E 54.37N	
De	escription		Legend	Depth (m)	O.D. Level (m)	Samp Type	le Test Depth (m)		emarks and t Results	PID (ppm)	Installation	
CONCRETE.			9 9 5	- (111)	(111)	1,7,7,0		103	r results	(ppm)	25 6	
MADE GROUND: Dark to coarse ashy SAND. subangular fine and me	Gravel is angula	ir to		0.20	12.35 12.15	B1 ES1 B2	0.20-0.40 0.20-0.40 0.40-0.90				F(1-)	
MADE GROUND: Mixe coarse SAND and firm slightly gravelly (approx Gravel is angular to sul brick, flint and concrete	to stiff brown-groximately 10%) C bangular fine to	ey ELAY.		0.90	11.65	ES2 B3	0.70-0.90 0.90-1.20					
MADE GROUND: Firm gravelly (approximately angular to subangular flint with rare cobble, sa fragmentsBelow 1.30mbg	to stiff brown-gr / 5%) CLAY. Gra fine to coarse br and, brick and co	avel is ick and		\ \ \ \ \ \		C1 ES3	1.20-2.00					
Between 1.55m black pseudo fibro	and 1.56mbgl F ous peat.	/		2.10	10.45	C2	2.00-3.00					
MADE GROUND: Brow with rare cobble sized to is angular to subangular and flint.	brick fragments.	Gravel		2.40	10.15							
MADE GROUND: Very slightly sandy slightly gangular fine to medium	ravelly CLAY. Ġ	ravel is		3.00	9.55	C3 ES5	2.80-2.90 3.00-4.00 3.20-3.30					
organic matter. MADE GROUND: Stiff (very organic) slightly g angular fine and mediu	ravelly CLAY. C	Gravel is	××××	3.40	9.15							
Firm to stiff grey CLAY.				-								
Window Sample Com	plete at 4.00 m											
						Water Lev	vel Observat	ions				
	ve Records	D(0/)	Date		Water	Standing			Casing		Depth	
Diameter (mm) 102 86	To (m) 3.00 4.00	Recovery (%)	15/03/11	5	trike (m) 2.60	Time (Mir 20	ns) Level	` ,	Depth (n	11)	Sealed (m)	
Client: Entec UK Ltd Engineer: N / A Date: 15/03/2011-16/03/2011 Plant: Terrier			Remarks: 1.Hand pit dug from GL to 1.20mbgl. 2.Groundwater standing at 3.90mbgl on completion. 3. Installation Details: 40mm Standpipe installed from GL to 3.40mbgl. Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 3.40mbgl. Hole backfilled with concrete form GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 3.40mbgl and bentonite from 3.40m to 4.00mbgl. 4. Hole cased at 2.00mbgl utilising 128mm diameter casing. 5. Standing groundwater only recorded after 20 minutes.									
Drilled By: M. Lane Logged By: J. T / T. K				o. Otanuni	giodilawatel	only record	iou unoi 2011	muics.				

Checked By: D.Dunn

	May Gurney Limit Geotechnical - Si Ayton Road, Wyn	te Investigation nondham, NR18 0RH	Windo	ow Sa	mple R	ecord		Window Sample Record WS103 Sheet 1 of 1									
MAY GURN	Tel: 01953 60985 Web: www.maygu	66 Fax: 01953 609819 urney.co.uk	Project:	London	Waste Ed	copark, E	dmonton										
Project ID: SI1			Client:	Entec U	IK Ltd				nd Level: 11.	293mAOD 5625.24E							
Contractors ID):		Engineer	N/A					192	2765.76N							
	Description		Legend	Depth	O.D. Level	Sampl			Remarks and	Installations							
MADE OBOUND			~~~~	(m)	(m)	Туре	Depth (m)	Te	st Results (pp	m)							
to coarse SAND a	b: Red-grey silty very on and angular to subrout and concrete GRAVE	inded fine to		- 0.30	10.99	ES1 ES2	0.10-0.30										
): Yellow brown slightloarse SAND. Gravel is ne to coarse flint.			- - 0.60 -	10.69												
a little angular fin): Firm to stiff brown-g	rey CLAY with		55 4 16		ES3	0.80-1.00 1.10-2.00										
gravel. (ALLUVIU From 1.00	ver. (ALLOVIOM)From 1.00mbgl Black and very organic.			5		ES4	1 40 4 50										
			E .		E34	1.40-1.50											
Firm arev-brown	silty CLAY. (ALLUVIU	IM).	*****	1.80	9.49					3							
9.2, 2.2	,				C2	2.00-3.00											
Very soft to soft o	grey mottled brown cla	ivev	×××××	2.30	8.99												
SILT. (ALLUVIUN			$\begin{array}{c} \overline{\times} \times $							_							
			$\times \times $														
Window Sample	Complete at 3.00 m			- 3.00 -	8.29					-							
				_													
				_													
				-						_							
				_													
				_													
				-													
				- - -													
				- - - -													
				-						- - - - - - - - -							
				-													
				- - - - - - - -						-							
				- - - - - - - - - - - - - - - - - - -													
				- - - - - - - - - - - - - - - - - - -													
				- - - - - - - - - - - - - - - - - - -													
						Water Lev	el Observat	ions									
	Drive Records		Date	l l	Water	Standing	Stan	ding	Casing	Depth							
Diameter (mm)	To (m)	Recovery (%)	Date	l l	rike (m)	Standing Time (Min	Standa) Level	ding	Casing Depth (m)	Depth Sealed (m)							
Diameter (mm) 102 86	1	Recovery (%)	- Date	l l	rike (m)	Standing	Standa) Level	ding									
. ,	To (m)	Recovery (%)		St	rike (m) No Groundv	Standing Time (Min	Stand S) Level tered	ding									
102 86	To (m) 2.00 3.00	Recovery (%)	Remarks:	St 1. Hand pii 2. Installatio	rike (m) No Groundv t dug from Gion Details: 40	Standing Time (Min- vater Encoun	Stand Level tered	ding (m)	Depth (m)	Sealed (m)							
102 86 Client:	To (m) 2.00 3.00 Entec UK Ltd	Recovery (%)	Remarks:	1. Hand pii 2. Installatio from GL	rike (m) No Groundv t dug from G n Details: 40 t to 0.50mbgl e form GL to	Standing Time (Minitater Encoundater En	Stand Level tered I. be installed to pipe from 0 nonite from	ding (m) from GL 1.50m to 0.20m t	Depth (m)	Sealed (m) in pipe packfilled with							
102 86 Client: Engineer:	To (m) 2.00 3.00 Entec UK Ltd N / A	Recovery (%)	Remarks:	1. Hand pi 2. Installation from GL concrete to 1.80n	t dug from Gon Details: 40 to 0.50mbgl e form GL to 0.50mbgl e form dben beginner be	Standing Time (Min- ater Encoun	Stand Level tered I. pe installed to pipe from Controlite from 80m to 3.00	from GL 50m to 0.20m to	Depth (m) to 1.80mbgl. Pla 1.80mbgl. Hole lo 0.50mbgl, grav	Sealed (m) in pipe packfilled with							
Client: Engineer: Date:	To (m) 2.00 3.00 Entec UK Ltd N / A 18/03/2011	Recovery (%)	Remarks:	1. Hand pi 2. Installation from GL concrete to 1.80n	t dug from Gon Details: 40 to 0.50mbgl e form GL to 0.50mbgl e form dben beginner be	Standing Time (Minitater Encoundater En	Stand Level tered I. pe installed to pipe from Controlite from 80m to 3.00	from GL 50m to 0.20m to	Depth (m) to 1.80mbgl. Pla 1.80mbgl. Hole lo 0.50mbgl, grav	Sealed (m) in pipe packfilled with							
Client: Engineer: Date: Plant:	To (m) 2.00 3.00 Entec UK Ltd N / A 18/03/2011 Terrier	Recovery (%)	Remarks:	1. Hand pi 2. Installation from GL concrete to 1.80n	t dug from Gon Details: 40 to 0.50mbgl e form GL to 0.50mbgl e form dben beginner be	Standing Time (Minitater Encoundater En	Stand Level tered I. pe installed to pipe from Controlite from 80m to 3.00	from GL 50m to 0.20m to	Depth (m) to 1.80mbgl. Pla 1.80mbgl. Hole lo 0.50mbgl, grav	Sealed (m) in pipe packfilled with							

May Gurne Geotechni Ayton Roa	Window Sample Record WS104 Sheet 1 of 1									
Tel: 01953	609856 Fax: 01953 609819 maygurney.co.uk	Project:	Londor	n Waste Ed	copark, Ed	Imonton				
Project ID: SI1688 Contractors ID:		Client:	Entec	UK Ltd						20mAOD 33.51E
Contractors ID.		Engineer	: N / A		1				1928	344.13N
Description		Legend	Depth (m)	O.D. Level (m)	Sample Type	Depth (m)	a	narks and Results	PID (ppm)	Installations
CONCRETE (Reinforced)			- ` ′		7.	,			(ppiii)	- 25 60
MADE GROUND: dark grey silty v to subangular fine and medium as and glass GRAVEL.			0.20	12.02 11.92	B1 ES1	0.30-0.60 0.30-0.50				
MADE GROUND: Soft mixed dark slightly sandy slightly gravelly (app 10%) CLAY. Gravel is angular fine concrete and flint with a little wood	roximately to coarse		0.60	11.62	B2 ES2	0.80-1.20 0.80-1.00				
MADE GROUND: Stiff brown-grey CLAY. Gravel is angular fine to conflint and brick with occasional cobb	arse concrete		1.25	10.97 10.89	C1 ES3	1.20-2.00 1.25-1.33				
MADE GROUND: Stiff dark brown slightly gravelly CLAY. Gravel is all rounded fine and medium flint and	ngular to		} }							
MADE GROUND: Very stiff brown- coarse angular flint gravel below 1			2.00	10.22	C2 ES4	2.00-3.00 2.10-2.20				
MADE GROUND: Stiff to very stiff grey CLAY with rare pockets of gra angular to subangular fine to coars flint, concrete, sandstone and slag ashy / sandy material with clinker of	ivel comprising se brick, . Pockets of		\		C3 ES5	3.00-4.00 3.30-3.50				
Stiff dark brown-black pseudo fibro organic peaty CLAY. (ALLUVIUM)		××××	3.60	8.62 8.47						
Soft to very soft grey mottled brow rare decayed vegetation. (ALLUVI			3.95	8.27	C4	4.00-5.00				- - -
Grey sandy GRAVEL of angular to coarse flint. (KEMPTON PARK GR										- - - - - -
Window Sample Complete at 5.0	0 m		5.00	7.22						
					Water Leve	el Observat	ions			
Drive Records Drive Records Diameter (mm) To (m) 86 3.00 4.00 66 5.00	Recovery (%)	Date 15/03/11		Water Strike (m) 3.70	Standing Time (Mins 20	Stan Level	(m)	Casing Depth (r		Depth Sealed (m)
Client: Entec UK Ltd Engineer: N / A Date: 15/03/2011 Plant: Terrier Drilled By: M. Lane Logged By: J. T / T. K Checked By: D.Dunn		2. Hole ca 3. Installat from G concre to 3.60 4. Hole co	bit dug from Gl ised to 2.00mb tion Details: 46 EL to 0.50mbgl ete form GL to imbgl and bent bilapsed betwe- ig groundwater	gl utilising 12 mm Standpip and a slotted 0.20mbgl, ber conite from 3.6 en 4.00m and	8mm diame be installed to pipe from 0 ntonite from 60m to 4.00 I 5.00mbgl.	from GL to 0.50m to 3.6 0.20m to 0 mbgl.	60mbgl. F .50mbgl,	lole ba	ckfilled with	

	May Gurney Limit Geotechnical - Sit Ayton Road, Wym Tel: 01953 60985f	Wind	ow Sa	ample R	WS105 Sheet 1 of 1							
MAY GURN	Web: www.maygu		Project: London Waste Ecopark, Edmonton									
Project ID: SI		Client: Engineer		UK Ltd	Ground Level: 10.884mAOE Coordinates: 535671.47E 192790.96N							
	Description				O.D. Level	<u> </u>	le Test		emarks and	PID	Installations	
			VAAAA	(m) 0.05	(m)	Туре	Depth (m)	Tes	st Results	(ppm)	1931	
medium SAND. 0	IADE GROUND: Grey slightly gravelly fine and nedium SAND. Gravel is angular to subangular ne to coarse concrete.				10.83 10.58	ES1 ES2	0.10-0.20 0.30-0.50					
MADE GROUND fine to coarse cor): Red-brown silty very ncrete gravel.	sandy angular		}							- N	
gravelly fine to co to subrounded fir occasional brick	b: Yellow-brown slightly parse SAND. Gravel is ne to coarse flint with fragments. ogl Becomes greyish.			1.10	9.78	ES3	0.80-1.00					
MADE GROUND of angular to sub- flint and concrete	D: Brown slightly clayey rounded fine to coarse	brick,		X X X X 1.80	9.08	ES4	1.50-1.60					
3 ,	brown CLAY. (ALLUV Ombal Becoming firm.	IUM).				C2	2.00-3.00					
	Ombgl Becoming soft.			-							1	
Firm to stiff dark the fragments. (ALLU	brown silty CLAY with	shelly		2.60	8.28						=	
Window Sample	Complete at 3.00 m			3.00	7.88							
				- - - - - -							- - - - - - - -	
						Water Lev	vel Observat	ions				
Diameter (mm)	Drive Records To (m)	Recovery (%)	Date		Water Strike (m)	Standing Time (Min	Stan Leve		Casing Depth (m		Depth Sealed (m)	
102 86	2.00	. 1000701 y (70)	15/03/11		1.40	20	1.40		1.20	.,	Society (III)	
Client: Engineer: Date: Plant: Drilled By:	Remarks: 1.Hand pit dug from GL to 1.20mbgl. 2. Groundwater standing at 1.40mbgl at completion. 3. Installation Details: 40mm Standpipe installed from GL to 1.80mbgl. Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 1.40mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 1.40mbgl and bentonite from 1.40m to 1.80mbgl. 4. Hole cased at 1.20mbgl utilising 128mm diameter casing. 5. Hole collapsed between 1.80m and 3.00mbgl. 6. Standing groundwater only recorded after 20 minutes.											
Logged By: Checked By:	J. T / T. K D.Dunn											

	May Gurney Limit Geotechnical - Sit Ayton Road, Wym	ed e Investigation ondham, NR18 0RH	Window Sample Record						WS106 Sheet 1 of 1						
MAY GURN	Tel: 01953 60985i Web: www.maygu	6 Fax: 01953 609819 Irney.co.uk	Project: London Waste Ecopark, Edmonton												
Project ID: SI	Client: Entec UK Ltd Ground Level: 13.925mA Coordinates: 535811.82														
Contractors ID):		Engineer	: N / A	Α					192	806.35N				
	Description			Dep (m		O.D. Level (m)	Sampl	e Test Depth (m)		Remarks and st Results (ppm	Installations				
MADE GROUND): Brickweave.		XXXXX	0.0		13.85	1,700	Bopan (III)	16	St Results (ppm	_ 11 21				
Yellow brown SA	ND.	/		0.1 - 0.2		13.83 13.73	B1	0.30-0.50							
MADE GROUND	: Tarmac.		****	\$			ES1	0.30-0.50			_				
	DE GROUND: Yellow-brown silty very gravelly and coarse flint with occasional brick and			\ \ \ \ \ \ \ \ \ \ \			B2 ES2	0.80-1.00 0.80-1.00							
MADE GROUND: Firm to stiff grey CLAYFrom 1.90mbgl Very stiff.				1.4	1.5	12.48	ES3	1.70-1.80							
						Orange-brown sandy GRAVEL of nedium flint.			0	9.83	ES4	4.20-4.40			
MADE GROUND): Stiff to very stiff brow avelly CLAY. Gravel is	n-black angular		4.4	10	9.53									
	grey CLAY. (ALLUVIUM).			4.8	4.85	9.08	ES5	4.75-4.85			-				
Black pseudo fibrous PEAT. (ALLUVIUM). Soft to very soft grey mottled brown SILT. (ALLUVIUM). Window Sample Complete at 6.00 m			3/6 3/6 3/6 × × × × × × × × × × × × ×	E	50	8.53 8.43 7.93									
					Water Lev	el Observat	ions								
Drive Records			Date			Vater	Standing	Stan		Casing	Depth				
Diameter (mm) 102 86 76	To (m) 3.00 5.00 6.00	Recovery (%)	15/03/11	St		ike (m) 4.10	Time (Min	s) Level	(m)	Depth (m)	Sealed (m)				
Client: Engineer: Date: Plant: Drilled By: Logged By: Checked By:	Entec UK Ltd N / A 15/03/2011-16/03/2 Terrier M. Lane J. T / T. K D.Dunn		2. Insta from cond to 5. 3. Hole	Ilatior n GL t crete .00mb case	n Details: 40 to 0.70mbgl form GL to ogl and bening to 2.80mb	and a slotted	pe installed d pipe from (ntonite from 00m to 6.00 im diameter	0.70m to 0.10m t mbgl. casing.	to 4.70mbgl. Plair 4.70mbgl. Hole ba o 0.70mbgl, gravel	ckfilled with					

May Gurney Limited Geotechnical - Site Invest Ayton Road, Wymondhar		Window Sample Record						WS107 Sheet 1 of 1				
MAYGURNEY Tel: 01953 609856 Fax: 0 Web: www.maygurney.co	01953 609819	Project: London Waste Ecopark, Edmonton										
Project ID: SI1688			Entec U	K Ltd	Ground Level: 14.373mAOD Coordinates: 535877.59E							
Contractors ID:	[Engineer:	N/A		1				1927	79.10N		
Description		Legend	Depth (m)	O.D. Level (m)	Sample Type	e Test Depth (m)		emarks and st Results	PID (ppm)	Installations		
MADE GROUND: Dark brown slighly sandy gravelly (approximately 10%) CLAY. Gravel angular to round fine to coarse flint with a little brick with gravelly sand pockets. MADE GROUND: Yellow brown slightly silty coarse SAND and angular to rounded fine to coarse flint.	is fine to		- 0.50	13.87	B1 ES1 B2 ES2 C1	0.30-0.50 0.30-0.60 0.50-0.80 0.80-1.00 1.00-2.00						
MADE GROUND: Stiff to very stiff grey brow CLAYFrom 1.80mbgl Very stiff	vn		1.70	12.07	ES3 C2	1.80-1.90 2.00-3.00 3.00-4.00						
At 3.80mbgl One medium gravel size brick fragment. MADE GROUND: Orange-brown sandy GR angular fine to coarse flint. Window Sample Complete at 4.70 m			4.55	9.82 9.67	C4	4.00-4.70						
										- - - - - - - - - - - - - - - - - - -		
Drive Records				el Observat		2 :		·				
Diameter (mm) To (m) 102 3.00 86 4.00 76 4.70	Recovery (%)	Date	St	Water rike (m) No Groundw	Standing Time (Mins ater Encount	,		Casing Depth (m		Depth Sealed (m)		
Client: Entec UK Ltd Engineer: N / A Date: 15/03/2011-16/03/2011 Plant: Terrier Drilled By: M. Lane Logged By: J. T / T. K Checked By: D.Dunn	Ī		2. Installation pipe from with confrom 1.0	on details: 40on GL to 1.00on crete from G Om to 4.70ml	mm HDPE St nbgl and a sl L to 0.20mbg	andpipe ins otted pipe fr I, bentonite	om 1.00i from 0.20	m to 4.70mb 0m to 1.00m	gl. Hol	e backfilled		

-	Windo	ow Sa	mple R	WS108 Sheet 1 of 1									
Aylon Road, Wymondham, NR18 DRH Tei: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk			Project: London Waste Ecopark, Edmonton										
Project ID: SI1	Client: Entec UK Ltd Ground Level: 14.408m Coordinates: 535875.												
Contractors ID):		Engineer	N/A				0001		765.56N			
	Description			Depth	O.D. Level (m)	Sample Type	e Test Depth (m)	and	Remarks and est Results (ppm	Installations			
MADE GROUND MADE GROUND MADE GROUND SAND. MADE GROUND coarse SAND and coarse flint graveAt 0.80mb MADE GROUND silty CLAYFrom 1.20		(m) - 0.08 - 0.12 - 0.28 - 0.35	14.33 14.29 14.13 14.06	B1 ES1 B2 B3 ES2	0.50-0.70 0.50-0.70 0.80-1.00 1.00-1.20 1.20-1.30	Te	St Results (ppm						
MADE GROUND: Orange-brown sandy GRAVEL of angular fine to coarse flint and rare brick. Window Sample Complete at 4.60 m			4.45	9.96 9.81	ES3	4.45-4.60							
				Water Lev	el Observat	tions							
Diameter (mm)	Drive Records Diameter (mm) To (m) Recovery (%)		Date	S	Water trike (m)	Standing Time (Mins	Stan Leve		Casing Depth (m)	Depth Sealed (m)			
102 86 76	3.00 4.00 4.60	1.55573.5 (70)	15/03/11		0.90	-	-	<i>\\</i>					
Client: Engineer: Date: Plant: Drilled By: Logged By:	Entec UK Ltd N / A 15/03/2011-16/03/2 Terrier M. Lane J. T / T. K	Remarks: 1. Hand pit dug from GL to 1.20mbgl. 2. Installation Details: 40mm Standpipe installed from GL to 4.60mbgl. Plain pipe from GL to 0.60mbgl and a slotted pipe from 0.60m to 4.60mbgl. Hole backfilled with concrete form GL to 0.20mbgl, bentonite from 0.20m to 0.60mbgl, gravel from 0.60m to 4.60mbgl. 3. Hole cased at 2.00mbgl utilising 128mm diameter casing. 4. Standing groundwater only recorded after 20 minutes.											
Checked By:	D.Dunn												

-	May Gurney Limit Geotechnical - Sit Ayton Road, Wyn	te Investigation nondham, NR18 0RH	Windo	ow S	ample F	WS109 Sheet 1 of 1							
MAY GURNEY	Tel: 01953 60985 Web: www.maygu	6 Fax: 01953 609819 urney.co.uk	Project: London Waste Ecopark, Edmonton										
Project ID: SI16	Client: Entec UK Ltd Ground Level: 10.928mAO Coordinates: 535784.92E												
Contractors ID:			Engineer	: N/A					19		57.33N		
	Legend	Dept		Sample	e Test Depth (m)			PID	Installations				
MADE GROUND: B angular fine to coars				(m) - 0.20	(m) 10.73	ES1	0.20-0.40	16	est Results (p	ppm)	20 00		
MADE GROUND: B to coarse SAND. Gr coarse brick, concre	avel is angular fine	to		0.60	10.33	ES2	0.60-0.80						
brick cobbles). MADE GROUND: F gravelly (approxima rounded to subangubrick.	tely 8%) CLAY. Gra	avel is		0.80 - - - 1.20	9.73	ES3 C1	0.80-1.00 1.00-2.00						
MADE GROUND: S silty CLAY with a litt gravel and some pla	le brick and pottery	,	× × × × × × × × × × × × × × × × × × ×	1.40 1.55	9.53 9.38						-		
Soft (spongy) dark to peaty SILT. (ALLUV		fibrous	<u> </u>	2.00	8.93						-		
Soft (spongy) dark g peaty SILT. (ALLUV	grey and brown pse /IUM).	udo fibrous		- - -							-		
Firm and stiff grey n (ALLUVIUM). From 1.70ml Window Sample Co	ogl Shelly fragment												
		- - - - - - - - -											
				_									
					Water Leve	el Observat	ions						
Drive Records Diameter (mm) To (m) Recovery (%)			Date		Water Strike (m)	Standing Time (Mins	Stan- Level		Casing Depth (m)		Depth Sealed (m)		
102	2.00				No Ground	water Encount	tered						
Client: Engineer: N Date: 18 Plant: Te Drilled By: M	Remarks: 1. Starter pit dug from GL to 1.20mbgl. 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 1.00mbgl. Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 1.00mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 1.00mbgl and bentonite from 1.00m to 2.00mbgl. Hole finished with a flush cover and gas tap.								e backfilled avel from				
Logged By: J.	T / T. K												
Checked By: D	. Dunn												

	May Gurney Limite Geotechnical - Site Ayton Road, Wym	e Investigation ondham, NR18 0RH	Windo	ow 9	Sar	nple R		WS110 Sheet 1 of 1					
MAY GURNEY	Tel: 01953 609856 Web: www.maygu	6 Fax: 01953 609819 rney.co.uk	Project: London Waste Ecopark, Edmonton										
Project ID: SI1688	Client: Entec UK Ltd Ground Level: 11.631m/ Coordinates: 535879.1												
Contractors ID.			Engineer	: N /	A	0.0	1				1927	706.01N	
De	Legend	De _l		O.D. Level (m)	Sampl Type	e Test		Remarks and st Results	PID	Installations			
MADE GROUND: Dar CLAY.	k grey-brown slig	htly sandy	****	0.	- +	11.53	. , , p =	2 op a. ()	10	3t results	(ppm)	-816	
MADE GROUND: Broslightly gravelly (10%) to subangular fine to concrete.	CLAY. Gravel is oarse flint, brick a	angular					ES1	0.30-0.50					
gravelly clayey SILT. C subangular fine to coa At 1.30mbgl bri	MADE GROUND: Very soft grey and brown slightly gravelly clayey SILT. Gravel is angular to subangular fine to coarse brick and flintAt 1.30mbgl brick cobbleFrom 1.40mbgl pockets of peaty material.				10	10.53	C1 ES3	1.20-2.00					
From 2.00m to	2.30mbgl brick co	obbles.			00	0.00	C2	2.00-3.00					
Firm dark brown pseud			20.2.2.2	- 2.3 - 2.3		9.33 9.28							
Stiff grey CLAY with so (ALLUVIUM).	ome shelly fragme	ents/	×××××	2.6	60	9.03						-	
Soft to very soft dark g	rey clayey SILT.	/	3/16 3/16 3/16	2.9		8.73 8.63						-	
(ALLUVIUM). Window Sample Com	pplete at 3.00 m						Water Lev	el Observat	ions				
Dr	Dete	V	Vater	Standing	Stan		Casing		Depth				
Diameter (mm) 102	To (m) 3.00	Recovery (%)	Date		Str	rike (m) No Groundw	Time (Min	s) Leve		Depth (n		Sealed (m)	
Client: Enter Engineer: N / A Date: 18/0 Plant: Terr Drilled By: M. L Logged By: J. T Checked By: D. D	Remarks: 1. Starter pit dug from GL to 1.20mbgl. 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 2.30mbgl. Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 2.30mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 2.30mbgl and bentonite from 2.30m to 3.00mbgl. Hole finished with a flush cover and gas tap.								e backfilled avel from				

Project ID: S1168B Contractors ID: Description Description Legend Depth Could Level 11.664mAOD Coordinates: \$35849.04E		May Gurney Limi Geotechnical - Si Ayton Road, Wyn	ted te Investigation nondham, NR18 0RH	Wind	ow Sa	ample R	Record			WS111 Sheet 1 of 1	
Contractors ID: Engineer: N / A Description Legend Depth (m) Depth (m) Sample Test (passage) MADE GROUND: Dark brown sity fine and medium (MADE) MADE GROUND: Dark brown sity gravely fine and medium (MADE) MADE GROUND: Contractors of the state of	MAYGURN	Tel: 01953 60985 Web: www.maygi		Project:	Londor	n Waste E	copark, Ed	dmonton			
Description Description Description Legend Depth (m)	Project ID: SI	1688		Client:	Entec	UK Ltd			Grou	ınd Level: 11.	664mAOD
Description Legend (m) Ceph Type Deph (m) Type Deph (m) Test Results Test Results	Contractors ID) :		Engineer	: N/A				Coor		
MADE GROUND: Dutk brown sitly gravelly fine and modium SANO. MADE GROUND: Dutk brown sitly gravelly fine and Made and Many and M		Description		Legend	Depth					and	Installations
MADE GROUND: Dark brown silty gravelly fine and medium SAND. Gravel is angular to subangular fine to coarse for Complete and pleate consists of the coarse conceived and first with coassance conceived combines and pleate coassance of the coarse conceived and pleate coassance of the coarse conceived and pleate coassance of the coarse conceived and pleate coassance of the coarse coarse conceived and pleate coassance of the coarse conceived and pleate coarse conceived and pleate coarse conceived and first with approximately 10% indices conceived and first with appr	MADE ODOUBLE	N. Danielana and alle San	and an advan	~~~	(m)	(m)	Туре	Depth (m)	Те		
medium SAND. Crawel is angular for suberingular for the twith concentration of the twith approximately 10% both chable. ADMOE GROUND: Brown-grey slightly sandy slightly gravely (15%) CLAY. Crawel is angular to subcondition for the twith approximately 10% both chable. ADMOE GROUND: Brown-grey slightly sandy slightly gravely (15%) CLAY. Crawel is angular to subcondition from the twith approximately 10% both chable. ADMOE GROUND: Firm grey and dark brown CLAY with consideral brown and black slightly gravely (15%) CLAY (15%) based on the wind that gravels. ADMOE GROUND: Soft grey and brown silty CLAY. ADMOE GROUND: Soft grey drown si	SAND.		/		0.15	11.51	ES1	0.20-0.40			
MADE GROUND: Grey-brown sitty gravelly fine to coarse SNAO. Greye is analysis fruit to coarse Coarse SNAO. Greye is analysis of this fruit to coarse Coarse SNAO. Greye is analysis fruit to coarse Coarse SNAO. Grey is analysis fruit to coarse Coarse SNAO. Grey is analysis fruit to coarse Coarse SNAO. Grey is analysis of this fruit to coarse Coarse SNAO. Grey is analysis fruit to coarse Coarse SNAO. Grey Is analysis fruit to coarse SNAO. Grey Is analysis fruit fruit to coarse SNAO. Grey Is analysis fruit fruit to coarse SNAO. Grey Is analysis fruit fruit to coarse SNAO. Grey I	medium SAND. (fine to coarse bri	Gravel is angular to su ck, concrete and flint v	bangular vith		0.50	11.16					
coarse SAND. Grave is angular fine to coarse binds, concrete and finit with approximately 10% (binds intolle). MADE GROUND Brown-grey slightly sendy slightly gravelly (15%) CLAY. Gravel is angular to subtrounded fine to mention because concrete, broke, finit movement of the sand limit gravel. MADE GROUND Firm grey and dark brown CLAY with coarselonal binds and limit gravel. MADE GROUND Soft grey and brown sitily CLAY. MADE GROUND Soft grey grey grey grey Soft gr	fragments.	•			0.90	10.76					101
INDEE GROUND: Brown-gry slightly sandy slightly gravely (SPI) (LAV Carevier is angular to subenquiar fine to coarse concrete, brick, filty and occasional brick and filting ravel. MADE GROUND: Firm grey and dark brown CLAY with coarse and filting ravel. MADE GROUND: Soft grey and brown silty CLAY. MADE GROUND: Soft grey and brown silty CLAY. MADE GROUND: Soft prown and black slightly gravely slightly drawled filting ravel. Soft to firm brown and black pseudo fibrous postsylvary of the property clays (SLL (ALLUVIUM). Soft to firm brown grey slightly gravely	coarse SAND. G brick, concrete a	ravel is angular fine to	coarse				C1	1.20-2.00			
Subangular fine to coarse concrete, brick, flint and occasional brick and flint area. 1.80 9.86 580 189-2.00	MADE GROUND)- -		ES5	1.50-1.60			
MADE GROUND: Firm grey and dark brown CLAY with coccesional brick and filting ravel.	subangular fine t	o coarse concrete, bri	ck, flint		 						
MADE GROUND- Soft brown and black slightly gravelly slity CLAY with many wood fragments blick and film. Very soft (spongy) black PEAT with organic codour, (ALLUVIUM). Soft to firm brown-grey slity CLAY, (ALLUVIUM). Soft to firm brown-grey slity CLAY, (ALLUVIUM). Soft to firm brown-grey slity CLAY, (ALLUVIUM). Soft to firm brown-grey slity Slit, (ALLUVIUM). Soft to firm br			prown CLAY with	مالد عالد عالد			C2	2.00-3.00			
gravelly sitly CLAY with many wood fragments. Gravel is angular to subrounded fine to medium brick and flint. Very soft (spongy) black PEAT with organic codour. (ALLUVIUM). Soft to firm brown and black pseudo fibrous (peealy) CLAY. (ALLUVIUM). Very soft (spongy) black PEAT with organic codour. (ALLUVIUM). Very soft storm-grey clayey SILT. (ALLUVIUM). Very soft brown-grey clayey SILT. (ALLUVIUM). Very soft storm-grey clayey SILT. (ALLUVIUM). Very soft storm-glightly sandy slightly gravelly SILT. Gravel is subangular fine shelly fragments. (ALLUVIUM). Window Sample Complete at 3.00 m Water Level Observations For firm (Mins) Standing Casing Depth (Mins) Standing Casing Depth (Mins) Standing Casing Standing Casing Standing Casing Standing Casing Standing Standing Casing Standing Standing Standing Casing Standing Standing Standing Standing Standing Casing Standing Casing Standing Casing Standing S	1,		silty CLAY.	¥ = >	2.45	9.21					_
binck and flinit Very soft (spongy) black PEAT with organic odour. (ALLVVIUM). Soft to firm brown and black pseudo fibrous (peesly CLAY, CALLUVIUM). Soft to firm brown-grey clayey SILT. (ALLVVIUM). Soft to firm brown-grey sligy CLAY. (ALLVVIUM). Soft to firm brown-grey sligy sandy slightly gravelity SILT. Gravel is subangular fine shelly integrnents. (ALLVVIUM). Window Sample Complete at 3.00 m Diameter (mm) To (m) Recovery (%) 102 3.00 Water Strake (m) Standing Standing Level (m) Depth (m) Sealed (m) Client: Entec UK Ltd Polymon Standing Standing Standing Level (m) Depth (m) Sealed (m) Client: Entec UK Ltd Polymon Standing				~ ~ ~ × ~ ×	2.70	8.96					-
Odour, CALLUVIUM) Soft to firm brown and black pseudo fibrous (peaty) CLAY. (ALLUVIUM). Very soft brown-grey clayery SILT. (ALLUVIUM). Very soft brown-grey slity CLAY. (ALLUVIUM). Very soft brown-grey clayery SILT. (ALLUVIUM). Very soft brown-grey slity CLAY. (Alluvium).		r to subrounded fine to	medium								-
Coeaty CLAY, (ALLUVIUM).			ganic		-						
Very soft brown-grey clayey SILT. (ALLUVIUM). Soft brown slightly sandy slightly gravelly SILT. Gravel is subangular fine shelly iragments. (ALLUVIUM). Window Sample Complete at 3.00 m Water Level Observations Water Level Observations Drive Records Diameter (mm) To (m) Recovery (%) 102 3.00 Recovery (%) 102 Strike (m) Strike (m) Strike (m) Strike (m) Depth (m) Sealed (m) Client: Entec UK Ltd Engineer: N / A Date: 18/03/2011 Date: 18/03/2011 Plant: Terrier Drilled By: M. Lane Logged By: J.T./T. K			prous		- - -						
Soft brown slightly sandy slightly gravelly SULT. Gravel is subangular fine shelly fragments. KLULVIUM). Window Sample Complete at 3.00 m Water Level Observations	Soft to firm brown	n-grey silty CLAY. (AL	LUVIUM).		- -						
SILT. Gravel is subangular fine shelly integrated in the shell integrated integrated integrated in the shell integrated integrat	Very soft brown-	grey clayey SILT. (ALL	LUVIUM).		_						
Window Sample Complete at 3.00 m Water Level Observations Water Level Observations Diameter (mm) To (m) Recovery (%) No Groundwater Encountered No Groundwater Encountered No Groundwater Encountered Remarks: 1. Starter pit dug from GL to 1.20mbgl. Level (m) Depth (m) Sealed (m) No Groundwater Encountered Remarks: 1. Starter pit dug from GL to 1.20mbgl. Level (m) Depth (m) Sealed (m) Remarks: 1. Starter pit dug from GL to 1.20mbgl. Level (m) Depth (m) Sealed (m) No Groundwater Encountered Remarks: 1. Starter pit dug from GL to 1.20mbgl. Level (m) Depth (m) Sealed (m) No Groundwater Encountered Remarks: 1. Starter pit dug from GL to 1.20mbgl. Level (m) Depth (m) Sealed (m) No Groundwater Encountered No Ground	SILT. Gravel is s	ubangular fine shelly	lly		-						
Date Drive Records Date Strike (m)	fragments. (ALLU	JVIUM).			- -						
Diameter (mm) To (m) Recovery (%) Date Strike (m) Standing Casing Depth Sealed (m)	Williaow Gample	, complete at 0.00 m			_						
Diameter (mm) To (m) Recovery (%) Date Strike (m) Standing Casing Depth Sealed (m)					_]
Diameter (mm) To (m) Recovery (%) Date Strike (m) Standing Casing Depth Sealed (m)					-						
Diameter (mm) To (m) Recovery (%) Date Strike (m) Standing Casing Depth Sealed (m)					-						_
Diameter (mm) To (m) Recovery (%) Date Strike (m) Standing Casing Depth Sealed (m)					-						_
Diameter (mm) To (m) Recovery (%) Date Strike (m) Standing Casing Depth Sealed (m)					- -						_
Diameter (mm) To (m) Recovery (%) Date Strike (m) Standing Casing Depth Sealed (m)					-						
Diameter (mm) To (m) Recovery (%) Date Strike (m) Standing Casing Depth Sealed (m)					-						
Diameter (mm) To (m) Recovery (%) Date Strike (m) Standing Casing Depth Sealed (m)					-						
Diameter (mm) To (m) Recovery (%) To (m) Recovery (%) No Groundwater Encountered Client: Entec UK Ltd Engineer: N / A Date: 18/03/2011 Plant: Terrier Diameter (mm) To (m) Recovery (%) Recovery (%) Remarks: 1. Starter pit dug from GL to 1.20mbgl. 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 2.00mbgl. Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 2.00mbgl, gravel from 0.50m to 2.00mbgl, and bentonite from 2.00m to 3.00mbgl. Hole finished with a flush cover and gas tap. Logged By: J. T / T. K		Drive Records				10/5/::				0	D
Client: Entec UK Ltd Engineer: N / A Date: 18/03/2011 Plant: Terrier Drilled By: M. Lane Logged By: J. T / T. K Remarks: 1. Starter pit dug from GL to 1.20mbgl. 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 2.00mbgl. Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 2.00mbgl, gravel from 0.50m to 2.00mbgl and bentonite from 2.00m to 3.00mbgl. Hole finished with a flush cover and gas tap.	Diameter (mm)		Recovery (%)	Date	;						
Engineer: N / A 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 2.00mbgl. Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 2.00mbgl, Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 2.00mbgl and bentonite from 2.00m to 3.00mbgl. Hole finished with a flush cover and gas tap. Drilled By: M. Lane Logged By: J. T / T. K	102	3.00				No Groundy	vater Encount	ered			
Engineer: N / A Date: 18/03/2011 Plant: Terrier Drilled By: M. Lane Logged By: J. T / T. K 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 2.00mbgl. Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 2.00mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 2.00mbgl and bentonite from 2.00m to 3.00mbgl. Hole finished with a flush cover and gas tap.	Client:	Entec UK Ltd		Remarks:	1. Starter	pit dua from (GL to 1.20mb	 gl.			
Date: 18/03/2011 pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 2.00mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 2.00mbgl and bentonite from 2.00m to 3.00mbgl. Hole finished with a flush cover and gas tap. Drilled By: M. Lane Logged By: J. T / T. K	Engineer:	N/A			2. Hole ca	ised at 2.00ml	ogl utilising 12	8mm diame	eter casi talled fro	ng. om GL to 2.00mb	gl. Plain
Plant: Terrier 0.50m to 2.00mbgl and bentonite from 2.00m to 3.00mbgl. Hole finished with a flush cover and gas tap. Drilled By: M. Lane Logged By: J. T / T. K	Date:	18/03/2011			pipe fr	om GL to 0.50	mbgl and a s	lotted pipe fr	om 0.50	m to 2.00mbgl. H	lole backfilled
Drilled By: M. Lane Logged By: J. T / T. K	Plant:	Terrier			0.50m	to 2.00mbgl a					
	Drilled By:	M. Lane			50761	gus tap.					
	Logged By:	J. T / T. K									
		D. Dunn									

MAYGURNEY Tet 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk Project ID: SI1688 Contractors ID: Description MADE GROUND: Grass over stiff brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse flint. MADE GROUND: Brown slightly clayey gravelly SAND with low cobble sized brick. Gravel is angular to subangular fine to coarse brick, clinker,		Entec I		Sample		Coord	emarks	
Contractors ID: Description MADE GROUND: Grass over stiff brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse flint. MADE GROUND: Brown slightly clayey gravelly SAND with low cobble sized brick. Gravel is angular to subangular fine to coarse brick, clinker,	Engineer:	N / A Depth (m) 0.15	O.D. Level (m)	· .		Coord	inates: 5358 1927 emarks	317.36E
Description MADE GROUND: Grass over stiff brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse flint. MADE GROUND: Brown slightly clayey gravelly SAND with low cobble sized brick. Gravel is angular to subangular fine to coarse brick, clinker,		Depth (m)	Level (m)	· .			1927 emarks	
MADE GROUND: Grass over stiff brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse flint. MADE GROUND: Brown slightly clayey gravelly SAND with low cobble sized brick. Gravel is angular to subangular fine to coarse brick, clinker,	Legend	(m) 0.15	Level (m)	· .		Re		
sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse flint. MADE GROUND: Brown slightly clayey gravelly SAND with low cobble sized brick. Gravel is angular to subangular fine to coarse brick, clinker,		0.15	 	Туре	Denth (m)		and	Installations
sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse flint. MADE GROUND: Brown slightly clayey gravelly SAND with low cobble sized brick. Gravel is angular to subangular fine to coarse brick, clinker,			11.35		Deptii (iii)	Test	t Results (ppm)	IVA Dad
with low cobble sized brick. Gravel is angular to subangular fine to coarse brick, clinker,		0.55		ES1 ES2	0.20-0.30 0.30-0.40			
flint and one fibrous pipe fragment (possible asbestos).			10.95	ES3	0.70-0.80			
MADE GROUND: Firm to stiff brown slightly sandy slightly gravelly CLAY with low cobble sized brick and concrete contentFrom 0.75m to 0.95mbgl concrete boulder with black staining. Abundant gravel and specific beautiful and staining.		- 1.10 - - - - -	10.40	C1 ES5	1.20-2.00			
cobble size wood fragments and slight hydrocarbon odour below 1.00mbgl. MADE GROUND: Firm to stiff brown slightly gravelly CLAY. Gravel is angular to subangular medium to coarse wood fragments, concrete, brick and ceramics. Minor black staining around wood	× × ×	1.85 2.00	9.65 9.50	C2	2.00-3.00			
fragmentsFrom 1.65m to 1.70mbgl black stained moist gravelly clay with moderate hydrocarbon odour. Firm grey-brown slightly sandy CLAY with fine	xx_x	3.00	8.50					-
CLAY with many shelly fragments. (ALLUVIUM). Window Sample Complete at 3.00 m								
Drive December					el Observati	ons		
Drive Records	Date	s	Water Strike (m)	Standing Time (Mins	Stand S) Level		Casing Depth (m)	Depth Sealed (m)
102 86 2.00 3.00			No Groundw	rater Encoun			-	
Client: Entec UK Ltd Engineer: N / A Date: 16/03/2011 Plant: Terrier Drilled By: M. Lane		2. Hole ca 3. Installat pipe fro with co 0.50m	om GL to 0.50 Increte from G	gl utilising 12 mm HDPE S mbgl and a s L to 0.20mbg	28mm diame tandpipe inst lotted pipe fr II, bentonite f	talled from om 0.50m from 0.20	g. n GL to 1.80mbgl n to 1.80mbgl. Ho m to 0.50mbgl, g ngl. Hole finished	le backfilled avel from
Logged By: J. T / T. K Checked By: D. Dunn								

-	May Gurney Limit Geotechnical - Si Ayton Road, Wyn	ted te Investigation nondham, NR18 0RH	Wind	ow Sa	ample R	Record			WS113 Sheet 1 of		
MAYGURN	Tel: 01953 60985	66 Fax: 01953 609819	Project:	Londor	n Waste Ed	copark, Ed	dmonton				
Project ID: SI1			Client:		UK Ltd				und Level:		
Contractors ID	·: 		Engineer	: N/A		<u>.</u>					71.03N
	Description		Legend	Depth	O.D. Level	Sampl		F	Remarks and		Installations
			~~~	(m)	(m)	Туре	Depth (m)	Te	est Results	PID (ppm)	EVA De
	: Brown silty slightly g ID. Gravel is angular i t and brick.			+ 0.10 ×	11.19	ES1	0.20-0.40				
coarse SAND. Gr	: Brown-grey silty gra avel is angular to sub ck, flint and concrete v	angular		>- >- >- 0.80	10.49	ES2	0.80-1.00				<u> </u>
\	: Firm grey and dark o	arev CLAY with		<u>+</u>	10.10						
silty sand pockets	s. Approximately 15% ossible hydrocarbon o	concrete		1.10	10.19	C1 ES3	1.20-2.00 1.30-1.40				
slightly gravelly S	: Very soft dark grey s ILT. Gravel is angula o coarse brick and flin	r to		1.40 ×	9.89	ES4	1.50-1.60				
	: Very soft black sligh			2.00	9.29	C2	2.00-3.00				
concrete. Gravel	is angular fine to coar int, wood fragments a	se		2.20	9.29	02	2.00-3.00				-
	on staining and slight										-
Firm dark brown (				2.70	8.59						_
Stiff brown-grey C	CLAY with some shell	y fragments	sales sales sales to sales sales	-							-
Soft (spongy) dan	k brown and black ps	eudo		3.00	8.29						
fibrous PEAT. (AL Window Sample	LUVIUM). Complete at 3.00 m			- -							-
·	·			_							
				- -							
				_							
				- -							_
				_							-
				_							
				_							
				_							
				- -							_
				-							=
				_							
				<u></u>		Water Lev	l el Observat	ions			
	Drive Records	T _	Date		Water	Standing	Stan		Casing		Depth
Diameter (mm) 102	To (m) 3.00	Recovery (%)	18/03/11		Strike (m) 1.20	Time (Mins	s) Level	` '	Depth (m	1)	Sealed (m)
Client:	Entec UK Ltd	<u> </u>	Remarks:	Starter	r pit dug from (	GL to 1.20mb	gl.				
Engineer:	N / A			<ol> <li>Hole ca</li> <li>Installat</li> </ol>	ased at 2.00mb tion details: 40	bgl utilising 12 Omm HDPE S	28mm diame standpipe ins	talled fr	om GL to 2.00		
Date:	18/03/2011			pipe from	om GL to 0.50 oncrete from G	mbgl and a s L to 0.20mbg	lotted pipe fr gl, bentonite	om 0.50 from 0.2	0m to 2.00mb 20m to 0.50m	gl. Hol bgl, gr	le backfilled avel from
Plant:	Terrier			0.50m	to 2.00mbgl a and gas tap.						
	M. Lane				- ·- r						
Drilled By:											
•	J. T / T. K										

Project ID: SH888  Contractors ID:  Description  Legend Depth Contractors ID:  Description  Description  Description  Description  Legend Description  Legend Depth Contractors ID:  Description  Des		May Gurney Limit Geotechnical - Sil Ayton Road, Wyn	te Investigation nondham, NR18 0RH	Windo	ow S	ample F	Record			<b>WS115</b> Sheet 1 of 1	<b>5</b>	
Contractors ID:  Engineer: N / A  Description  Legend Depth (m) OD Sample Test Type Depth (m) Test Results grave Description  MADE GROUND: Comprising grey-brown slightly silly gravely SMD. Grave is angular to contract the standard stream and black alignify savely size of the stream and black alignify savely SMD. Grave is angular to contract the stream and black alignify savely SMD. Grave is angular to contract the stream and black alignify savely SMD. Grave is angular to contract the stream and black alignify savely CLAY. Grave is angular to contract the stream and black alignify savely CLAY. Grave is angular to contract the stream and black alignify savely CLAY. Grave is angular to contract the stream and black alignify savely CLAY. Grave is angular to contract the stream and black alignify savely CLAY. Grave is angular to contract the stream and black alignify savely CLAY. Grave is angular to contract the stream and black alignify savely CLAY. Grave is angular to contract the stream and black alignify savely.  1-40 9.37 Fest 1-40-150  3-77 10.07 Fest 1-40-150  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1-50 1-20-20  3-877 1	MAYGURN	Tel: 01953 60985 Web: www.maygu		Project:	Londo	n Waste E	copark, Ed	dmonton				
Engineer: N / A   Legend   Description   Legend   Legend   Q.D.   Comprising grow-bown slightly safety (SAND. Grower) is amplied to counted limitative, brick and flat.   The street of the street o	Project ID: SI1	1688		Client:	Entec	UK Ltd						
Description  Legendo (m) (m) (m) (m) Topo Depth (m) Test Results (ppm) (ppm) Test Results (ppm)	Contractors ID	):		Engineer	N/A				Coor			
MADE GROUND: Comprising grey-brown slightly sifty growelly SMC Street is angulated to an angulated for underside fine to medium limitestone, brincs, litter and clinice. The comprising street is angulated to an angulated for underside fine to medium limitestone, brincs, litter and clinice. The comprising street is angulated to an angulated for underside fine to medium limitestone, brincs, litter and clinice. The comprising firm brown and black slightly spready SLLT. Crowvel is angulated to a comprising firm brown and black slightly spready SLLT. Crowvel is a nagulated to a comprising firm brown and black slightly spready SLLT. Crowvel is a nagulated to a comprising firm brown and black slightly spready SLLT. Crowvel is a nagulated to a comprising street brince. The comprising street brince that and clinice first and are wood firm brown should be a comprising street brince. The comprising street brince the comprising street brince that and clinice first and are wood firm brown and black slightly stably.  140 3.37 bisio 1100.120		Description		Legend	_	n Level				and	DID	Installations
salty gravely SAND. Grave its angulat to recover and flat recover and gist provided images for book and flint - graves provided in the control of the formation of the control of the cont	MADE COOLIND	h Caranniaina ana har	aliadado.	~~~~	(m)	(m)	+		Те	st Results		104 163
angular to counsel for the medium limestone, brick, fifth and clinker.  MADE GROUND. Comprising soft to firm brown and black slightly gravelly CLAY. Careve lia angular to counser brick, fifth and clinker.  MADE GROUND. Comprising soft to firm brown and black slightly gravelly CLAY. Careve lia angular to connect brick, first and clinker.  MADE GROUND. Comprising soft to firm brown and black slightly gravelly CLAY. Grave lia angular to connect brick. International clinker.  MADE GROUND. Comprising soft to firm brown and black slightly gravely CLAY. Gravel as angular to connect brick. International clinker.  MADE GROUND. Comprising soft to firm brown and black lightly gravely CLAY. Gravel as angular to connect brick. International clinker.  I 140 9.37 1885 1.40.1.99  Possible made ground. Firm dark brown and black lightly gravely CLAY. (ALLUVIUM).  Soft dark grey clays, VILL With frequent fine incidents. (ALLUVIUM).  Window Sample Complete at 2.00 m  Water Level Observations  Water Level Observ	silty gravelly SAN	ID. Gråvel is angular t			E-							
Solidar Service   Colored   File	slightly sandy slig angular to rounde	ghtly gravelly SILT. Greed fine to medium lime	avel is		E.		ES3	0.70-1.00				
MAUSE ACTUALLY Comparing of the time has analyse from the conserve that the conserve	slightly gravelly C	CLAY. Gravel is angula	ar to		1 40	0.27	ES4	1.00-1.20				
Possible made ground: Firm dark brown and black slightly sandy CLAY (ALLUVIUM).	slightly gravelly C to coarse brick, c	CLAY. Gravel is angula linker, flint and rare w	ar fine		1.50 - -	9.27	E99	1.40-1.50				- P
Soft dark gray clayery SILT with frequent fine irrodules. (ALL OVUM). Window Sample Complete at 2.00 m  Water Level Observations  Water Level Observations  Dianeter (mm) To (m) Recovery (%) 128 2.00 Recovery (%) 128 2.00 Recovery (%) 128 1. Starting Straining Standing Stan			n and black	$\times$ $\times$ $\times$ $\times$ $\times$								
Window Sample Complete at 2.00 m   Water Level Observations   Water Level	8				- -							-
Water Level Observations  Water Level Observations  Water Level Observations  Date Strike (m) To (m) Recovery (%)  128 2.00 No Groundwater Encountered  Remarks: 1. Starter pit dup from Cl. to 1.20mbgl. Plant: The Client of Cl. to 1.50mbgl and a solidate pie from 0.50m to 1.50mbgl. Plain pipe from Cl. to 0.50mbgl and a solidate pipe from 0.50m to 1.50mbgl. Hole backfilled with concrete from Cl. to 0.50mbgl and a solidate pipe from 0.50m to 1.50mbgl. Hole backfilled with concrete from Cl. to 0.50mbgl and a solidate pipe from 0.50m to 1.50mbgl. Hole backfilled with concrete from Cl. to 0.50mbgl and a solidate pipe from 0.50m to 1.50mbgl. Hole backfilled with concrete from Cl. to 1.50mbgl. Bentonite from 1.50m to 2.00mbgl. Hole finished with a flush cover and gas tap.	rootlets. (ALLUVI	ŮM).	nt fine		- - -							
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					-							
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					-							_
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K												
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					- -							_
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					- -							_
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					 -							_
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					_							-
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					_							
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					-							_
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					-							_
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					-							_
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					-							_
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K												
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K												
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					_							_
Diameter (mm) To (m) Recovery (%)  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier  Drilled By: M. Lane Logged By: J. T / T. K					_							
Diameter (mm) To (m) Recovery (%)  128 2.00 Strike (m) Time (Mins) Level (m) Depth (m) Sealed (m)  No Groundwater Encountered  Client: Entec UK Ltd Engineer: N / A Date: 14/03/2011 Plant: Terrier Drilled By: M. Lane Logged By: J. T / T. K							Water Leve	l el Observat	ions			
No Groundwater Encountered   No Groundwater Encountered	Diameter (****)	1	D(0/)	Date								
Engineer: N / A  2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 1.50mbgl. Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 1.50mbgl, Hole backfilled with concrete from GL to 0.10mbgl, bentonite from 0.10m to 0.50mbgl, gravel from 0.50m to 1.50mbgl and bentonite from 1.50m to 2.00mbgl. Hole finished with a flush cover and gas tap.  Drilled By: M. Lane  Logged By: J. T / T. K	. ,		Recovery (%)			. ,	·	· .	(111)	Depth (m	1	Sealeu (M)
Engineer: N / A  2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 1.50mbgl. Plain pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 1.50mbgl, Hole backfilled with concrete from GL to 0.10mbgl, bentonite from 0.10m to 0.50mbgl, gravel from 0.50m to 1.50mbgl and bentonite from 1.50m to 2.00mbgl. Hole finished with a flush cover and gas tap.  Drilled By: M. Lane  Logged By: J. T / T. K												
Engineer: N / A  Date: 14/03/2011  Plant: Terrier  Drilled By: M. Lane  Logged By: J. T / T. K  2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 1.50mbgl. Hole backfilled with concrete from GL to 0.10mbgl, bentonite from 0.50m to 1.50mbgl, gravel from 0.50m to 1.50mbgl and bentonite from 1.50m to 2.00mbgl. Hole finished with a flush cover and gas tap.	Client:	Entec UK Ltd	1							1		
Date: 14/03/2011 pipe from GL to 0.50mbgl and a slotted pipe from 0.50m to 1.50mbgl. Hole backfilled with concrete from GL to 0.10mbgl, bentonite from 0.10m to 0.50mbgl, gravel from 0.50m to 1.50mbgl and bentonite from 1.50m to 2.00mbgl. Hole finished with a flush cover and gas tap.  Drilled By: M. Lane  Logged By: J. T / T. K	Engineer:	N/A		:	2. Hole o 3. Installa	ased at 2.00m ation details: 4	bgl utilising 12 Omm HDPE S	28mm diame tandpipe ins	talled fr	om GL to 1.50		
Plant: Terrier 0.50m to 1.50mbgl and bentonite from 1.50m to 2.00mbgl. Hole finished with a flush cover and gas tap.  Drilled By: M. Lane  Logged By: J. T / T. K	Date:	14/03/2011			pipe f with c	rom GL to 0.50 concrete from 0	Ombgl and a s GL to 0.10mbg	lotted pipe fi	om 0.50 from 0.1	0m to 1.50mbo 10m to 0.50mb	gl. Hol ogl, gr	e backfilled avel from
Drilled By: M. Lane  Logged By: J. T / T. K	Plant:	Terrier			0.50n	n to 1.50mbgl a						
	Drilled By:	M. Lane			55461	guo tup.						
	Logged By:	J. T / T. K										
		D. Dunn										

	May Gurney Limit Geotechnical - Sil Ayton Road, Wyn	ed le Investigation nondham, NR18 0RH	Windo	ow Sa	ample R	ecord			<b>WS116</b> Sheet 1 of 1	
MAYGURN	Tel: 01953 60985	6 Fax: 01953 609819	Project:	Londo	n Waste Ed	copark, Ed	lmonton			
Project ID: SI	1688		Client:	Entec	UK Ltd				ind Level: 10.4 dinates: 535	115mAOD 655.88E
Contractors ID	):		Engineer	N/A	_				192	701.48N
	Description		Legend	Depth		Sample	e Test Depth (m)	<u> </u>	Remarks and	Installations
MADE GROUND	: TARMAC.			(m) -	(m)	Туре	Deptii (iii)	i e	st Results (ppr	n) -
to coarse SAND.	D: Brown-grey silty ven Gravel is angular to s ck, concrete and flint v 1% brick cobbles.	ubangular		0.25	9.72	ES1	0.40-0.60			
	E GROUND: Firm to s	tiff grey CLAY.		-	02	ES2	0.80-1.00			
Firm to stiff grey s and mottled brow	silty CLAY becoming vn below 1.40mbgl. (A	very soft LLUVIUM).	XX	1.10	9.32	C1	1.20-2.00			
very organic peat	own and black pseudo ty silty CLAY. (ALLUV Complete at 2.00 m	IUM).	××	1.80	8.62 8.42					-
						Water Leve	ıl Observat	ions		
	Drive Records		Date		Water	Standing	Stan		Casing	Depth
Diameter (mm) 102	To (m) 2.00	Recovery (%)	Date		Strike (m)	Time (Mins	,	l (m)	Depth (m)	Sealed (m)
102	2.00				INO GIOUIION	ialoi ETICOUNT	ei <b>c</b> u			
Client: Engineer: Date: Plant: Drilled By: Logged By:	Entec UK Ltd N / A 21/03/2011 Terrier M. Lane J. T / T. K			2. Hole ca 3. Installa pipe fr with co	om GL to 0.50	ogl utilising 12 mm HDPE St mbgl and a sl L to 0.20mbg	8mm diame andpipe ins otted pipe fr I, bentonite	talled from 0.50 from 0.2	om GL to 2.00mbo Om to 1.10mbgl. H 20m to 0.50mbgl, g	ole backfilled
Checked By:	D. DUNN									

	May Gurney Limi Geotechnical - Si Ayton Road, Wyn	te Investigation nondham, NR18 0RH	Windo	ow S	Sam	ple R	ecord			WS117 Sheet 1 of		
MAYGURN	Tel: 01953 60985 Web: www.maygi	6 Fax: 01953 609819 urney.co.uk	Project:	Londo	on W	/aste Ec	copark, Ed	lmonton				
Project ID: SI			Client:	Ented	UK	Ltd				ind Level:		69mAOD 664.23E
Contractors ID	):		Engineer	: N / A	١				000.			88.51N
	Description		Legend	Dept		O.D. Level (m)	Sample Type	e Test Depth (m)	<u> </u>	Remarks and st Results	PID	Installations
MADE GROUND	): TARMAC.			(m)			1 )   0	2 op a 1 (m)	16	3t Mesuits	(ppm)	-89
	D: Yellow-grey silty ver ND. Gravel is angular brick and flint.			0.25	5	10.12	ES1	0.30-0.50				7,3 <b>=</b> \$ ₂ 7
POSSIBLE MAD	E GROUND: Firm to s	stiff brown CLAY.		0.70		9.67	ES2	0.80-1.00				
Firm to stiff grey	CLAY. (ALLUVIUM).			1.10		9.27	C1	1.10-2.00				
Very soft to soft g (ALLUVIUM).	grey mottled brown silt	y CLAY.	××	1.30	,	9.07						-
Very soft dark bro	own and black pseudo	fibrous	× × × × × × ×	1.80	)	8.57						-
very organic pea	ty silty CLAY. (ALLUV Complete at 2.00 m	IUM).	<u>-</u>	2.00	)	8.37						-
				- - -								-
				- -								
				 - -								
				- - -								-
				- - -								-
				-								
				- - -								
				-								
				_								
				 _ _								_
				-								_
				_								
												]
				_								_
				- - -								- - -
							Water Leve	el Observat	ions			
Diameter (mm)	Drive Records To (m)	Recovery (%)	Date			ater (e (m)	Standing Time (Mins	Stan Level		Casing Depth (m		Depth Sealed (m)
102	2.00	recovery (70)				` '	rater Encount	,	(111)	Deptii (ii	.,	ocaica (III)
Client:	Entec UK Ltd		Remarks:	1. Hand	d put c	dug from G	L to 1.20mbo	  L				
Engineer:	N/A			<ol> <li>Hole of</li> <li>Install</li> </ol>	cased lation	at 2.00mb details: 40	gl utilising 12 mm HDPE S	28mm diame tandpipe ins	talled fro	om GL to 1.1	0mbgl	. Plain
Date:	21/03/2011			pipe t with o	from (	GL to 0.50r ete from G	mbgl and a sl L to 0.20mbg	otted pipe fr I, bentonite	om 0.50 from 0.2	0m to 1.10mb 20m to 0.50m	gl. Ho	e backfilled
Plant:	Terrier			U.50n	ın to 1	. rumbgl ar	nd bentonite	1.10m	ιο ∠.00m	iugi.		
Drilled By:	M. Lane											
Logged By: Checked By:	J. T / T. K D. Dunn											
oncored by.	D. Duilli											

May Gurney Limii Geotechnical - Si Ayton Road, Wyn	le Investigation nondham, NR18 0RH	Windo	ow Sa	mple R	ecord			<b>WS118</b> Sheet 1 of 1	
MAYGURNEY Tei: 01953 60985 Web: www.maygr	6 Fax: 01953 609819 irney.co.uk	Project:	London	Waste Ed	copark, Ed	lmonton			
Project ID: SI1688		Client:	Entec U	JK Ltd				nd Level: 10.9 dinates: 5357	84mAOD 715.30E
Contractors ID:		Engineer	N/A	1				1927	708.95N
Description		Legend	Depth	O.D. Level	Sample Type	e Test Depth (m)		temarks and st Results (ppm	Installations
MADE GROUND: Mixed black silty gracoarse SAND. Gravel is angular to rou to coarse flint with some brick and orar silty gravelly (approximately 15%) CLA is angular to subrounded fine to coarse MADE GROUND: Firm to stiff grey-bro sandy slightly gravelly (approximately Gravel.is angular to subrounded fine to flint with some brick.  MADE GROUND: Yellow brown slightly sandy angular to subangular fine to cogravel  MADE GROUND: Firm dark CLAY.  MADE GROUND: Yello brown GRAVE subrounded to rounded fine to coarse to sandy silt.  MADE GROUND: Brown silty gravelly is subangular fine to coarse flint and brown with the subrounded sample Complete at 2.00 m.	nded fine ige-brown Y. Gravel e flint. wn slightly 10%) o coarse  y silty very arse flint  L. and flint with brown  SAND. Gravel ick.		0.80 - 1.20 - 1.40 - 1.60 - 2.00	(m) 10.68 10.18 9.78 9.58 9.38 9.08 8.98	ES1 ES2 ES3 C1	0.10-0.30 0.40-0.60 1.00-1.20 1.20-2.00		St Results (ppm	
Drive Records Diameter (mm) To (m)	Recovery (%)	Date	S	Water trike (m)	Standing Time (Mins	Stan ) Leve		Casing Depth (m)	Depth Sealed (m)
102 2.00				. ,	rater Encount		· ···/	23p(III)	Coulou (III)
Client: Entec UK Ltd Engineer: N / A Date: 18/03/2011 Plant: Terrier Drilled By: M. Lane Logged By: J. T / T. K Checked By: D. Dunn		;	2. Hole cas 3. Hole teri pipe). F	sed at 2.00mb minated at 2.0 Possible service ckfilled with a	ce suspected	3mm diame ackfilled due to be redun	e to poss dant.	ng. iible service strike pentonite from 1.00	

		te Investigation nondham, NR18 0RH	Windo	ow Sa	ample R	ecord			<b>WS119</b> Sheet 1 of 1	
MAYGURN	Tel: 01953 60985 Web: www.maygu	6 Fax: 01953 609819 urney.co.uk	Project:	Londor	waste Ed	copark, Ed	dmonton			
Project ID: SI			Client:	Entec	UK Ltd				und Level: 10. rdinates: 535	788mAOD 5766.40E
Contractors ID	). 		Engineer	: N/A	_					?717.01N
	Description		Legend	Depth (m)	O.D. Level (m)	Sample Type	e Test Depth (m)	-	Remarks and est Results (ppr	Installations
MADE GROUND	: TARMAC.		***************************************	0.10	10.69	71	-1 ( )	10	est Results (ppr	- 4 6
CONCRETE.			·^^	0.30	10.49	ES1	0.30-0.50			
fine to coarse SA	e: Yellow-brown silty v ND. Gravel is angular to coarse flint with occ	to		0.60	10.19 10.04	B1 B2 ES2	0.35-0.50 0.60-0.80 0.80-1.00			
	e Brick and tarmac gra carse SAND matrix.	avel and rubble		1.20	9.59	B3 C1	1.00-1.20			
SAND. Gravel is coarse brick and	EBlack silty gravelly fi angular to subrounde flint with approximate ome sandy clay pocket	d fine to ly 15%		1.50	9.29	ES3	1.40-1.50			
Stiff to very stiff g	rey speckled black Cl			1.80	8.99					-
(ALLUVIUM).	rey-brown CLAY. (AL	I UVIUM)		2.00	8.79					
(ALLUVIUM).	Slightly sandy CLAY.  Complete at 2.00 m									
						Water Leve	el Observat	ions	i .	İ
Diameter (mm)	Drive Records To (m)	Recovery (%)	Date		Water Strike (m)	Standing Time (Mins	Stan Leve		Casing Depth (m)	Depth Sealed (m)
102	2.00	Necovery (%)			. ,	vater Encount	,	(111)	Deptil (III)	Gealeu (III)
Client: Engineer: Date: Plant: Drilled By: Logged By:	Entec UK Ltd N / A 15/03/2011 Terrier M. Lane J. T / T. K			2. Hole ca 3. Installat pipe fro with co	om GL to 0.50	ogl utilising 12 omm HDPE St mbgl and a sl GL to 0.20mbg	28mm diame tandpipe ins otted pipe fi I, bentonite	stalled from 0.50 from 0.2	om GL to 1.20mb Om to 1.20mbgl. H 20m to 0.50mbgl,	ole backfilled
Checked By:	D.Dunn									

	May Gurney Limi Geotechnical - Si Ayton Road, Wyr		Windo	ow Sa	ample R	Record			<b>WS120</b> Sheet 1 of 1	
MAYGURN	Tel: 01953 60985 Web: www.mayg	6 Fax: 01953 609819 urney.co.uk	Project:	Londor	Waste E	copark, Ed	dmonton			
Project ID: SI	1688		Client:	Entec	UK Ltd				und Level: 10.	741mAOD 5708.80E
Contractors ID	): 		Engineer	: N/A				0001		2546.54N
	Description		Legend	Depth	O.D. Level	Sample			Remarks and	Installations
MADE ODOUBLE	D: ( 10 (		~~~~	(m)	(m)	Туре	Depth (m)	Те	est Results (pp	
	D: Reinforced Concrete  D: Sandy concrete and			0.20	10.54					
MADE GROUND	o: Yellow-brown silty v angular fine to coarse	ery gravelly		0.35	10.39	B1 ES1	0.35-0.60 0.40-0.60 0.70-0.90			
MADE GROUND slightly gravelly (	o: Dark grey and greer CLAY. Gravel is angul oarse flint and concre	ar to		- 0.76 	10.04	B2 C1	0.80-1.20			
	o: Dark grey-brown sa gular fine to coarse fli			1.73 1.80 1.85	9.01 8.94 8.89	ES3 ES4 C2	1.75-1.80 1.80-1.85 2.00-3.00			
	ottled brown slightly g subangular to rounde UVIUM).			2.30 2.35	8.44 8.39					
	d CLAY. (ALLUVIUM). Ombgl. Becoming soft.		×××××	2.45	8.29					-
Very soft grey mo (ALLUVIUM).	ottled brown silty CLA	Υ.	2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16 2) 16	2.80 2.95 3.00	7.94 7.79 7.74					
Very soft dark gre (ALLUVIUM).	ey mottled brown SIL1			_ 3.00 _ _	7.74					=
Very soft dark bro SILT. (ALLUVIUM	own pseudo fibrous (p M).	eaty)		<u>-</u> -						-
Firm dark brown	pseudo fibrous PEAT	(ALLUVIUM).		-						-
fine to coarse flin	ly GRAVEL of subrouit. (KEMPTON PARK of Complete at 3.00 m	GRAVEL).				Water Lev	al Ohsanvat	ions		
	Drive Records				\\/	1			One in a	Double
Diameter (mm)	To (m)	Recovery (%)	Date		Water Strike (m)	Standing Time (Mins	Stan s) Leve		Casing Depth (m)	Depth Sealed (m)
102 86	2.00 3.00		-		2.80	-	-		-	
Client: Engineer: Date: Plant: Drilled By:	Entec UK Ltd N / A 16/03/2011 Terrier M. Lane			2. Hole ca 3. Installate pipe from with co	om GL to 0.50	ogl utilising 12 Omm HDPE S Ombgl and a s GL to 0.20mbg	28mm diame tandpipe ins lotted pipe fi gl, bentonite	talled from 0.50 from 0.2	om GL to 1.80mb Om to 1.80mbgl. F 20m to 0.50mbgl,	lole backfilled
Logged By:	J. T / T. K									
Checked By:	D.Dunn									

May Gurney Limited Geotechnical - Site Investigation Ayton Road, Wymondham, NR18 0RH	Wind	ow Sa	mple R	ecord			VS12 heet 1 of		
MAYGURNEY  Tel: 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk	Project:	London	Waste Ed	copark, E	dmonton				
Project ID: SI1688 Contractors ID:	Client: Engineer	Entec U	JK Ltd			Ground Coordi		5358	03mAOD 803.55E 888.84N
Description	Legend	Depth	O.D.	Samp	le Test	_	marks		
Description	Legend	(m)	Level (m)	Туре	Depth (m)		and Results	PID (ppm)	Installations
MADE GROUND: Tarmac.		0.01	10.70					,	- 4
CONCRETE.	XXXXX	0.30	10.40	ES1	0.30-0.50				
MADE GROUND: Yellow-brown silty very gravelly fine to coarse SAND. Gravel is angular to rounded fine to coarse flint.		-	0.00						- 5.4 - 5.4
MADE GROUND: Fine to stiff dark grey slightly sandy slightly gravelly (approximately 15%) CLAY. Gravel is angular to subangular fine to		) 0.80 )  -	9.90	ES2	0.90-1.10				
coarse flint, brick and concrete (approximately 10%) concrete and brick cobbles.		<del>}</del>		C1	1.20-2.00				
From 1.10mbgl Becoming soft to firm with no cobblesFrom 1.40mbgl Becoming stiff.		X X		ES3	1.50-1.60				
		<u> </u>		C2	2.00-3.00				
MADE COOLIND: Province blook oilles constitut COAVEL of		2.40	8.30	ES4	2.40-2.80				
MADE GROUND: Brown-black silty sandy GRAVEL of angular fine to coarse flint.		2.65	8.05						-
MADE GROUND: Soft to firm grey-brown silty slightly gravelly CLAY. Gravel is subangular to subrounded medium to coarse flint and rare brick.				СЗ	3.00-4.00				
Poor recovery (casing to 2.00mbgl flow back) Possible natural Between 4.00m and 4.30mbgl Brick cobbles.		4.00	6.70	C4	4.00-5.00				- - - - - - - - - -
Stiff brown slightly gravelly CLAY. Gravel is	ف در در در د	5.90	4.80	C5	5.00-6.00				
subrounded to rounded medium flint. (ALLUVIUM).  Window Sample Complete at 6.00 m		6.00	4.70						
		1	1	Water Lev	rel Observat	ions			<u>ı , l</u>
Drive Records	Date		Water	Standing	Stan		Casing		Depth
Diameter (mm)         To (m)         Recovery (%)           102         2.00           86         3.00           76         6.00	-	S	trike (m) 2.80	Time (Min	s) Leve	(m)	Depth (r	n)	Sealed (m)
Client: Entec UK Ltd  Engineer: N / A  Date: 15/03/2011-16/03/2011  Plant: Terrier  Drilled By: M. Lane		<ol> <li>Hole cas</li> <li>Installation pipe from with corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the corrupt of the cor</li></ol>	t dug from G sed at 2.00mb on details: 40 m GL to 0.50 ncrete from G o 2.30mbgl a lapsed betwe	ogl utilising 1 mm HDPE S mbgl and a s L to 0.20mb nd bentonite	28mm diame Standpipe ins slotted pipe fi gl, bentonite from 2.30m	talled from om 0.50m from 0.20r	GL to 2.3 to 2.30ml n to 0.50m	ogl. Ho	e backfilled
Logged By: J. T / T. K Checked By: D.Dunn									

MAYGURNEY  Tet 01953 609856 Fax: 01953 609819 Web: www.maygurney.co.uk  Project: London Waste Ecopark, Edmonton  Client: Entec UK Ltd Ground Level: 10.744mAOD Coordinates: 535747.13E 192518.46N  Contractors ID: Sample Test Remarks	-	May Gurney Limit Geotechnical - Sit Ayton Road, Wyn	ed e Investigation nondham, NR18 0RH	Windo	ow S	ample l	Record			<b>WS122</b> Sheet 1 of 1	
Contractors ID:  Engineer: N / A  Description  Legend Depth (m) CD Sample Test Type Depth (m) Test Results [spin]  MADE GROUND Turnac.  CONCRETE.  MACE GROUND Turnac in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the contract in the c	MAY GURNEY	Tel: 01953 60985	6 Fax: 01953 609819	Project:	Londo	on Waste E	Ecopark, E	dmonton			
Description  Legend Depth (m)	Project ID: SI1688	3		Client:	Ented	: UK Ltd					
Description  Legend (m) (m) (m) Type   Depth (m)   Test Results   Depth (m)   Type   Depth (m)   Test Results   Depth (m)   Test	Contractors ID:			Engineer	: N / A	\ 				192	
MADE GROUND: Verliew brown slightly silty very gravely into 10 causes SANO. Grave Is any part much to cause SANO. Grave Is any part of the course SANO. Grave Is any part of the course SANO. Grave Is any part of the course Ind. An 0.0mb/m much brink mubble   0.75   9.99   Esc   0.80-1.00	D	escription		Legend	l	in Level		1	<u> </u>	and	Installations
MADE GROUND Yellow brown slightly silly very gravely fine to coarse SAND. Grave is an experience of the coarse SAND. Grave is an experience of the coarse SAND. Grave is any gravely fine to coarse SAND. Grave is any gravely fine to coarse SAND. Grave is any gravely fine to coarse school. Coarse is any large fine to coarse (brins, concrete and first to coarse fine).  MADE GROUND thrown grey sity gravely fine to coarse fine to coarse fine.  Fine 1 clambed becoming grey thrown  MADE GROUND thrown grey sity gravely gravely gravely gravely clark. Gravel is angular for suborgation fine to coarse fine.  Fine 1 clambed becoming grey thrown  MADE GROUND threy sand sandy gravely. SLIT.  Fine 1 clambed becomes grey thrown  MADE GROUND threy sandy gravely. SLIT.  AND GROUND threy sandy gravely. SLIT.  AND GROUND threy sandy gravely. SLIT.  AND GROUND threy sandy gravely. SLIT.  AND GROUND threy sandy gravely. SLIT.  AND GROUND threy sandy gravely. SLIT.  AND GROUND threy sandy gravely gravely gravely silly clark.  Fine 1 clambed gravely gravely gravely gravely silly gravely ality clark.  Fine 1 clambed gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gravely gra	MADE GROUND: Tar	mac.	/	· · · · · · · · · · · · · · · · · · ·	0.05	10.69	Турс	Deput (III)	i e	St Results (ppm	- 10
gravelly fine to coarse SAND. Gravel is supported from the coarse fint.  ALO 300 mbg/much broke coarse fint.  ALO 400 mbg/much broke coarse fint.  ALO 500 mbg/	CONCRETE.		/		0.20	10.54	ES1	0.30-0.50			
coarse SAND. Grave Is angular fine to coarse (hint). Concrete and fint.  MADE GROUND. Firm to sift brown-grey slightly gravelly situation. From 1 Global personnel starting and slight of the coarse find and fint.  MADE GROUND. Soft brown-grey slightly gravelly situation. From 1 Global personnel starting and slight of the coarse find and brick and rare wood flagments. Cabble codour at 3.95mbg.  MADE GROUND. Very soft sandy gravelly SILT. Gravel is angular to subenquiat fine to coarse find and brick and rare wood flagments. Cabble codour at 3.95mbg.  Brown sandy GRAVEL at angular to subrounded fine to coarse find and brick and rare wood flagments. Cabble codour at 3.95mbg.  Window Sample Complete at 5.00 m  Drive Records  Diameter (mm) To (m) Recovery (%) 1603/11 3.00 20 20 2.20	gravelly fine to coarse subrounded to angula	e SAND. Gravel is ar fine to coarse fl			0.75	5 9.99	ES2	0.80-1.00			- -
sandy gravelly CLAY. Cravel is angular to subangular fine to coarse wint. Am and the coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine to coarse fine	coarse SAND. Gravel	is angular fine to			1.10	9.64	C1	1.20-2.00			
MADE GROUND: Very soft sandy gravelly SILT. Gravel is angular for to coarse fill that and brick and rare wood fragments. Cobble of clinker with hydrocarbon staining and slight  Odour at 3.95mbg.  Water Level Observations  From sendy GRAVEL at angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL).  Window Sample Complete at 5.00 m  Diameter (mm) To (m) Recovery (%)  182 800 Recovery (%)  180 1603/11 3.00 20 220 Depth (m) Sealed (m)  Client: Entec UK Ltd Engineer: N / A  Level Characteristics (m) Stranding Stranding Casing Depth (m)  Sealed (m)  Recovery (%)  1803/2011  Plant: Terrier  Logged By: J. T / T . K	sandy gravelly CLAY. subangular fine to coa	Gravel is angula arse brick and flin	r to t.		<u>-</u> - - - - - - - -						
MADE GROUND: Very soft sandy granty SILT: Gravel Is angular for subengular fine to coarse flint and brick and raise wood fragments. Cobble door at 3.95mbgl.  Brown sandy GRAVEL at angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL).  Window Sample Complete at 5.00 m  Drive Records Diameter (mm) To (m) Recovery (%) 1026 3.00  Diameter (mm) To (m) Recovery (%) 1030 16003/11  Diameter (mm) To (m) Recovery (%) 1040 2.20  Diameter (mm) To (m) Recovery (%) 1050 3.00  Diameter (mm) To (m) Recovery (%) 1060 3.00  Diameter (mm) To (m) Recovery (%) 1070 3.00  Diameter (mm) To (m) Recovery (%) 1080 3.00  Diameter (mm) To (m) Recovery (%) 1090 3.00  Diameter (mm) To (m) Sobroby Hole backflied with concrete from 15 to 100 domby a slotted prefer from 1 00m to 3 50mbgl. Hole backflied with concrete from 15 to 100 domby a slotted prefer from 1 00m to 3 50mbgl. Hole backflied with concrete from 15 to 100 domby a slotted prefer from 1 00m to 3 50mbgl. Hole backflied with concrete from 15 to 100 domby a slotted prefer from 1 00m to 3 50mbgl. Hole backflied with concrete from 15 to 100 domby a slotted prefer from 1 00m to 3 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Hole backflied with concrete from 15 50mbgl. Ho	silty CLAY. Gravel is				2.00	8.74	C2	2.00-3.00			_
Brown sandy GRAVEL at angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL).  Window Sample Complete at 5.00 m    Solution   Soluti	Gravel is angular to s flint and brick and rare	ubangular fine to e wood fragments	coarse . Cobble		2.50	8.24	ES4	2.60-2.70			
Brown sandy GRAVEL at angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL).  Window Sample Complete at 5.00 m    Solution   Soluti		arbori staning an	a siigrit		X X X X X X X X X X X X X X X X X X X		С3	3.00-4.00			
Window Sample Complete at 5.00 m  Water Level Observations    Dive Records				× × × × × × × × × × × × × × × × × × ×	4.00	6.74	C4	4.00-5.00			-
Diameter (mm) To (m) Recovery (%)    Date   Standing Time (Mins)   Standing Level (m)   Depth (m)   Sealed (m)	Window Sample Cor	nplete at 5.00 m			5.00	5.74					
Diameter (mm) To (m) Recovery (%)  102 3.00 5.00  Client: Entec UK Ltd Engineer: N / A Date: 16/03/2011 Plant: Terrier  Diameter (mm) To (m) Recovery (%)  Recovery (%)  16/03/11 3.00 20 2.20  Remarks: 1. Hand pit dug from GL to 1.20mbgl. 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 3.50mbgl. Plain pipe from GL to 1.00mbgl and a slotted pipe from 1.00m to 3.50mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 1.00mbgl, gravel from 1.00m to 3.50mbgl and bentonite from 3.50m to 4.00mbgl.  Drilled By: M. Lane  Logged By: J. T / T. K					<u>I</u> ,		Water Lev	el Observat	ions		
Diameter (mm) To (m) Recovery (%) Strike (m) Time (Mins) Level (m) Depth (m) Sealed (m)  102 3.00 5.00  Client: Entec UK Ltd Engineer: N / A Date: 16/03/2011 Plant: Terrier Drilled By: M. Lane Logged By: J. T / T. K	D	rive Records		Data		Water			ding	Casing	Depth
Client: Entec UK Ltd Engineer: N / A Date: 16/03/2011 Plant: Terrier Drilled By: M. Lane Logged By: J. T / T. K  Remarks: 1. Hand pit dug from GL to 1.20mbgl. 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 3.50mbgl. Plain pipe from GL to 1.00mbgl and a slotted pipe from 1.00m to 3.50mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 1.00mbgl, gravel from 1.00m to 3.50mbgl and bentonite from 3.50m to 4.00mbgl. 4. Hole collapsed between 4.00m and 5.00mbgl.	` '	. ,	Recovery (%)			Strike (m)	Time (Min	s) Leve	l (m)		
Engineer: N / A  2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 3.50mbgl. Plain pipe from GL to 1.00mbgl and a slotted pipe from 1.00m to 3.50mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 1.00mbgl, gravel from 1.00m to 3.50mbgl and bentonite from 3.50m to 4.00mbgl.  Plant: Terrier  Drilled By: M. Lane  Logged By: J. T / T. K	102 86	3.00 5.00		16/03/11		3.00	20	2.20	)	-	
	Engineer: N / Date: 16/0 Plant: Teri Drilled By: M. I	A 03/2011 rier Lane			2. Hole of 3. Install pipe with of 1.00r	cased at 2.00n ation details: 4 from GL to 1.0 concrete from n to 3.50mbgl	nbgl utilising 1. 40mm HDPE S 00mbgl and a s GL to 0.20mbo and bentonite	28mm diame Standpipe ins slotted pipe fi gl, bentonite from 3.50m	talled from 1.00 from 0.2	om GL to 3.50mbg om to 3.50mbgl. Ho 20m to 1.00mbgl, g	le backfilled
i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de											

Project ID: Sit 688  Contractors ID:  Description  Description  Description  Legend Depth (n) Level   Sample Test    1		e Investigation ondham, NR18 0RH	Windo	ow Sa	mple R	ecord			WS12 Sheet 1 of			
Engineer: N / A  Description  Legend Depth (m) Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) Test Results grow Depth (m) T	MAYGURN	Web: www.maygu		Project:	London	Waste Ed	copark, E	dmonton				
Description  Legend Depth (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)						JK Ltd						
Description  Legend (m)   Cept   Type   Depth (m)   Type   Depth (m)   Test Results   Depth (m)   Depth (	Contractors in	j.		Engineer	: N / A						1924	48.15N
MADE GROUND: Dense brown-gy slity gravelly fine to coarse SAND, Grover is angular for founded (in the coarse SAND State is angular for founded (in the coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is angular fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine to coarse SAND, Grover is submitted fine fine to coarse SAND, Grover is submitted fine fine fine fine fine fine fine fine		Description		Legend		Level	·	ı		and		Installations
MADE GROUND. Express gravely CLAY. Grower is angular for counded fine to casse.  MADE GROUND Strown gravely care gravely CLAY. Grower is angular for counded fine to casse.  MADE GROUND Strown gravely gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravely clay.  MADE GROUND Strown gravel	MADE GROUND	): Tarmac.		XXXXX	- ` ′						(FF)	- 24 40
ADDEC GROUND. Sitt from converse, growelly CLAY.  (Cover) is angular to nounded fine to convene.  (Rounded to angular filint, brick and tarmac.  MADE GROUND. Brown-grey daysey very gravely growely concert to angular filint, brick and tarmac.  MADE GROUND. Grey slightly sitly very sandy rounded to angular filint, concrete and brick (GRAVEL.  MADE GROUND. Sitt green-grey slightly gravely concert to angular filint, concrete and brick (GRAVEL.  MADE GROUND. Sitt green-grey slightly gravely concert to angular filint, concrete and brick (GRAVEL.  MADE GROUND. Sitt green-grey slightly gravely concert to angular filint, concrete and brick (GRAVEL.  MADE GROUND. Sitt green-grey slightly gravely concert to angular filint, concrete and brick (GRAVEL.  MADE GROUND. Sitt green-grey slightly gravely concert to angular filint, concrete and brick (GRAVEL.  MADE GROUND. Sitt green-grey slightly gravely concert to angular filint, concrete and brick (GRAVEL.  MADE GROUND. Sitt green-grey slightly gravely concert to angular filint, concrete and brick (GRAVEL.  MADE GROUND. Sitt green-grey slightly gravely concert to angular filint to concert and shelly filint to concert and shelly (GRAVELLOVIUM).  Soft green grey speckled black CLAY.  (ALLUVIUM).  Window Sample Complete at 3.00 m   Water Level Observations  To concert form (Lining Concert of the Concert of the Concert of the Concert of the Concert form (Lining Concert of the Concert of the Concert form (Lining Concert of the Concert form (Lining Concert of the Concert form (Lining Concert form (Lining Concert form (Lining Concert form (Lining Concert form (Lining Concert form (Lining Concert form (Lining Concert form (Lining Concert form (Lining Concert form (Lining Concert form (Lining Concert form (Lining Concert form (Lini	to coarse SAND.	Gravel is angular to re			E-							- 
MADE GROUND. Brown-grey clayery any greetly fine to coarse shirt and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and filmt. (approximately 20% brick coarse brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and brick and bric	MADE GROUND Gravel is angular	D: Stiff brown-grey graver to rounded fine to coa	arse.				ES3	0.80-1.00				
Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Tabl	MADE GROUND fine to coarse SA coarse brick and	D: Brown-grey clayey v ND. Gravel is angular	ery gravelly fine to				ES4	1.20-1.30				
CLAY. Grave is subangular medium to coarse fills, brick and concrete. Black hydrocarbon and 1.50mbgl.  MADE GROUND: Siff green-grey mottled black slightly gravelly CALY. Gravel is subangular fine to medium flint.  —At 1.5mbgl.  MADE GROUND: Siff green-grey speckled black CLAY. (ALLUVIUM)  Soft green grey speckled black CLAY. (ALLUVIUM)  Grey gravelly SAND. Gravel is subangular to rounded fine to coarse fill and shelly fragments. (ALLUVIUM)  Window Sample Complete at 3.00 m  Drive Records  Diameter (mm) To (m) Recovery (%)  Date Strike (m) Time (Mins) Level (m) Depth (m) Sealed (m)  No Groundwister Encountered  Permarks: 1. Hand pit dug from GL to 1.20mbgl. Plain shealthed and the level (m) one of 1.50mbgl. Plain shealthed with concrete from GL to 0.20mbgl. perionite from 0.20m to 0.50mbgl, gravel from 0.50m to 1.50mbgl, grave	rounded to angul						C2	2.00-3.00				
MADE GROUND: Stiff green-grey mottled black slightly gravelly CLAY. Gravel is subangular fine to medium spready band.  3.00  Stiff green-grey speckled black CLAY. (ALLUVIUM).  Grey gravelly SAND. Gravel is subangular to nunded fine to coarse finit and shely fragments. (ALLUVIUM).  Window Sample Complete at 3.00 m   Water Level Observations  Water Level Observations  Water Level Observations  Standing Standing Casing Depth (Mins)  Fine (Mins)  Standing Level (m) Depth (m) Sealed (m)  No Groundwater Encountered  Remarks: 1. Hand pit dug from GL to 1.20mbgl.  Plant: Entec UK Ltd Engineer: N / A  Date: 16/03/2011  Plant: 16/03/2011  Plant: Terrier  Dirilled By: M. Lane  Logged By: J. T. / T. K	CLAY. Gravel is a flint, brick and co staining and sligh	subangular medium to increte. Black hydroca	coarse rbon	××××	2.50	8.67						-
Soft grey clayey SILT. (ALLUVIUM).	MADE GROUND slightly gravelly 0 fine to medium fli	CLAY. Gravel is suban int.		X X X X X X X X X X X X X X X X X X X								
Grey gravelly SAND. Gravel is subangular to rounded fine to coarse filtrit and shelly fragments. (ALLUVIUM).  Window Sample Complete at 3.00 m   Water Level Observations    Drive Records		speckled black CLAY.			- - -							-
incurded fine to coarse fint and shelly fragments, (ALLUVIUM).  Window Sample Complete at 3.00 m  Water Level Observations  Water Level Observations  Drive Records  Diameter (mm) To (m) Recovery (%)  102 2.00 86 3.00  No Groundwater Encountered  No Groundwater Encountered  Find (mins) Level (m) Depth (m) Sealed (m)  No Groundwater Encountered  Remarks: 1. Hand pit dug from GL to 1.20mbgl. 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3. Installation details: 40mm Holps 128mm diameter casing. 3.	Soft grey clayey	SILT. (ALLUVIUM).			- -							-
Water Level Observations  Water Level Observations  Water Level Observations  Water Level Observations  Drive Records Date Strike (m) Time (Mins) Standing Time (Mins) Level (m) Depth (m) Sealed (m)  No Groundwater Encountered  Remarks: 1. Hand pit dug from GL to 1.20mbgl. Level (m) Depth (m) Sealed (m)  Plant: Entec UK Ltd Engineer: N / A  Date: 16/03/2011 Plant: Terrier  Drilled By: M. Lane  Logged By: J. T./ T. K	Grey gravelly SA rounded fine to c	ND. Gravel is subang coarse flint and shelly	ular to		-							_
Date   Drive Records   Date   Water Level Observations	fragments. (ALLU	JVIUM).			_							
Diameter (mm) To (m) Recovery (%)    Date   Strike (m)   Time (Mins)   Standing   Level (m)   Depth (m)   Sealed (m)	Window Sample	e Complete at 3.00 m			_							
Diameter (mm) To (m) Recovery (%)    Date   Water Strike (m) Time (Mins)   Standing Level (m)   Depth (m)   Sealed (m)					-							-
Diameter (mm) To (m) Recovery (%)    Date   Water Strike (m) Time (Mins)   Standing Level (m)   Depth (m)   Sealed (m)					-							-
Diameter (mm) To (m) Recovery (%)    Date   Water Strike (m) Time (Mins)   Standing Level (m)   Depth (m)   Sealed (m)					-							_
Diameter (mm) To (m) Recovery (%)    Date   Water Strike (m) Time (Mins)   Standing Time (Mins)   Level (m)   Depth (m)   Sealed (m)					- -							-
Diameter (mm) To (m) Recovery (%)    Date   Water Strike (m) Time (Mins)   Standing Level (m)   Depth (m)   Sealed (m)					-							-
Diameter (mm) To (m) Recovery (%)    Date   Water Strike (m) Time (Mins)   Standing Level (m)   Depth (m)   Sealed (m)					-							
Diameter (mm) To (m) Recovery (%)    Date   Water Strike (m) Time (Mins)   Standing Level (m)   Depth (m)   Sealed (m)												]
Diameter (mm) To (m) Recovery (%)    Date   Water Strike (m) Time (Mins)   Standing Level (m)   Depth (m)   Sealed (m)					-							_
Diameter (mm) To (m) Recovery (%)    Date   Strike (m)   Time (Mins)   Standing   Level (m)   Depth (m)   Sealed (m)					-							-
Diameter (mm) To (m) Recovery (%)  102 2.00 3.00  Client: Entec UK Ltd Engineer: N / A Date: 16/03/2011 Plant: Terrier  Diameter (mm) To (m) Recovery (%)  Recovery (%)  Recovery (%)  No Groundwater Encountered  Remarks: 1. Hand pit dug from GL to 1.20mbgl. 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 1.90mbgl. Plain pipe from GL to 1.00mbgl and a slotted pipe from 1.00m to 1.90mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 1.90mbgl and bentonite from 1.90m to 3.00mbgl.  Logged By: J. T / T. K					<u> </u>		Water Lev	el Observat	ions			
Diameter (mm)  To (m)  Recovery (%)  Strike (m)  No Groundwater Encountered  No Groundwater Encountered  Client:  Entec UK Ltd  Engineer:  N / A  Date:  16/03/2011  Plant:  Terrier  Drilled By:  M. Lane  Logged By:  J. T / T. K		Drive Records		Date		Water			ding	Casino	,	
Client: Entec UK Ltd Engineer: N / A Date: 16/03/2011 Plant: Terrier Drilled By: M. Lane Logged By: J. T / T. K  Remarks: 1. Hand pit dug from GL to 1.20mbgl. 2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 1.90mbgl. Plain pipe from GL to 1.00mbgl and a slotted pipe from 1.00m to 1.90mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 1.90mbgl and bentonite from 1.90m to 3.00mbgl.	. ,		Recovery (%)	Date	S	Strike (m)	Time (Min	s) Level				
Engineer: N / A  2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 1.90mbgl. Plain pipe from GL to 1.00mbgl and a slotted pipe from 1.00m to 1.90mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 1.90mbgl and bentonite from 1.90m to 3.00mbgl.  Plant: Terrier  Drilled By: M. Lane  Logged By: J. T / T. K	86	3.ŏŏ				. to Ground	Lioudii					
Engineer: N / A  2. Hole cased at 2.00mbgl utilising 128mm diameter casing. 3. Installation details: 40mm HDPE Standpipe installed from GL to 1.90mbgl. Plain pipe from GL to 1.00mbgl and a slotted pipe from 1.00m to 1.90mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 1.90mbgl and bentonite from 1.90m to 3.00mbgl.  Plant: Terrier  Drilled By: M. Lane  Logged By: J. T / T. K	Client:	Entec UK Ltd		Remarke:	1 Hand n	it dua from C	   to 1.20mba	 I				
Date: 16/03/2011 pipe from GL to 1.00mbgl and a slotted pipe from 1.00m to 1.90mbgl. Hole backfilled with concrete from GL to 0.20mbgl, bentonite from 0.20m to 0.50mbgl, gravel from 0.50m to 1.90mbgl and bentonite from 1.90m to 3.00mbgl.  Drilled By: M. Lane  Logged By: J. T / T. K					2. Hole ca	sed at 2.00mb	ogl utilising 1	28mm diame	eter casing	g. m Gl to 10	10mhal	Plain
Plant: Terrier 0.50m to 1.90mbgl and bentonite from 1.90m to 3.00mbgl.  Drilled By: M. Lane  Logged By: J. T / T. K	-				pipe fro	m GL to 1.00	mbgl and a s	lotted pipe fr	om 1.00n	n to 1.90ml	ogl. Ho	e backfilled
Drilled By: M. Lane Logged By: J. T / T. K											ıvgı, gl	avei IIOIII
Logged By: J. T / T. K												
	-											
· ·												

	May Gurney Limi Geotechnical - Si Ayton Road, Wyn	te Investigation nondham, NR18 0RH	Wind	ow Sa	mple R	Record			<b>WS124</b> Sheet 1 of 1	
MAYGURN	Tél: 01953 60985 Web: www.maygr	6 Fax: 01953 609819 urney.co.uk	Project:	London	Waste Ed	copark, E	dmonton			
Project ID: SI	1688		Client:	Entec U	JK Ltd			Grou	und Level: 11.2	207mAOD
Contractors IE	D:		Engineer	: N/A				Coor		739.14E 436.79N
	Description		Legend	Depth	O.D. Level	Sampl	e Test	F	Remarks and	Installations
				(m)	(m)	Туре	Depth (m)	Те	est Results (ppn	
MADE GROUND		. Gas ta		0.20	11.01	ES1	0.20-0.40			- EST 80
coarse SAND. G brick, concrete a	D: Dense grey silty ver ravel is angular fine to nd flint.	y fine to coarse		0.55	10.66					Ft.4 = 335
	D: Firm brown CLAY w gular fine to coarse fli			) )		ES2	0.80-1.00			
MADE GROUND Gravel is angular	D: Green-brown very g	ravelly SAND.		1.15	10.06	C1 ES3 ES4	1.20-2.00 1.30-1.40 1.35			
flint. At 1.35mb	ogl Asbestos pipe frag	ment. /		1.40	9.81 9.66	ES5	1.40-1.50			
MADE GROUND of angular to rou	D: Black-brown slightly nded fine to coarse flir	sandy GRAVEL		<del>-</del>  		ES6	1.90-2.00			
MADE GROUND	on staining and slight on Stiff dark brown sligl	ntly gravelly		× -		C2	2.00-3.00			
	angular fine to coarse			<del>-</del>						
Stiff dark brown-g	grey CLAY with some	pseudo	* * * * *	2.50 2.65	8.71 8.56					
	terial. (ALLUVIUM). mottled brown clayey s	/ SILT	$\times \times $							-
(ALLUVIUM).			XXXXX	3.00	8.21					-
Willdow Sample	e Complete at 3.00 m									]
				_						
				_						
				-						_
				-						-
				-						-
				-						
				-						
				_						
				_						
				_						
				E						
				-						_
				-		Water Lev	el Observat	ions		-
	Drive Records				Water	Standing	Stan		Casing	Depth
Diameter (mm)	To (m)	Recovery (%)	Date	S	trike (m)	Time (Min			Depth (m)	Sealed (m)
102 86	2.00 3.00		16/03/11		1.20	-	-		-	
Client:	Entec UK Ltd		Demarks	1 Hand -	it dua from O	to 1 20mb =				
Engineer:	N/A			2. Hole cas	it dug from G sed at 2.00ml	ogl utilising 1	28mm diame	eter casi	ing. om GL to 2.50mb	ıl Plain
Date:	16/03/2011			pipe fro	m GL to 1.00	mbgl and a s	lotted pipe fi	om 1.00	0m to 2.50mbgl. H	ole backfilled
Plant:	Terrier				ncrete from G to 2.50mbgl a				20m to 0.50mbgl, onbgl.	graver from
Drilled By:	M. Lane									
Logged By:	J. T / T. K									
Checked By:										

	May Gurney Limit Geotechnical - Sit Ayton Road, Wyr	ed e Investigation nondham, NR18 0RH	Windo	ow S	amp	le R	ecord			WS12		
MAYGURN	Tel: 01953 60985	6 Fax: 01953 609819	Project:	Londo	n Was	te Ec	copark, Ed	dmonton			-	
Project ID: SI1			Client:	Ented	: UK Lt	d				nd Level:		
Contractors ID	): 		Engineer	N/A								99.21N
	Description		Legend	Dept (m)	in Le	).D. evel m)	Sample Type	e Test Depth (m)	<u> </u>	Remarks and st Results	PID	Installations
MADE GROUND:	: Tarmac		XXXX						10	ot i toodito	(ppm)	-44.69
gravelly fine to co	: Yello-brown slightly parse SAND. Gravel is to coarse flint with a	angular		0.30 0.55 0.70	5 10	).29 ).04 .89	ES1	0.30-0.50				<u>-</u>
MADE GROUND: cobbles.	: Sandy angular brick	gravel and		_ 		.49	E52	0.80-1.00				
MADE GROUND	: Stiff grey CLAY.	/	$\times\!\!\times\!\!\times\!\!\times$	1.30			C1 ES3	1.20-2.00 1.20-1.30				<b>-</b> ₩ <b>=</b> ₩
MADE GROUND	: Very soft brown-grey	/ clayey SILT.	$\times\!\!\times\!\!\times\!\!\times$	- 1.30	,   9	.29						761
silty CLAY. Grave to medium flint an	: Stiff dark grey slightled is angular to subance and brick. gl Coarse gravel size	gular fine		1.80	) 8	.79	ES4	1.50-1.60 2.00-3.00				
Firm brown-grey	CLAY. (ALLUVIUM). mbgl Becoming soft a	and /	××××	2.40	) 8	.19						-
Very soft dark gre	ey-black clayey SILT.		مادر مادر مادر در مادر مادر	2.60	7	.99						-
PEAT. (ALLUVIUI	own and grey pseudo M). Complete at 3.00 m	fibrous	alle alle alle	3.00	7	59						
							Water Leve	el Observat	ions			
	Drive Records		D-1-		Wate	r	Standing	Stan	dina	Casing		Depth
Diameter (mm)	To (m)	Recovery (%)	Date		Strike (		Time (Mins	s) Leve		Depth (n		Sealed (m)
102 86	2.00 3.00		-		0.65		-	-		-		
Engineer: Date: Plant: Drilled By:	Entec UK Ltd N / A 16/03/2011 Terrier M. Lane			2. Hole of 3. Install pipe with of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of t	cased at a tation determined in the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case o	2.00mb ails: 40 to .50m from G	to 1.20mbgl ogl utilising 13 mm HDPE S ibgl and a slo L to 0.20mbg nd bentonite	28mm diame tandpipe ins otted pipe fro gl, bentonite	talled from 0.50n from 0.2	om GL to 1.8 n to 1.80mbg 0m to 0.50m	ıl. Hole	backfilled
, ,	J. T / T. K											
Checked By:	D.Dunn											

/	May Gurney Limit Geotechnical - Sit Ayton Road, Wyn	te Investigation nondham, NR18 0RH	Windo	ow Sa	ample F	Record			WS120 Sheet 1 of	<b>6</b>	
MAY GURNEY	Tel: 01953 60985 Web: www.maygu	66 Fax: 01953 609819 urney.co.uk	Project:	Londo	n Waste E	copark, Ed	dmonton				
Project ID: SI168	8		Client:		UK Ltd				ınd Level:		86mAOD 319.25E
Contractors ID:			Engineer	: N/A							06.31N
С	Description		Legend	Depth		Sample Type	e Test Depth (m)		Remarks and	PID	Installations
TOPSOIL: Dark brow	n sandy CLAY		X//XX//XX	(m) - 0.10	(m) 10.79	Туре	Deptil (III)	i e	st Results	(ppm)	24 65
MADE GROUND: Bro coarse SAND. Grave flint brick and concret	own-grey clayey g I is angular fine to	coarse		7 0.10 7 - 1 -	10.79	ES1	0.30-0.50				
Firm to Stiff grey CLA		TOK TUDDIO	XXXXX	0.90	9.99	ES2	0.90-1.10				
From 1.20mb(	gl Grey mottled br	own.				C1	1.20-2.00				-
				-		ES3	1.70-1.80				- - -
Window Sample Col	mplete at 2.00 m			- 2.00	8.89						
						Water Lev	el Observat	ions	1		
Diameter (mm)	Orive Records To (m)	Recovery (%)	Date		Water Strike (m)	Standing Time (Min:	Stan Leve		Casing Depth (n		Depth Sealed (m)
102	2.00	1.000701 y (70)	16/03/11		0.65	20	0.70		-	•,	Source (III)
Engineer: N / Date: 16/ Plant: Ter Drilled By: M.	tec UK Ltd A 03/2011 rier Lane F / T. K			2. Hole ca 3. Installa pipe fr with co	pit dug from G ased at 2.00m tion details: 40 om GL to 0.50 oncrete from C to 1.00mbgl a	bgl utilising 12 Omm HDPE S Ombgl and a s GL to 0.20mbo	28mm diame tandpipe ins lotted pipe fi gl, bentonite	talled from 0.50 from 0.2	om GL to 1.0 0m to 1.00mb 20m to 0.50m	gl. Ho	le backfilled
Checked By: D.D.	Dunn										

-	May Gurney Limit Geotechnical - Si Ayton Road, Wyn		Windo	ow Sa	ample F	Record			<b>WS127</b> Sheet 1 of 1	
MAY GURNE	Tel: 01953 60985 Web: www.maygu	6 Fax: 01953 609819 irney.co.uk	Project:	Londor	Waste E	copark, Ed	lmonton			
Project ID: SI16			Client:	Entec	UK Ltd				ınd Level: 11.3 rdinates: 535	243mAOD 790.50E
Contractors ID:			Engineer:	N/A					192	441.88N
	Description		Legend	Depth (m)	O.D. Level (m)	Sample Type	e Test Depth (m)		Remarks and est Results (ppr	
MADE GROUND: SAND.	Dark brown silty fine	and medium	****	- 0.10	11.14	ES1	0.10-0.30		(ррг	-80
	Brown-grey silty gra- avel is angular to roul k and concrete.			0.35 0.45	10.89 10.79	ES2	0.60-0.80			
	Yellow-brown slightlarse SAND. Gravel is			0.80	10.44	ES3	0.80-1.00			
MADE GROUND: fine to coarse SAN	Grey-brown clayey vID. Gravel is angular	to		1.10 - 1.30	10.14 9.94	C1	1.20-2.00			
brick.	Stiff brown-grey CLA			1.60	9.64	ES4	1.50-1.60			
gravelly CLAY with	Firm to stiff brown sl rootlets. Gravel is a to coarse brick and t	ingular		<u>.</u>		C2 ES5	2.00-3.00 2.00-2.10			
slightly gravelly CL	Firm dark brown slig _AY. Gravel is angula coarse flint and brick	ar to	*******	- 2.40 -	8.84					
MADE GROUND: slightly gravelly silt to rounded fine to	Soft to firm dark brov ty CLAY. Gravel is a coarse flint and brick	wn-grey ngular	××	2.80	8.44 8.24					-
	odour at 2.00mbgl. prown CLAY. (ALLU\	/ILIM)		_ _						_
Very soft to soft da	ark brown-black very			_						
silty CLAY. (ALLU				_						
window Sample C	Complete at 3.00 m			_						
				_						
				_						
				_						
				_						_
				_						
				-						_
				_						-
				-						_
				-						
				-						_
				-						
				<del>-</del>						-
						Water Leve	el Observat	ions		
Diameter (res)	Drive Records	Danes (0/1)	Date		Water	Standing	Stan		Casing	Depth
Diameter (mm) 102	To (m) 3.00	Recovery (%)		+	Strike (m) No Ground	Time (Mins water Encount	·	ı (ın)	Depth (m)	Sealed (m)
Client: E	Entec UK Ltd	<u> </u>	Remarks:	1. Hand r	oit dug form G	L to 1.20mbgl			1	<u> </u>
Engineer:	N/A		:	2. Hole ca	sed at 2.00m	bgl utilising 12	8mm diame		ing. om GL to 2.40mb	gl. Plain
Date: 2	21/03/2011			pipe fr	om GL to 1.00	Ombgl and a sle	otted pipe fr	om 1.00	Om to 2.80mbgl. H	ole backfilled
· · •					to 2.40mbgl a					J. 3. 0. 11 O111
	Terrier				•				· ·	
Plant:	Terrier M. Lane									
Plant: Torilled By: M					Š				ŭ	

May Gurney Limi Geotechnical - Si Ayton Road, Wyr	te Investigation nondham, NR18 0RH	Windo	ow Sa	ample F	Record			<b>WS128</b> Sheet 1 of 1	<b>3</b>	
MAYGURNEY Tel: 01953 60988	66 Fax: 01953 609819 urney.co.uk	Project:	Londo	n Waste E	copark, Ed	dmonton				
Project ID: SI1688		Client:	Entec	UK Ltd				ind Level:		
Contractors ID:		Engineer:	N/A				Coor			75.98E 95.75N
Description		Legend	Depth		Sample			Remarks and	PID	Installations
			(m)	(m)	Type ES1	Depth (m)	Те	st Results	(ppm)	DVA DOS
MADE GROUND: Grass over dark bro gravelly (approximately 10%) sandy Cl rootlets in top 0.05mbgl. Gravel is anguto coarse brick and flint.	LAY with				B1 B2 ES2	0.30-0.50 0.80-1.00 0.80-1.00				
<del>-</del> .			1.10	10.96						
MADE GROUND: Firm dark brown slig gravelly CLAY. Gravel is angular fine to	htly sandy o coarse	XXXX	5	10.00	C1	1.20-2.00				18118
brick, flint and concreteFrom 1.40mbgl Geotextile and	wood		- 1.50	10.56	ES3 ES4	1.40-1.50 1.50-1.70				- 181
fragments. Black hydrocarbon sta clinker gravel.	aining and		1.77	10.29						
MADE GROUND: Brown slightly claye	y sandy GRAVEL		2.00	10.06						
of angular to subrounded fine to coarse and brick.  Stiff grey-brown CLAY. (ALLUVIUM).  Window Sample Complete at 2.00 m										
					Water Leve	el Observat	ions			
Drive Records		Date		Water	Standing	Stan		Casing		Depth
Diameter (mm) To (m) 102 2.00	Recovery (%)	Date		Strike (m)	Time (Mins	s) Level		Depth (m	)	Sealed (m)
102 2.00				INO Ground	water Encount	lei <del>e</del> u				
Client: Entec UK Ltd Engineer: N / A  Date: 16/03/2011  Plant: Terrier  Drilled By: M. Lane		:	2. Hole ca 3. Installa pipe fr with co	pit dug from G ased at 2.00m Ition details: 40 om GL to 0.50 oncrete from 0 to 1.70mbgl a	bgl utilising 12 Omm HDPE S Ombgl and a s GL to 0.20mbo	28mm diame tandpipe ins lotted pipe fr gl, bentonite	talled from 0.50 from 0.2	om GL to 1.70 om to 1.65mbo 20m to 0.50mb	gl. Hol	e backfilled
Logged By: J. T / T. K										
Checked By: D.Dunn										

May Gurney Limited Geotechnical - Site Investig Ayton Road, Wymondham,	NR18 0RH	Windo	ow Sa	mple R	ecord		\ S	<b>NS129</b> Sheet 1 of 1	
MAYGURNEY  Tel: 01953 609856 Fax: 01: Web: www.maygurney.co.ul		Project:	London	Waste Ed	copark, Ed	monton			
Project ID: SI1688		Client:	Entec l	JK Ltd				d Level: 11.5	526mAOD 710.48E
Contractors ID:		Engineer:	N/A					192	379.49N
Description		Legend	Depth	O.D. Level	Sample			emarks and	Installations
MADE COOLIND: Dody brown eilty grovelly fir	an and	××××	(m)	(m)	<del>- "</del>	Depth (m)	Test	t Results (ppm	
MADE GROUND: Dark brown silty gravelly fir medium SAND. Gravel is angular fine to coard flint and brick.					ES1	0.10-0.30			
MADE GROUND: Firm brown-grey sandy slig gravelly (approximately 10%) CLAY. Gravel is angular to subangular fine to coarse flint, brick and concrete.	ghtly s		- 0.60 - - - -	10.93	ES2	0.70-0.90			- MES
MADE GROUND: Brown clayey gravelly SAN is angular to rounded fine to coarse flint and	ND. Gravel		1.20	10.33	C1 ES3	1.20-2.00 1.40-1.50			
brick.  MADE GROUND: Dark brown and black clayer gravelly SAND. Gravel is subangular to rounce fine to coarse flint with rare brick.			- 1.60 - -	9.93	ES4	1.70-1.80			
MADE GROUND: Firm to stiff grey and dark g slightly gravelly CLAY. Gravel is angular to subangular fine to medium flint and brick. From 2.30mbgl grey mottled brown.	grey		2.10	9.43	C2	2.00-3.00			
From 2.70mbgl dark grey.			2.90	8.63	ES5	2.80-2.90			
Firm to stiff grey CLAY. (ALLUVIUM)From 3.00mbgl grey mottled brown.					C3	3.00-4.00			-
From 3.30mbgl soft.			1 10 1						-
Firm light grey and black slightly sandy clayey SILT with shell fragments. (ALLUVIUM).	y	× ^ ×	- 3.70 - - 3.90	7.83 7.63					-
Stiff dark brown and black pseudo fibrous PE. (ALLUVIUM). Window Sample Complete at 4.00 m	AT.	Ale Ale Ale	- 4.00	7.53					-
					Water Leve	l Observat	ions		
Drive Records  Diameter (mm) To (m) F	Recovery (%)	Date	S	Water trike (m)	Standing Time (Mins	Stan ) Leve		Casing Depth (m)	Depth Sealed (m)
102 86 3.00 4.00	(10)			. ,	vater Encounte	<i>,</i>			,
Client: Entec UK Ltd Engineer: N / A Date: 21/03/2011 Plant: Terrier Drilled By: M. Lane		:	2. Hole cas 3. Installati pipe fro with co	sed at 2.00mb on details: 40 om GL to 1.00 ncrete from G	mbgl and a slo	8mm diame andpipe ins otted pipe fi , bentonite	talled from om 1.00m from 0.20	n GL to 2.90mbg n to 2.90mbgl. Ho m to 1.00mbgl, g	ole backfilled
Logged By: J. T / T. K Checked By: D.Dunn									

		e Investigation ondham, NR18 0RH	Windo	ow Sa	mple R	ecord		,	<b>WS130</b> Sheet 1 of 1	
MAYGURN	Tel: 01953 609856 Web: www.maygu	5 Fax: 01953 609819 rney.co.uk	Project:	Londor	Waste Ed	copark, Ed	lmonton			
Project ID: SI1			Client:	Entec	UK Ltd				nd Level: 12. dinates: 535	820mAOD 5706.30E
Contractors ID	):		Engineer:	N/A					192	342.70N
	Description		Legend	Depth		Sample Type	e Test Depth (m)		emarks and st Results	Installations
medium SAND. Of flint, brick and col flint, brick and col flint, brick and col flint, brick and col sightly gravelly (a Gravel is angular concrete, flint and cobbles (low cobl gravelly CLAY wing Gravel is angular concrete, flint and MADE GROUND SAND. Gravel is concrete and flint made of the concrete and flint.  MADE GROUND slightly gravelly C subrounded flint. Firm to stiff grey so Gravel is angular flint. (ALLUVIUM)	r: Firm to stiff brown-grapproximately 10%) C rifine to coarse brick, d glass with occasiona ble content) of brick. r: Firm to stiff brown sli th low cobble content rifine to coarse brick, d rare clinker. r: Brown slightly clayey angular fine to coarse r: Firm to stiff grey slight CLAY. Gravel is angula slightly gravelly CLAY. to subrounded fine to ).	ey sandy LAY.  I ghtly sandy of brick.  gravelly brick,  htly sandy coarse		0.60 - 1.40 - 1.90 - 2.60 - 2.80	12.22 11.42 10.92 10.02	ES1  ES2 C1  ES3 C2 ES4	1.00-1.20 1.20-2.00 1.70-1.80 2.00-3.00 2.30-2.40		K Results (ppi	
	Drive Records				Water	Water Leve		1	Cooing	Donth
Diameter (mm) 102 86	To (m) 3.00 4.00	Recovery (%)	Date	\$	Water Strike (m) No Groundw	Standing Time (Mins ater Encount	,		Casing Depth (m)	Depth Sealed (m)
Client: Engineer: Date: Plant: Drilled By: Logged By: Checked By:	Entec UK Ltd N / A 15/03/2011-16/03/2 Terrier M. Lane J. T / T. K D.Dunn	011		2. Hole ca 3. Installat pipe fro with co	om GL to 1.00	ogl utilising 12 mm HDPE St mbgl and a sl Lt to 0.20mbg	8mm diame andpipe ins otted pipe fi I, bentonite	stalled fro rom 1.00r from 0.20	m GL to 2.80mb m to 2.80mbgl. F Om to 0.50mbgl,	ole backfilled

	Ayton Road, Wyn	le Investigation nondham, NR18 0RH	vvinac	DW S	ample R	ecord			<b>WS131</b> Sheet 1 of 1	
MAYGURN	Tel: 01953 60985 Web: www.maygu	6 Fax: 01953 609819 irney.co.uk	Project:	Londo	n Waste Ed	copark, Ed	dmonton			
Project ID: SI			Client:	Entec	: UK Ltd				ind Level: 12.	384mAOD 5751.04E
Contractors ID	):		Engineer:	N/A					192	2358.39N
	Description		Legend	Dept		Sample	e Test Depth (m)		Remarks and st Results (pp)	
	D: Dark brown clayey g Gravel is angular to su tt.			(m) 0.15		ES1	0.20-0.40	16	St Results (ppi	n) _ _
coarse SAND. G	o: Brown-grey clayey gravel is angular to sub ck, concrete and flint.			- - - 0.80	11.58	ES2	0.80-1.00			
slightly gravelly (	o: Firm brown-grey slig approximately 5%) CL r to subangular fine to	AY.				C1	1.20-2.00			
slightly gravelly C	o: Stiff brown-grey sligl CLAY. Gravel is angula to coarse brick, flint ar	ar to		- 1.40 - 1.70 - 1.80	10.68	ES3	1.60-1.70			
	5mbgl dark brown with	some black				C2	2.00-3.00			-
gravelly CLAY wi	o: Firm to stiff brown sa ith low flint cobble con r to subrounded brick a	tent.	· · · · · · · · · · · · · · · · · · ·	- 2.20 - -	10.18					-
(ALLUVIUM)From 1.90 Firm to stiff grey s Gravel is subrour	n mottled grey CLAY. Combgl slightly sandy. Slightly gravelly CLAY nded to rounded fine to . Complete at 3.00 m	o coarse	- 7	3.00	9.38					
				- - - - - - - - - -						
				- - - - - -						
				_						-
						Water Leve	el Observat	ions	1	1
Diameter (mm)	Drive Records To (m)	Recovery (%)	Date		Water Strike (m)	Standing Time (Mins	Stan- Level		Casing Depth (m)	Depth Sealed (m)
102 86	2.00				. ,	vater Encount				
Client: Engineer: Date: Plant: Drilled By:	Entec UK Ltd N / A 21/03/2011 Terrier M. Lane	<u> </u>	:	2. Hole o 3. Installa pipe f with o	from GL to 0.50	ogl utilising 12 omm HDPE S mbgl and a s SL to 0.20mbg	28mm diame tandpipe ins lotted pipe fr pl, bentonite	talled from 0.50 from 0.2	om GL to 1.80mb om to 1.80mbgl. F 20m to 0.50mbgl,	lole backfilled
Logged By: Checked By:	J. T / T. K D. Dunn									

1	May Gurney Limi Geotechnical - Si Ayton Road, Wyr	ite Investigation mondham, NR18 0RH	Windo	ow S	ample F	Record			WS132 Sheet 1 of	<b>2</b>	
MAYGURNE	Tel: 01953 60985 Web: www.mayg	56 Fax: 01953 609819 urney.co.uk	Project:	Londo	n Waste E	copark, E	dmonton				
Project ID: SI16	88		Client:		UK Ltd				ınd Level:		68mAOD 715.05E
Contractors ID:			Engineer	: N / A							304.25N
	Description		Legend	Dept		Sampl Type	e Test Depth (m)		Remarks and est Results	PID (ppm)	Installations
MADE GROUND: S SAND. Gravel is ar concrete, ceramics	ngular fine to coarse , glass and flint.	e brick,		0.20	10.77	ES1	0.20-0.30			(ррііі)	22 40
MADE GROUND: S Gravel is angular fi concrete, flint and c	ne to coarse brick,	ravelly CLAY.		0.70	10.27	ES2	0.50-0.60				
MADE GROUND: S is angular to subrou flint, concrete, glass	unded fine to coarse	CLAY. Gravel e brick,				C1	1.20-2.00				
MADE GROUND: E content of bricks. G coarse brick and fli	ravel is angular fine	ID with high e to	Ale alle alle e alle alle alle alle alle alle	1.30 - 1.35 -							
Stiff grey CLAY. (Al	LLUVIUM).		alle alle of sile olle alle	-							3
Stiff dark brown-bla	T. (ALĹUVĬUM).	/	alife alife alife	1.95 2.00							
Firm to stiff green-g Window Sample C				- - -							
				- - -							
				_							_
				_							
				<u>-</u>							
				- -							-
				_							
				_							
				- -							
				- -							_
				_							
				-							_
				- -							
				- -							_
				-							-
				_ -							
					· 	Water Lev	el Observat	ions			
Diameter (****)	Drive Records	Danes (04)	Date		Water	Standing	Stan		Casing	, T	Depth
Diameter (mm) 102	To (m) 2.00	Recovery (%)			Strike (m) No Ground	Time (Min	<u> </u>	ı (ın)	Depth (n	1)	Sealed (m)
	ntec UK Ltd				pit dug from G			tolloci f	om Cl += 4.0	Omb = 1	Dlain
Engineer: N	I / A			pipe	ation details: 4 from GL to 0.50	Ombgl and a s	lotted pipe fr	om 0.50	om to 1.30mb	gl. Ho	le backfilled
	3/03/2011				concrete from 0 n to 1.30mbgl a					ugi, gr	avei irom
	errier										
,	1. Lane										
,	. T / T. K										
Checked By: D	. Dunn										

. /		te Investigation nondham, NR18 0RH	Winde	ow Sa	ample F	Record			<b>WS133</b> Sheet 1 of 1	
MAY GURN	Veb: www.maygr	6 Fax: 01953 609819 urney.co.uk	Project:	Londo	n Waste E	copark, E	dmonton			
Project ID: SI Contractors IE			Client: Engineer		UK Ltd					154mAOD 756.32E 325.77N
			-		O.D.	Compl	o Toot	F	Remarks	J25.77N
	Description		Legend	Depth (m)	Level (m)	Sampl	Depth (m)		and st Results (ppn	
sandy gravelly C angular to subro brick.	D: Grass over firm brov CLAY with rootlets. Gra unded fine to coarse fl D: Brown sandy gravel	vel is int and		0.05	11.10	ES1 ES2	0.30-0.40 0.50-0.60		/E-F	7 - 23 - 34 - 34 - 34 - 34 - 34 - 34 - 34 - 3
is angular to sub	rounded fine to coarse	e flint,		0.95	10.20	ES3	1.00-1.10			
gravelly very org subangular fine t From 0.75	D: Dark brown slightly sanic CLAY. Gravel is a to coarse brick and flin 5mbgl becoming grave tent of brick and concr	angular to t. elly with low		1.10	9.65	C1	1.10-1.90			
MADE GROUNE SAND with low o	D: Light brown slightly cobble content of bricks coarse brick and clink	gravelly silty s. Gravel		1.90	9.25					-
POSSIBLE MAD	E GROUND: Soft to fi Gravel is subangular fil	rm grey slightly		- - -						
Gravel is subrou (ALLUVIUM).	grey slightly gravelly C nded fine to medium fl e Complete at 1.90 m	int.								
				- - - - - - - - - - - - - - - - - - -						
						Water Lev	el Observat	ions		
Diameter	Drive Records	D (2/)	Date		Water	Standing	Stan		Casing	Depth
Diameter (mm) 102	To (m) 1.90	Recovery (%)		;	Strike (m) No Ground	Time (Min: water Encoun	,	(111)	Depth (m)	Sealed (m)
Client: Engineer: Date: Plant: Drilled By:	Entec UK Ltd N / A 22/03/2011 Terrier M. Lane			2. Installa pipe fr with co	om GL to 0.50	Omm HDPE S Ombgl and a s GL to 0.20mbo	standpipe ins lotted pipe fr gl, bentonite	om 0.50 from 0.2	om GL to 1.50mbg om to 1.50mbgl. H 0m to 0.50mbgl, ç nbgl.	ole backfilled
Logged By:	J. T / T. K									
	D.Dunn									

	May Gurney Limit Geotechnical - Sit Ayton Road, Wym	e Investigation ondham, NR18 0RH	Windo	ow S	ample F	Record			WS13 Sheet 1 of		
MAY GURN	EY Web: www.maygu	6 Fax: 01953 609819 irney.co.uk	Project:	Londo	n Waste E	copark, Ed	lmonton				
Project ID: SI1			Client:		UK Ltd				nd Level: dinates:	5358	39.21E
Contractors in	-		Engineer	: N / A		1			1 .	1928	883.53N
	Description		Legend	Dept (m)		Sample	Depth (m)		emarks and st Results	PID (ppm)	Installations
MADE GROUND	: Tarmac		****		, ,					,	- 10 60
	: Red-brown gravelly gular fine to coarse gr			0.25		B1	0.50-0.60				-
MADE GROUND	: Yellow-brown very g ular to subrounded fin	ravelly SAND. e to				ES1 B2	0.50-0.60 0.80-1.00				
	: Firm brown-grey CL	AY		1.10	10.94	B3 C1	1.10-1.20 1.20-2.00				
	mbgl Very stiff					ES2	1.50-1.60				
MADE GROLIND	: Orange-brown grave	elly SAND		2.00	10.04	C2	2.00-3.00				
Gravel is angular	to subangular fine to	coarse flint.	$\times\!\!\times\!\!\times\!\!\times$	Ē		ES3	2.20-2.30				
gravelly CLAY. G	: Very stiff brown sligh ravel is angular fine to	ntly sandy o coarse		2.45		ES4	2.50-2.60				
flint and brick	d grey CLAY with ma	/		2.75	9.29						
Window Gample	Complete at 3.00 m										
						Water Leve	l Observat	ions			
Diameter (mm)	Drive Records	Poor (0/)	Date		Water	Standing Time (Mins	Stan		Casing		Depth Sealed (m)
Diameter (mm) 102	To (m) 3.00	Recovery (%)			Strike (m) No Ground	water Encount	,	(111)	Depth (r	11)	Scalcu (III)
Date: Plant: Drilled By:	Entec UK Ltd N / A 16/03/2011 Terrier M. Lane J. T / T. K			2. Hole of 3. Install pipe with of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of t	cased at 3.00m ation details: 4 from GL to 1.00 concrete from 0	GL to 1.20mbgl ubgl utilising 12 0mm HDPE St 0mbgl and a 5 GL to 0.20mbg and bentonite f	8mm diame andpipe ins otted pipe fr I, bentonite	talled from 1.00 from 0.2	om GL to 2.8 m to 2.80ml 0m to 1.00m	gl. Ho	le backfilled
Checked By:	D.DUNN										

	May Gurney Limi Geotechnical - Si Ayton Road, Wyn	te Investigation nondham, NR18 0RH	Windo	ow Sa	ample R	Record			<b>WS135</b> Sheet 1 of 1	
MAYGURN	Tel: 01953 60985 Web: www.maygi	66 Fax: 01953 609819 urney.co.uk	Project:	Londo	n Waste E	copark, Ed	dmonton			
Project ID: SI1	688		Client:	Entec	UK Ltd				und Level: 12.9	
Contractors ID	:		Engineer:	N/A				Coor		735.00E 399.31N
	Description		Legend	Depth	O.D. Level	Sample	e Test	F	Remarks and	Installations
				(m)	(m)	Туре	Depth (m)	Те	est Results (ppm	1)
	: Brown-grey silty gra Gravel is angular fine t Increte.			0.70	12.24	ES1	0.10-0.30			
MADE GROUND: medium SAND. G flint, brick and cor	: Brown-grey clayey g Gravel is angular fine t ncrete.	gravelly fine and to coarse								- 
CLAY. Gravel is a coarse concrete, I	: Firm brown slightly s angular to subangular brick, flint and rare cli	fine to nker.		1.10	11.84	C1 ES3	1.10-1.80 1.40-1.50			
At 1.80mb	m to 1.60mbgl gravel gl concrete obstructic Complete at 1.80 m	on.		1.80	11.14					
						Water Leve	l el Observat	ions		
	Drive Records		Date		Water	Standing	Stan		Casing	Depth
Diameter (mm) 102	To (m) 1.80	Recovery (%)			Strike (m) No Ground	Time (Minswater Encount	,	ı (m)	Depth (m)	Sealed (m)
Engineer: Date: Plant: Drilled By: Logged By:	Entec UK Ltd N / A 22/03/2011 Terrier M. Lane J. T / T. K			2. Hole ca 3. Installa pipe fr with co 1.00m	om GL to 1.00 oncrete from 0 to 1.80mbgl.	bgl utilising 12 Omm HDPE S Ombgl and a s GL to 0.20mbg	28mm diame standpipe ins lotted pipe fi gl, bentonite	stalled from 1.00 from 0.2	ing. om GL to 1.80mbg om to 1.70mbgl. Ho 20m to 1.00mbgl, g rete obstruction.	ole backfilled
Checked By:	D.Dunn									



#### **APPENDIX B**

### **INSTRUMENTATION**



### Summary of instrumentation and monitoring points:

Exploratory	RESPONS	E ZONE	Pipe	Pipe	Target strata					
Hole ID	Top m AOD	Base m AOD	depth m bgl	dia. mm						
BH101	7.76	4.66	7.000	50	KEMPTON PARK GRAVEL					
BH102	8.51	4.51	8.000	50	ALLUVIUM / KEMPTON PARK GRAVEL					
BH103	7.67	4.47	6.700	50	KEMPTON PARK GRAVEL					
BH104	8.42	4.82	7.400	50	ALLUVIUM / KEMPTON PARK GRAVEL					
BH105	7.82	3.62	8.500	50	KEMPTON PARK GRAVEL					
BH106	8.10	5.80	7.800	50	KEMPTON PARK GRAVEL					
BH107	8.39	5.49	5.800	50	KEMPTON PARK GRAVEL					
BH108	8.32	5.82	5.300	50	KEMPTON PARK GRAVEL					
BH109	8.03	5.53	5.300	50	KEMPTON PARK GRAVEL					
BH110	7.95	4.45	6.300	50	KEMPTON PARK GRAVEL					
BH113	7.37	4.87	6.300	50	ALLUVIUM / KEMPTON PARK GRAVEL					
BH114	10.29	8.49	2.300	50	MADE GROUND / ALLUVIUM					
BH115	8.14	4.54	7.100	50	KEMPTON PARK GRAVEL / LONDON CLAY FORMATION					
BH116	8.55	5.65	6.100	50	KEMPTON PARK GRAVEL					
BH117	7.81	5.71	6.000	50	KEMPTON PARK GRAVEL					
BH118	7.08	5.38	5.600	50	KEMPTON PARK GRAVEL					
BH119	6.39	5.09	6.100	50	KEMPTON PARK GRAVEL					
BH120	7.26	3.96	7.100	50	KEMPTON PARK GRAVEL / REWORKED LONDON CLAY FORMATION					
BH121	7.04	5.14	6.200	50	FORMATION  KEMPTON PARK GRAVEL					



Exploratory Hole ID	RESPONSE	ZONE	Pipe depth	Pipe dia.	Target strata
	Top m AOD	Base m AOD	m bgl	mm	
BH122	7.64	4.04	8.600	50	ALLUVIUM / KEMPTON PARK GRAVEL
BH123	6.76	3.66	7.300	50	KEMPTON PARK GRAVEL
BH124	7.72	3.72	7.300	50	KEMPTON PARK GRAVEL
WS101	11.73	8.53	3.700	40	MADE GROUND
WS102	12.05	9.15	3.400	40	MADE GROUND
WS103	10.79	9.49	1.800	40	MADE GROUND
WS104	11.72	8.62	3.600	40	MADE GROUND / ALLUVIUM
WS105	10.38	9.08	1.800	40	MADE GROUND
WS106	13.43	12.13	1.800	40	MADE GROUND
WS107	13.67	9.37	5.000	40	MADE GROUND
WS108	13.81	9.81	4.600	40	MADE GROUND
WS109	10.43	9.93	1.000	40	MADE GROUND
WS110	11.13	9.33	2.300	40	MADE GROUND
WS111	11.16	9.36	2.300	40	MADE GROUND / ALLUVIUM
WS112	11.00	9.50	2.000	40	MADE GROUND / ALLUVIUM
WS113	10.79	9.49	1.800	40	MADE GROUND
WS115	10.27	8.77	2.000	40	MADE GROUND / ALLUVIUM
WS116	9.92	8.92	1.500	40	MADE GROUND / ALLUVIUM
WS117	9.87	9.27	1.100	40	MADE GROUND
WS119	10.29	9.69	1.100	40	MADE GROUND



Exploratory Hole ID	RESPONSE	ZONE	Pipe depth	Pipe dia.	Target strata
	Top m AOD	Base m AOD	m bgl	mm	
WS120	10.24	9.54	1.200	40	MADE GROUND
WS121	10.20	8.90	1.800	40	MADE GROUND
WS122	10.24	8.44	2.300	40	MADE GROUND
WS123	10.17	7.67	3.500	40	MADE GROUND / ALLUVIUM
WS124	10.71	9.31	1.900	40	MADE GROUND
WS125	10.09	8.09	2.500	40	MADE GROUND / ALLUVIUM
WS126	10.39	9.09	1.800	40	MADE GROUND / ALLUVIUM
WS127	10.74	10.24	1.000	40	MADE GROUND
WS128	11.56	9.66	2.400	40	MADE GROUND / ALLUVIUM
WS129	11.03	9.83	1.700	40	MADE GROUND
WS130	11.82	9.92	2.900	40	MADE GROUND / ALLUVIUM
WS131	11.88	9.58	2.800	40	MADE GROUND / ALLUVIUM
WS132	10.47	9.17	1.800	40	MADE GROUND / ALLUVIUM
WS133	10.65	9.85	1.300	40	MADE GROUND
WS134	11.04	9.24	2.800	40	MADE GROUND / ALLUVIUM
WS135	11.94	11.24	1.700	40	MADE GROUND

Notes RESPONSE ZONE m aOD based on depth below ground Elevation.



### **APPENDIX C**

### **GEOTECHNCIAL LABORATORY TEST RESULTS**

					1	1					l										1					
	SAMPLE	DETAIL	<u> </u>				CLAS	SIFICA	TION DETA	ILS			TRIAX	IAL TESTS			N	IISC TEST	rs	OTHER	1	CHE	MICAL			REMARKS
					Log Amended											7/7				Please			3/5.2		47 / BR oncrete	
					to Result	2/2	2/4.3 2/4.4	2/7.2	2/9	2/9	7/9	7/0			7/4 7/5	8/7 8/8	5/3	4/3	4/5	Specify	3/3	3/9	3/5.3 3/5.4		uites	
						2/3 W	PL/LL	2/3.3	PSD	PSD Fine	7/9	7/8 UU	Dia	Cell	Shear		OED	Comp	MCV		Org		SO3		1	
							1 pt	Bulk	Sieve 9.2	9.4 (Hyd)			(mm)	Pressures									Acid	- 1		
									(Wet)	9.5 (pip)					L		_						Sol	pi di	یو ا	
		SAMP	SAMP T	SAMP	Tick indicates			&Dry							Small	CU	k			FPL				ie G	Suir	
HOLE_ID	SAMP_TYPE	_REF	OP	BASE	complete																		Water	Greenfie	Pyrite Suite	
					√						Multi	Single				CD		1 I Mould	1				Sol	g.		
					,																		0.1	ď	)	
																							Gdw			PSD always wet unless otherwise stated. Fine sieve always
BH101	U	1	3.000	-	√						1		100	50, 100, 200			1									oedometer pressures 50, 100, 200, 400, 100, 200, 400, 800 kPa
BH101	D	5	3.500	3.600	√					_					-						-		ļ	1		Lea (Caral Cara
BH101	В	7	5.000 8.000	6.000	√ -/				1	R	1		100	7E 1E0 200							-					Insufficent fines
BH101 BH101	D D	11	8.400	8.500	√ √	1	1				1		100	75, 150, 300												
BH101	U	4	13.000	-	√ √						1		100	125, 250, 500	)				1		1	1	1	H	+	
BH101	D	15	13.400	13.500	√ √	1	1														1	<del>                                     </del>		++		
BH102	D	5	3.000	3.450	√	1	1																			
BH102	W	1	4.100	-	√																			N	1	Missing Samples
BH102	В	7	5.000	6.000	√				1	R																
BH102	D	10	8.000	8.450	√	1	1																			
BH103	D	2	2.000	2.450	√																			1		
BH103	U	1	3.000	-	√					_	1		100	30, 60, 120			1				-		ļ		_	Oedometer pressures 50, 100, 200, 400, 100, 200, 400, 800
BH103 BH103	В	6	4.000 6.000	4.500 6.450	√ √				1	R									-		1			<b>—</b>		
BH103	וו	2	7.000	6.450	√ √						1		100	75, 150, 300							1			H		
BH103	D	8	7.450	7.550	√ √	1	1				•		.00	. 0, .00, 000												
BH103	U	3	8.700	-	· √	-					1		100	100, 200, 400	)											
BH103	D	9	9.150	9.250	√	1	1																			
BH103	D	10	10.000	10.450	<b>√</b>																			1		
BH103	U	4	11.500	-	√						1		100	150, 300, 600	)											
BH103	D	11		12.050		1	1																			
BH104	U	1	1.200	-	√							1	100	15, 30, 60			1				-		ļ		_	Failed on first pressure
BH104 BH104	D	- 4	1.7 2.000	1.8 2.450	√ √	1	1														-					
BH104	II	2	3.000	2.430	√ √						1		100	50, 100, 200			1				+					oedometer pressures 50, 100, 200, 400, 100, 200, 400, 800 kPa
BH104	W	1	3.900	<b> </b> _	√ √		<del>                                     </del>														1	<del>                                     </del>				33333101 production 50, 100, 200, 400, 100, 200, 400, 000 ki d
BH104	В	9	5.000	6.000	, √				1	R					1				<b>†</b>		1	l -	<b>†</b>	Ħ		Insufficent fines
BH104	U	3	8.000	ļ	<b>V</b>						1		100	75, 150, 300							L			口厂		
BH104	D	12	8.400	8.500	√	1	1																			
BH104	D	13	9.000	9.450	<b>V</b>																			1		
BH105	U	2	4.000	-	√						1		100	40, 80, 160			1				ļ					Oedometer pressures 50, 100, 200, 400, 100, 200, 400, 800
BH105	W	1	4.300	-	√ ,		<u> </u>		4						1			ļ			<u> </u>	<u> </u>	ļ			
BH105	R	8 12	6.000 8.500	7.000	√ √	4	1			R					-				1		1	1	}	$\vdash$	+	
BH105 BH106	ח	6	3.500	8.700 3.950	√ √	1	1								-				-		-	<del>                                     </del>	-	<del>⊢</del> ⊢	+	
BH106	U	1	5.100	-	V						1		100	50, 100, 200			1				+	1	1	$\vdash$		oedometer pressures 100, 200, 400, 800, 200, 400, 800, 1600 kPa
BH106	D	9	5.550	<b> </b> _	√ √		<del>                                     </del>							2, 30, 200							1	<del>                                     </del>				55455tor procedures 100, 200, 400, 000, 400, 000, 1000 ki d
BH106	В	8	6.500	7.000	√				1	1					1						1	1		T		
BH106	U	2	8.500		<b>V</b>						1		100	75, 150, 300			1									oedometer pressures 100, 200, 400, 800, 200, 400, 800, 1600 kPa
BH106	D	14	8.950	-	<b>V</b>	1	1																			
BH106	В	11	9.500	10.000	√				1	1					1					<u> </u>						

	044015	TION DETA				TDIAN	(14) TEOTO			Г.	#00 TE0T		OTUED		0115				DEMARKO							
	SAMPLE	DETAIL	5				CLAS	SIFICA	TION DETA	AILS			IRIAX	(IAL TESTS				MISC TEST	5	OTHER		CHE	MICAL			REMARKS
					Log Amended											7/7				Please			3/5.2		47 / BF	
					to Result	2/2	2/4.3 2/4.4	2/7.2		2/9	7/9	7/8			7/4 7/5	8/7 8/8	5/3	4/3	4/5	Specify	3/3	3/9	3/5.3 3/5.4		uites	
							PL/LL		PSD	PSD Fine	119	UU	Dia	Cell	Shear	Un	OED		MCV		Org		SO3			
							1 pt	Bulk	Sieve 9.2				(mm)	Pressures	Box						"		Acid	4 I.	_	
									(Wet)	9.5 (pip)													Sol	_		
		SAMP	SAMP T	SAMP	Tick indicates			&Dry							Small	CU	k			FPL				lie ld	) i	
HOLE_ID	SAMP_TYPE	_REF	OP	BASE	complete																		Water	ee	<u>ğ</u>	
											Multi	Single				CD		1 I Mould					Sol	Greenfield	Pyrite Suite	
					√							•												ەُ	5	
																							Gdw			PSD always wet unless otherwise stated. Fine sieve always
					<b>V</b>						1		100	100, 200, 400	)									t		,
BH106	U	3	11.000	-																						
BH106	D	16	11.450	-	√	1	1																			
BH106	D	17	12.500	12.950							4		400	450 000 000							-			H		
BH106	u	4	14.000	_	√						T		100	150, 300, 600	1											
	D	18	14.450	-	<b>V</b>	1	1														1			TT		
BH107	D	2	1.100	-	√																1			<u> </u>		
BH107	D	2	1.100		√																			<u> </u>		
BH107	D	3	1.400	-	√	1	1																			
BH107	D	6	2.400	-	√	1	1																			
BH107	В	6		4.000	√				1	1																
BH107	D		5.800	-	√										1									<u> </u>		
BH107	D	11	5.800	-	√ ./						-1		100	50, 100, 200			1				-			H		andamatar procesuras E0, 100, 200, 400, 100, 200, 400, 900 kDa
BH107 BH107	D	12	6.500 6.950	-	√ √	1	1				1		100	30, 100, 200			'				1			<del>├</del>		oedometer pressures 50, 100, 200, 400, 100, 200, 400, 800 kPa
BH107	D D	13	7.500	7.950	1	'	-					1									+			$\vdash$		
Dillo		10		7.550							1		100	100, 200, 400	)		1									
BH107	U	2	8.500	-	√																					
BH107	D	14	8.950	-	√	1	1																			
BH108	D	6	2.100	-	√																<u> </u>			Ľ		1 65 16
BH108	В	7	3.500	4.000	<b>V</b>				1	R				F0 400 000	<u> </u>			ļ			<u> </u>					Insufficent fines
BH108 BH108	D	14	6.500 6.950	-	√ √	1	1				1		100	50, 100, 200				-			1			<del>├</del>		
БП100	D	14	0.950	-		-					1		100	100, 200, 400	1						1			<b>-</b>		
BH108	U	3	10.500	-	√									100, 200, 10												
BH108	D	18	10.950	-	√	1	1																			
5	В	9		4.000	√				M	M																Missing Samples
BH109	D	10	5.200	5.650	√							<u> </u>												<u>'</u>		
BH109	U	1	6.500	-	√						M		100	75, 150, 300	<u> </u>						-			<u> </u>		Missing Samples
BH109	ט	11	6.950	-	√	M	M	1		1				100, 200, 400					1		1			$\vdash \vdash$	-	Missing Samples
BH109	U	3	10.500	_	√						1		100	100, 200, 400	1											
BH110	D	5	1.900	-	√																			·		
BH110	D	6	2.200		√	1	1																			
BH110	U	1	2.500	-	V						1		100	25, 50, 100			1									oedometer pressures 25, 50, 100, 200, 50, 100, 200, 400 kPa
BH110	D	8	2.800	-	√	1	1																	Ш		
BH110	В	7	3.300	3.500	√		ļ		1	1		ļ			ļ						<u> </u>			Щ		
BH110	W	1	3.600	-	√		1	1				ļ			<u> </u>						1			H		
BH110	В	11 2	5.300	6.000	√ √		<u> </u>	<b>!</b>	1	1	1		100	75, 150, 300				-	1	-	1	1		$\vdash\vdash$	+	+
BH110 BH110	D	13	7.500 7.950	-	V V	1	1	<del>                                     </del>	-	-			100	75, 150, 300				-	<u> </u>		+	<u> </u>		$\vdash\vdash$	+	
BH110	ם ה	14	8.500	8.950	V V					1		-		-	+			1	<del>                                     </del>		+	<del>                                     </del>		┢	1	
		<del>                                     </del>		5.550			<del>                                     </del>	<del>                                     </del>			1		100	100, 200, 400	o l						1			H		+
BH110	U	3	9.500	-	ν																					

	044481.5	DETAIL					01.40	015104	TION DETA				TDIAY	TEOTO			_	U00 TF0T		OTHER		0115		<b>TEOTO</b>		DEMARKO
	SAMPLE	DETAIL	•				CLAS	SIFICA	TION DETA	ILS			IKIAX	IAL TESTS			IV	IISC TEST	5	OTHER		CHE	MICAL			REMARKS
					Log Amended											7/7				Please			3/5.2	10	47 / Bi	
					to Result			2/7.2							7/4	8/7			4/5	Specify			3/5.3		uites	
							2/4.4 PL/LL	2/3.3	2/9 PSD	2/9 PSD Fine	7/9	7/8 UU	Dia	Cell	7/5 Shear	8/8 Un	5/3 OED	4/3 Comp	MCV		3/4 Org	3/9 pH	3/5.4 SO3		1	
							1 pt		Sieve 9.2	9.4 (Hyd)		00	(mm)	Pressures	Box	OII	OLD	Comp	IVICV		Oig	Pii				
								Bulk	(Wet)	9.5 (pip)			(,										Acid		2	
					Tick			&Dry							Small	CU	k			FPL			Sol	pia o		
HOLE_ID	SAMP_TYPE	SAMP	SAMP_T OP	SAMP_ BASE	indicates																		Water	<u>اپُر ا</u>	Pyrite Suite	
		_KEF	OF .	DASE	complete																		Sol	Green	=	
					√						Multi	Single				CD		1 I Mould						1		
																							Gdw			505
DUIAAO	0	15	9.950			1	-1																	++	-	PSD always wet unless otherwise stated. Fine sieve always
BH110 BH113	U II	15	2.000	-	V √	-1	'				1		100	25, 50, 100			1							++	-	Oedometer pressures 50, 100, 200, 400, 100, 200, 400, 800
BH113	0	2	2.450	2.850	V						•		100	23, 30, 100			•							<del>                                     </del>		Oedometer pressures 30, 100, 200, 400, 100, 200, 400, 600
BH113	ח	3	3.000	3.450	V	1	1																		<u> </u>	
BH113	II	2	4.000	-	V	•		1			1		100	50, 100, 200			1				1			++	+	Oedometer pressures 50, 100, 200, 400, 100, 200, 400, 800
	B	7	4.500	5.500	V				1	R	-			,,										++	-	Coddition procedures 66, 166, 266, 166, 166, 166, 166, 166
BH114	– D	2	2.000	2.450	V			<b>1</b>							<b>†</b>						<b>1</b>			1 -	1	
BH114	B	6	3.000	3.450	V				1	1																
BH114	В	9	6.000	6.450	· √				1	R					1									t		
BH115	W	1	1.900	-	√																				1	
BH115	D	7	3.000	-	√	M	М																			Missing Samples
BH115	D	9	4.500	4.950	V	M	М																			Missing Samples
BH116	W	1	1.000	-	<b>√</b>																			•	1	
BH116	U	1	2.500	-	√						1		100	25, 50, 100			1									oedometer pressures 25, 50, 100, 200, 50, 100, 200, 400 kPa
BH116	В	6	3.400	4.000	√				1	1																
BH116	В	7	4.500	5.000	√				1	1																
BH116	D	12	6.100	6.500	√	1	1																		_	
BH116	U	2	7.500	-	√							1	100	75, 150, 300			1							-	_	Failed on first pressure
BH116	D	13	7.950	-	√	1	1					_	400	100 000 100										4-4-		
BH116	П	3	9.500	_	√							1	100	100, 200, 400	1											Failed on first pressure
BH116	D	15	9.950	-	√	1	1																	+	1	T alloa of times, procedure
BH116	D	17	12.450	-	√																			1	1	
					V								100	150, 300, 600	)											
BH116	U	5	15.000	-	, i						1															
BH116	D	20	15.450	-	√	1	1																			
BH116	υ	21	16.500	16.950			<u> </u>	<u> </u>					400	200 400 600	<u> </u>						<u> </u>			+		
BH116	U	6	18.000	l_	√						1		100	200, 400, 800	1											
BH116	D	22	18.450	<u> -</u>	√	1	1				•													++		
		l —		1	√								100	200, 400, 800	1									+		
BH116	U	7	21.000	-	· ·						1															
BH116	D	24		24.000	√	1	1																			
BH117	U	1	2.500		√			<u> </u>			1		100	25, 50, 100			1				<u> </u>					oedometer pressures 25, 50, 100, 200, 50, 100, 200, 400 kPa
BH117	W	1	2.900	<u> -</u>	√		<u> </u>	<u> </u>							<u> </u>						<u> </u>			1 1	1	
BH117	D	6	2.950	-	<b>V</b>	1	1								<u> </u>						<u> </u>			$\perp \perp$		
BH117	R	8	4.500	5.000	V		<u> </u>	<u> </u>	1	R					<u> </u>						<u> </u>			1		Insufficent fines
BH118	ט	3	1.200	-	√ -/		<u> </u>	<u> </u>			4		100	15 20 00	<u> </u>		4				<u> </u>			+-		andometer processor 25 EQ 400 200 EQ 400 200 400 LD
BH118	U D	1	1.500	- 2.000	√ √	4	4	<u> </u>			1		100	15, 30, 60			1				1			++	-	oedometer pressures 25, 50, 100, 200, 50, 100, 200, 400 kPa
BH118 BH118	וו	2	1.950 3.000	2.000	V	Т					1		100	30, 60, 120	<u> </u>		1				1			++		oedometer pressures 50, 100, 200, 400, 100, 200, 400, 800 kPa
BH118	W	1	3.400	E	V V		1	l	1		-		100	50, 00, 120	<b>-</b>						l	-		+ +	_	Occioniciei pressures 50, 100, 200, 400, 100, 200, 400, 800 KPa
BH118	D	6	3.450	3.500	√ √	1	1	<del>                                     </del>							1						<del>                                     </del>			+ -		
BH118	В	6	4.000	4.500	V				1	R					l									++	+	Insufficent fines
211110		<u> </u>		7.000										1												indulioure into

	SAMPLE DETAILS CLASSIFICATION I										1		TDIAY	IAL TESTS				MISC TEST		OTHER	1	CUE	MICAL	тете		REMARKS
	SAWIFLE	DETAIL	3				CLAS	SIFICA	TION DETA	(ILO			INIAA	IAL IESIS			- "	VIISC TES	3			CHE	IVIICAL		47 / BR	
					Amended											7/7				Please			3/5.2	10	oncrete	-
					to Result	2/2	2/4.3 2/4.4	2/7.2		2/9	7/9	7/8			7/4 7/5	8/7 8/8	5/3	4/3	4/5	Specify	3/3	3/9	3/5.3 3/5.4		uites	
							PL/LL		PSD	PSD Fine	119	UU	Dia	Cell	Shear		OED		MCV		Org		SO3			
							1 pt	Bulk	Sieve 9.2	9.4 (Hyd)			(mm)	Pressures									Acid	-		
									(Wet)	9.5 (pip)													Sol	1.2	9	
		SAMP	SAMP T	SAMP	Tick			&Dry							Small	CU	k			FPL				ie d	i i	
HOLE_ID	SAMP_TYPE	REF		BASE	indicates complete																		Water	ent	Pyrite Suite	
		_									Multi	Single				CD		1 I Mould					Sol	Green	7	
					√						a.c.	og.c				0.5								ă		
																							Gdw	11		PSD always wet unless otherwise stated. Fine sieve always
BH118	U	3	6.500	-	√						1		100	75, 150, 300												1 OB divide wet divided divided. The dicte divide
BH118	D	9	6.950	7.000	√																			1	1	
BH118	U	4	8.000	-	√						1		100	75, 150, 300												
BH118	D	11	8.450	8.500	√	1	1																			
BH118	W	2	11.800	-	√																			1	1	
BH118	В	12	14.500						1	1																
BH119	D	3	3.000	3.450	√																			1	1	
BH119	D	4	4.000	4.200	√	1	1								1				ļ			<u> </u>	ļ	$\perp \perp$		
BH119	U	1	4.000	-	√	1	1				1		100	50, 100, 200			1		ļ		-	1	ļ	++		oedometer pressures 50, 100, 200, 400, 100, 200, 400, 800 kPa
BH119	В	9	5.000	5.450	√ /				1	1			400	75 450 000	<u> </u>			<u> </u>						1		
BH119	U	2	7.000	- 7.550	√	1	1				1		100	75, 150, 300			1					-		++		oedometer pressures 100, 200, 400, 800, 200, 400, 800, 1600 kPa
BH119 BH119	D	0	7.450 8.000	7.550 8.450	√ √	1						<u> </u>			1			<u> </u>				1		<del>                                     </del>		
БППЭ	D	0	6.000	0.430	1						1		100	100, 200, 400	1			1								
BH119	U	3	9.000	-	√									100, 200, 100												
BH119	D	9	9.450	9.550	√	1	1																			
BH120	D	7	2.000	2.200	√	1	1																			
BH120	D	8	2.200	2.300	√																			1	1	
BH120	D	9	3.000	3.450	√	1	1								1											
BH120	W	1	4.000	-	√				4	-					-										<u> </u>	
BH120	В	10	5.000	6.000	√				1	1	1		100	100, 200, 400				<u> </u>				1		++		
BH120	U	1	8.000	-	√						•			100, 200, 400												
BH120	D	15	8.450	8.500	√	1	1																			
BH120	D	16	9.000	9.450	√																			1	1	
BH121	U	1	2.000	-	√						1		100	25, 50, 100			1									oedometer pressures 25, 50, 100, 200, 50, 100, 200, 400 kPa
BH121	D	2	2.450	2.550	√	1	1																			
BH121	D	3	3.000	3.450	√ /		_					ļ			1			ļ						٨	1	Missing Samples
BH121	ח	4	4.000	4.450	√ √	1	1		4	4		<u> </u>		1	<del>                                     </del>	<u> </u>	<u> </u>	1	<u> </u>	-	1	<del>                                     </del>	<u> </u>	++		
BH121 BH121	D II	2	5.000 7.000	5.450	√ √	1	1				1		100	75, 150, 300				-	1	-	-	+	<u> </u>	++		
BH121	ס	7	7.450	7.550	√ √	1	1		-	1			100	13, 130, 300		1		1	1	1	1	1	-	++	-	
BH121	D D	8	8.000	8.450	√ √					<b>-</b>		1		1	1	1		1	<del>                                     </del>	-	1	1	<b>-</b>	<del>   </del>		
511121		,	0.000	5.450		1	1			1	1		100	100, 200, 400	)									H		
BH121	U	3	9.000	-	√																					
BH121	D		9.450	9.550	√	1	1																			
BH121	D	10	10.000	10.000				<u> </u>							<u> </u>	<u> </u>			<u> </u>			<u> </u>		$\perp \perp$		
BH122	U	1	3.000	-	√ /	L.	<b>L</b> .				1		100	25, 50, 100			1		<u> </u>		1	1		$\vdash$	_	oedometer pressures 25, 50, 100, 200, 50, 100, 200, 400 kPa
BH122	ח אי	5	5.000	5.450	√	1	1		-	-		<u> </u>		1	<del>                                     </del>	<u> </u>	<u> </u>	1	<u> </u>	-	1	<del>                                     </del>	<u> </u>	┾		
BH122 BH122	W	10	5.300 6.000	7.000	√ √	<del>                                     </del>	<del>                                     </del>	<b></b>	1	1		<del>                                     </del>			1	1	-	-	1			1	-	+	_	
BH122	D	7	7.000	7.450	√ √	1	1	1				-			1		-		1			1	<b>-</b>	<del>   </del>		
טווועב	<u> </u>	_	7.000	7.430		1	1	1		-	1		100	100, 200, 400	)				1		1	1	1	H		
BH122	U	2	9.200	<u> </u> -	√																					

	SAMPLE	DETAILS	s				CLAS	SIFICA	TION DETA	AILS			TRIAX	IAL TESTS			м	ISC TEST	s	OTHER		CHE	MICAL 1	ESTS		REMARKS
					Log Amended to Result		2/4.3 2/4.4	2/7.2	2/9	2/9	7/9	7/8			7/4 7/5	7/7 8/7 8/8	5/3	4/3	4/5	Please Specify	3/4	3/9	3/5.2 3/5.3 3/5.4	TRL44	7 / BRE ncrete ites	
HOLE_ID	SAMP_TYPE	SAMP _REF	SAMP_T OP	SAMP_ BASE	Tick indicates complete	w	PL/LL 1 pt	Bulk &Dry	PSD Sieve 9.2 (Wet)	PSD Fine 9.4 (Hyd) 9.5 (pip)	Multi	UU Single	Dia (mm)	Cell Pressures	Shear Box Small		OED k	Comp  1 I Mould	MCV	FPL	Org	pН	SO3 Acid Sol Water Sol Gdw	Greenfield Brownfield Suite	Pyrite Suite	PSD always wet unless otherwise stated. Fine sieve always
BH122	D	10	9.650	9.800	√	1	1																			· · · · · · · · · · · · · · · · · · ·
BH122	D	11	9.800	10.250	√																			1		
BH123	D	1	1.200	1.650	√																			1		
BH123	D	2	2.000	2.450	<b>√</b>	1	1																			
BH123	В	6	3.400	4.000	√				1	R																Insufficent fines
BH123	В	8	5.000	5.450	<b>√</b>				1	R																Insufficent fines
BH123	U	1	8.500	-	<b>√</b>						1		100	85, 170, 340												
BH123	D	8	8.950	9.050	√	1	1																			
BH123	D	9	10.000	10.450	<b>√</b>																			1		
BH123	D	10	10.600	-	√	1	1																			
BH123	D	15	13.000	13.450	V	1	1																			
BH123	U	2	14.500	-	<b>V</b>						R		100	150, 300, 600												Insufficent intact sample for test
BH123	В	16	17.500	18.000	<b>√</b>				1	1																
BH124	D	1	1.200	1.650	√																			1		
BH124	D	2	2.000	2.450	<b>√</b>	1	1																			
BH124	U	1	3.000	-	√						1		100	25, 50, 100			1									oedometer pressures 25, 50, 100, 200, 50, 100, 200, 400 kPa
BH124	В	8	4.000	4.450	√				1	1																
BH124	В	11	6.800	7.300	√				1	1																
BH124	U	2	8.500	-	1						1		100	100, 200, 400												
BH124	D	7	8.950	9.050	<b>√</b>	1	1																			
Lab Results	Scheduled, Lab i	result rec	eived			53	53		28	16	45	3					22							42		
Lab Results	Scheduled, Lab i	result not	received -	Restricted	d					12	1															
Lab Results	Scheduled,Samp	ole noted	as missing	at Labora	atory	3	3		1	1	1													2		

PROJECT NAME

#### **EDMONTON ECOPARK**

PROJECT NO: GEO / 16819

Date	06/05/2011
Approved	Sinon Barbe
Page	1 of 4

	Sample detail	ls				Class	ificat	ion Te	ests	Densi	ity Tests		Undrained	Triaxial Comp	pression Tests		Ch	emical ⁻	Tests	
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)		PL (%)		<425 mic (%)	Bulk (Mg/m³	Dry )(Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH101	5.00 - 6.00	7	В	Brown and grey sandy GRAVEL																Particle Size Distribution Test
BH101	8.40 - 8.50	11	D	Dark grey silty CLAY	27	76	27	49	100											
BH101	13.40 - 13.50	15	D	Dark grey fine sandy silty CLAY	23	49	19	30	100											
BH101	3.00	1	U	Soft grey organic silty CLAY with rare plant remains	80					1.56	0.87	50 100 200	60 66 70	33	28	1.5				Oedometer Consolidation Test
BH101	8.00	2	U	Firm to stiff fissured grey silty CLAY	31					1.96	1.50	75 150 300	155 159 165	80	74	1				
BH101	13.00	4	U	Very stiff dark grey silty CLAY	23					2.09	1.69	125 250 500	299 318 337	159	138	2.5				
BH104	5.00 - 6.00	9	В	Brown sandy GRAVEL																Particle Size Distribution Test
BH104	1.70 - 1.80	4	D	Dark grey silty CLAY with rare fine sand and gravel	30	64	23	41	98											
BH104	8.40 - 8.50	12	D	Dark grey silty CLAY	25	70	26	44	100											
BH104	1.20	1	U	MADE GROUND: (Firm dark brown silty clay with rare fine to medium gravel, brick and mortar fragments)	27					1.99	1.57	15	115	57						Sample failed on first stage of multistage test Oedometer Consolidation Test
BH104	3.00	2	U	Firm brown and dark grey calcareous CLAY with rare gravel	33					1.95	1.47	50 100 200	108 109 110	55	53	0.5				
BH104	8.00	3	U	Firm dark grey silty CLAY with rare fine sand	27					2.03	1.61	75 150 300	130 134 138	67	63	1				

### **SUMMARY OF GEOTECHNICAL TESTING**

**GEOLABS**®

PROJECT NAME

#### **EDMONTON ECOPARK**

PROJECT NO: GEO / 16819

Date	06/05/2011
Approved	Sinon Barbe
Page	2 of 4

	Sample detai	ls				Clas	sification	on Test	S	Dens	ity Tests		Undrained	Triaxial Comp	pression Tests		Ch	emical 1	ests	
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)		PL (%)	PI	<425 mic (%)		Dry )(Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH108	3.50 - 4.00	7	В	Brown sandy GRAVEL																Particle Size Distribution Test
BH108	6.95	14	D	Dark grey-brown silty CLAY with rare coarse sand	30	70	25	45	99											
BH108	10.95	18	D	Dark grey - brown slightly fine sandy silty CLAY	25	61	23	38	99											
BH108	2.50	1	U	Soft dark brown clayey PEAT	67					1.44	0.87	50 100 200	33 36 39	18	15	1				
BH108	8.50	3	U	Stiff dark grey silty CLAY with rare fine sand	25					2.01	1.61	100 200 400	251 260 267	130	120	1.5				
BH117	4.50 - 5.00	8	В	Grey slightly sandy GRAVEL																Particle Size Distribution Test
BH117	2.95	6	D	Mottled brown and grey slightly fine sandy silty CLAY with rare medium to coarse sand	50	91	35	56	99											
BH117	2.50	1	U	Soft grey organic CLAY	69					1.54	0.91	25 50 100	49 51 55	26	22	2.5				Oedometer Consolidation Test
BH118	4.00 - 4.50	6	В	Dark grey and black sandy GRAVEL																Particle Size Distribution Test
BH118	14.50 - 16.00	12	В	Grey silty sandy CLAY																Particle Size Distribution Test
BH118	1.95 - 2.00	4	D	Dark brown and dark grey sandy gravelly CLAY	34	69	24	45	77											
BH118	3.45 - 3.50	6	D	Dark brown and black clayey fibrous PEAT	179	260	109	151	100											

**SUMMARY OF GEOTECHNICAL TESTING** 

**GEOLABS**®

#### **EDMONTON ECOPARK**

PROJECT NO: GEO / 16819

Date	06/05/2011	
Approved	Sinon Barke	
Page	3 of 4	

	Sample detai	ls				Class	ification	on Te	sts	Densi	ity Tests Undrained Triaxial Compression Tests							emical	Tests	
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)	LL (%)	PL (%)	PI	<425 mic (%)	Bulk (Mg/m³)	Dry )(Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH118	8.45 - 8.50	11	D	Grey - brown fine sandy silty CLAY	22	57	22	35	100											
BH118	1.50	1	U	Soft to firm dark grey CLAY with rare fine sand and black staining	28					1.96	1.53	15 30 60	82 86 94	44	34	7				Oedometer Consolidation Test
BH118	3.00	2	U	Soft to firm dark brown clayey PEAT	180					1.28	0.46	30 60 120	94 94 95	47	46	0.5				Oedometer Consolidation Test
BH118	6.50	3	U	Firm to stiff fissured dark grey CLAY with rare fine sand	30					2.03	1.56	75 150 300	171 181 188	90	81	2				
BH118	8.00	4	U	Very stiff dark grey silty CLAY with rare fine sand	23					2.12	1.72	75 150 300	334 367 430	189	126	10				
BH123	3.40 - 4.00	6	В	Dark grey slightly clayey silty sandy GRAVEL																Particle Size Distribution Test
BH123	5.00 - 5.45	8	В	Black and grey sandy GRAVEL																Particle Size Distribution Test
BH123	17.50 - 18.00	16	В	Brown silty clayey SAND																Particle Size Distribution Test
BH123	2.00 - 2.45	2	D	MADE GROUND: (Grey and brown organic silty clay with rare gravel and brick fragments)	83	118	56	62	99											
BH123	8.95 - 9.05	8	D	Brown and grey fine sandy silty CLAY	22	52	22	30	100											
BH123	10.60	10	D	Brown slightly fine sandy silty CLAY	24	56	23	33	100											
BH123	13.00 - 13.45	15	D	Grey silty CLAY	28	69	30	39	100											

# **SUMMARY OF GEOTECHNICAL TESTING**

#### **EDMONTON ECOPARK**

PROJECT NO: GEO / 16819

Date	06/05/2011
Approved	Sinon Barke
Page	4 of 4

	Sample deta	ils			Class	sificat	ion Te	ests	Densi	ty Tests		Undrained	Triaxial Comp	ression Tests		Chemical Tests			
Borehole No.	Depth (m)		Туре		C LL 6) (%)			mic	Bulk (Mg/m³)	Dry	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent	Angle of Shearing Resistance (°)	pН	2:1	Ground Water	Other tests and comments
		1	U		5) (%)			mic		(Mg/m³)	Pressure	Stress	Stress	Cohesion	Resistance	Pn	SO4	SO4	Other tests and comments

**SUMMARY OF GEOTECHNICAL TESTING** 

PROJECT NAME PROJECT NO:

#### **EDMONTON ECOPARK** GEO/16786

Date	19/04/2011
Approved	Simon Burke
Page	1 of 2

	Sample detail	s			Classification Tests					Dens	ty Tests						Ch	emical		
Borehole	Depth	No.	Туре	Description	МС	LL	PL	PI	<425 mic	Bulk	Dry	Cell Pressur	Deviator e Stress	Mean Shear Stress	Apparent Cohesion	Angle of Shearing Resistance	рН	2:1 W/S SO4	Ground Water SO4	Other tests and comments
No.	(m)				(%)	(%)	(%)		(%)	(Mg/m³	(Mg/m³)	(kPa)	(kPa)	(kPa)	(kPa)	(°)		(g/l)	(g/l)	
BH102	5.00 - 6.00	7	В	Grey sandy GRAVEL																Particle Size Distribution Test
BH102	3.00 - 3.45	5	D	MADE GROUND: (Brown and grey slightly organic clayey sandy silt with rare fine sandstone and brick fragments)	54	107	44	63	99											
BH102	8.00 - 8.45	10	D	Dark grey - brown silty CLAY with rare fine flint gravel	32	68	25	43	96											
BH103	4.00 - 4.50	7	В	Grey sandy GRAVEL																Particle Size Distribution Test
BH103	7.45 - 7.55	8	D	Dark grey brown silty CLAY	31	75	26	49	100											
BH103	9.15 - 9.25	9	D	Dark grey brown silty CLAY	28	71	25	46	100											
BH103	11.95 - 12.05	11	D	Dark brown fine sandy CLAY	23	56	21	35	100											
BH103	3.00	1	U	Soft black organic CLAY	124					1.31	0.59	30 60 120	68 68 67	34	34	0				Oedometer Consolidation Test
BH103	7.00	2	U	Firm dark grey silty CLAY with rare fine to medium sand and gravel	32					2.05	1.55	75 150 300	114 114 118	58	55	0.5				
BH103	8.70	3	U	Stiff dark grey silty CLAY	23					2.06	1.67	100 200 400	263 278 287	138	125	2				
BH103	11.50	4	U	Very stiff dark grey silty CLAY with rare pyrite nodules	24					2.08	1.68	150 300 600	430 500 553	247	179	6.5				
BH105	6.00 - 7.00	8	В	Grey - brown sandy GRAVEL																Particle Size Distribution Test

# **SUMMARY OF GEOTECHNICAL TESTING**



PROJECT NAME PROJECT NO:

#### **EDMONTON ECOPARK** GEO/16786

Date	19	/04/20	11
Approved	Simo	on B	urke
Page	2	of	2

	Sample deta	ils				Classi	ficatio	n Tes	ts	Dens	ity Tests		Undrained	Triaxial Comp	pression Tests		Ch	emical ⁻	Tests	
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)	LL (%)	PL (%)	PI	<425 mic (%)	Bulk (Mg/m³	Dry )(Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	pН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH105	8.50 - 8.70	12	D	Dark grey brown silty CLAY with rare sand and fine gravel	28	72	25	47	97											
BH105	4.00	2	U	Firm dark grey gravelly sandy CLAY	17					1.96	1.67	40 80 160	60 69 81	35	25	4.5				Oedometer Consolidation Test
BH113	4.50 - 5.50	7	В	Dark grey sandy GRAVEL																Particle Size Distribution Test
BH113	3.00 - 3.45	3	D	Black fibrous PEAT with rare fine gravel and wood fragments	204	176	80	96	98											
BH113	2.00	1	U	Firm dark grey slightly organic CLAY	48					1.85	1.26	25 50 100	80 85 88	42	37	3				Oedometer Consolidation Test
BH113	4.00	2	U	Soft sandy gravelly CLAY	12					2.13	1.90	50 100 200	66 79 87	39	29	3.5				Oedometer Consolidation Test

**SUMMARY OF GEOTECHNICAL TESTING** 

PROJECT NO:

EDMONTON ECOPARK

Project No: SI1688 GEO / 16762

Date	19	9/04/20	011
Approved	ي ل	Stur	ges
Page	1	of	7

	Sample detail	ls				Class	sification	Tests		Densit	y Tests		Undrained	d Triaxial Comp	ression Tests		Ch	emical 7	Γests	
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)	LL (%)	PL F		nic	Bulk (Mg/m³)	Dry (Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	pН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH106	6.50 - 7.00	8	В	Grey brown sandy GRAVEL																Particle Size Distribution Test
BH106	9.50 - 10.00	11	В	Brown silty CLAY																Particle Size Distribution Test
BH106	3.50 - 3.95	6	D	Dark orange clayey SAND and GRAVEL	6.2	25	16 9	17	7											
BH106	8.95	14	D	Dark grey brown silty CLAY	33	78	32 46	5 10	00											
BH106	11.45	16	D	Dark grey brown silty CLAY	29	72	27 4	5 10	00											
BH106	14.45	18	D	Dark grey brown silty CLAY	25	64	25 39	10	00											
BH106	5.10	1	U	Soft mottled light grey and grey CLAY with rare shell fragments and roots	31					2.00	1.52	50 100 200	54 56 57	28	27	0.5				Oedometer Consolidation Test
BH106	8.50	2	U	Firm to stiff dark grey CLAY	32					1.98	1.50	75 150 300	150 150 152	75	74	0				Oedometer Consolidation Test
BH106	11.00	3	U	Stiff dark grey silty CLAY	28					2.06	1.61	100 200 400	263 270 276	135	127	1				
BH106	14.00	4	U	Stiff dark grey fine sandy silty CLAY	25					2.01	1.60	150 300 600	278 287 291	143	136	1				
BH107	3.50 - 4.00	6	В	Grey brown sandy GRAVEL																Particle Size Distribution Test
BH107	1.40	3	D	Dark orange brown clayey SAND and GRAVEL	7.5	30	15 1	5 19	9											

**SUMMARY OF GEOTECHNICAL TESTING** 

Client: May Gurney (Technical Services) Limited, Trowse, Norwich, Norfolk NR14 8SZ

PROJECT NO:

EDMONTON ECOPARK Project No: SI1688 GEO / 16762

Date	19/04/2011
Approved	J Sturges
Page	2 of 7

	Sample deta	ils				Class	ificatio	on Te	sts	Densi	ty Tests		Undrained	Triaxial Comp	oression Tests		Ch	nemical 7	Tests	
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)	LL (%)	PL (%)		<425 mic (%)	Bulk (Mg/m³	Dry )(Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH107	2.40	6	D	Dark grey brown sandy gravelly CLAY	33	84	32	52	63											
BH107	6.95	12	D	Brown slightly clayey SILTSTONE	13															Unsuitable material for Test
BH107	8.95	14	D	Dark grey brown silty CLAY	35	75	30	45	99											
BH107	6.50	1	U	Firm dark brown CLAY	33					1.97	1.49	75 150 300	114 115 117	58	56	0.5				Oedometer Consolidation Test
BH107	8.50	2	U	Stiff fissured dark grey silty CLAY	35					1.96	1.45	100 200 400	175 171 170	86	86	0				
BH110	3.30 - 3.50	7	В	Brown clayey sandy GRAVEL																Particle Size Distribution Test
BH110	5.30 - 5.60	11	В	Brown sandy GRAVEL																Particle Size Distribution Test
BH110	2.20	6	D	Mottled brown, grey and orange sandy CLAY with rare flint gravel	69	113	45	68	96											
BH110	2.80	8	D	Brown clayey SAND and GRAVEL	9.4	48	19	29	21											
BH110	7.95	13	D	Dark brown fine sandy silty CLAY	23	50	21	29	100											
BH110	9.95	15	D	Dark grey brown silty CLAY	26	67	23	44	100											
BH110	2.50	1	U	Firm black and brown slightly organic gravelly CLAY	48					2.07	1.40	75 150 300	79 95 117	48	31	4.5				Oedometer Consolidation Test

**SUMMARY OF GEOTECHNICAL TESTING** 

EDMONTON ECOPARK
Project No: SI1688

PROJECT NO: GEO / 16762

Date	19	9/04/20	)11								
Approved	19/04/2011 J Sturges										
Page	3	of	7								

	Sample deta	ils			Classification Tests  MC LL PL PI <425				Dens	sity Tests		Undrained	Triaxial Comp	ression Tests		Ch	nemical '			
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)		PL (%)	PI	<425 mic (%)		Dry 3)(Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	pН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH110	7.50	2	U	Firm to stiff dark grey silty CLAY	28					2.00	1.56	75 150 300	171 179 184	89	82	1.5				
BH110	9.50	3	U	Very stiff dark grey silty CLAY with rare fine sand	24	24 2		2.11	1.70	100 200 400	453 490 618	260	155	12.5						
BH119	5.00 - 5.45	9	В	Grey brown sandy GRAVEL																Particle Size Distribution Test
BH119	4.00 - 4.20	4	D	Brown sandy slightly organic SILT with abundant shell fragments	87	NP	NP	NP	77											Sample Non - Plastic
BH119	7.45 - 7.55	7	D	Dark brown silty CLAY	26	61	25	36	100											
BH119	9.45 - 9.55	9	D	Dark grey brown silty CLAY	31	77	30	47	100											
BH119	4.00	1	U	Soft dark grey slightly organic fine sandy clayey SILT with rare shell fragments	48					1.45	0.98	50 100 200	81 78 77	39	39	0				Oedometer Consolidation Test
BH119	7.00	2	U	Stiff dark grey silty CLAY with rare fine sand	27					2.05	1.62	75 150 300	180 197 206	97	83	3				Oedometer Consolidation Test
BH119	9.00	3	U	Firm fissured dark grey silty CLAY	32					1.98	1.50	100 200 400	110 110 112	55	54	0.5				
BH120	5.00 - 6.00	10	В	Grey sandy GRAVEL																Particle Size Distribution Test
BH120	2.00 - 2.20	7	D	MADE GROUND: (Brown and black slightly sandy gravelly clay Gravel is flint with rare slag)	34	79	36	43	58											
BH120	3.00 - 3.45	9	D	Dark brown amorphous PEAT with abundant shell fragments	98	164	100	64	68											

**SUMMARY OF GEOTECHNICAL TESTING** 

EDMONTON ECOPARK Project No: SI1688

PROJECT NO: GEO / 16762

Date	19/04/2011
Approved	J Sturges
Page	4 of 7

	Sample deta	ils			Classification Tests  MC LL PL PI <				ests	Densi	ty Tests		Undrained		pression Tests		Ch	nemical Tests	
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)		PL (%)		<425 mic (%)	Bulk (Mg/m³	Dry (Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	рН	2:1 Ground W/S Water SO4 SO4 (g/l) (g/l)	Other tests and comments
BH120	8.45 - 8.50	15	D	Dark grey brown silty CLAY	28	75	28	47	100										
BH120	8.00	1	U	Firm dark grey silty CLAY with rare pyrite nodules	28					2.03	1.58	100 200 400	177 182 191	92	84	1.5			
BH121	5.00 - 5.45	8	В	Brown sandy GRAVEL															Particle Size Distribution Test
BH121	2.45 - 2.55	2	D	Dark brown slightly organic clayey sandy SILT	67	111	59	52	100										
BH121	4.00 - 4.45	4	D	Dark brown fibrous PEAT and flint GRAVEL	61	NP	NP	NP	44										Sample Non - Plastic
BH121	7.45 - 7.55	7	D	Grey CLAY	28	67	26	41	100										
BH121	9.45 - 9.55	9	D	Grey CLAY	25	72	28	44	100										
BH121	2.00	1	U	Firm very dark grey and pale grey marbled alluvial silty CLAY [2.00 to 2.40 m is MADE GROUND]															Oedometer Consolidation Test Insuffcient sample for QUTxI after Oedometer was taken
BH121	7.00	2	U	Stiff fissured dark grey silty CLAY	27					2.01	1.58	75 150 300	181 189 208	96	81	3.5			
BH121	9.00	3	U	Stiff dark grey silty CLAY with rare fine sand	23	23			2.00	1.63	100 200 400	277 293 314	147	126	3				
BH122	6.00 - 7.00	10	В	Grey sandy GRAVEL													Particle Size Distribution Test		
BH122	5.00 - 5.45	5	D	Dark brown sandy gravelly CLAY	38	38 45 32 13 66													

# **SUMMARY OF GEOTECHNICAL TESTING**



PROJECT NO:

EDMONTON ECOPARK Project No: SI1688 GEO / 16762

Date	19	/04/20	)11
Approved	JS	tur	ges
Page	5	of	7

	Sample deta	ils			Classification Tests  MC LL PL PI <425				Dens	ity Tests		Undrained	Triaxial Comp	ression Tests		Ch	emical [*]	Гests		
Borehole No.	Depth (m)	No.	Туре	Description				PI	<425 mic (%)		Dry )(Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH122	9.65 - 9.80	10	D	Dark grey silty CLAY	25	66	24	42	100											
BH122	3.00	1	U	Stiff dark grey CLAY with rare fine to medium gravel	31	31		1.97	1.50	25 50 100	165 164 169	83	79	1.5				Oedometer Consolidation Test		
BH122	9.20	2	U	Stiff dark grey silty CLAY with rare pyrite nodules	26	26		2.03	1.61	100 200 400	224 230 237	115	108	1						
BH124	4.00 - 4.45	8	В	Grey sandy GRAVEL																Particle Size Distribution Test
BH124	6.80 - 7.30	11	В	Grey slightly sandy GRAVEL																Particle Size Distribution Test
BH124	2.00 - 2.45	2	D	Grey brown slightly organic silty CLAY	71	105	30	75	100											
BH124	8.95 - 9.05	7	D	Grey silty CLAY	27	62	25	37	100											
BH124	3.00	1	U	Soft dark grey sandy gravelly CLAY	16					1.90	1.64	25 50 100	53 65 87	34	18	10.5				Oedometer Consolidation Test
BH124	8.50	2	U	Very stiff grey fine sandy CLAY	25					2.07	1.66	100 200 400	303 342 378	170	127	6				
BH109	10.50	3	U	Stiff dark grey silty fine sandy CLAY	27					2.02	1.59	100 200 400	221 231 242	116	104	2				
BH114	3.00 - 3.45	6	В	Grey sandy GRAVEL														Particle Size Distribution Test		
BH114	6.00 - 6.45	9	В	Grey sandy GRAVEL														Particle Size Distribution Test		

**SUMMARY OF GEOTECHNICAL TESTING** 

PROJECT NO:

EDMONTON ECOPARK Project No: SI1688 GEO / 16762

Date	19/04/2011
Approved	J Sturges
Page	6 of 7

	Sample deta	ils						sts	Densi	ty Tests		Undrained	Triaxial Comp	oression Tests		Ch	emical ⁻	ests		
Borehole No.	Depth (m)	No.	Туре	Description		LL (%)			<425 mic (%)	Bulk (Mg/m³)	Dry (Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH116	3.40 - 4.00	6	В	Grey brown clayey sandy GRAVEL																Particle Size Distribution Test
BH116	4.50 - 5.00	7	В	Grey sandy GRAVEL																Particle Size Distribution Test
BH116	6.10 - 6.50	12	D	Grey silty CLAY	29	71	25	46	100											
BH116	7.95	13	D	Grey silty CLAY	31	75	29	46	100											
BH116	9.95	15	D	Dark grey brown silty CLAY	33	80	31	49	100											
BH116	15.45	20	D	Grey silty CLAY	28	75	27	48	100											
BH116	18.45	22	D	Grey silty CLAY	22	48	20	28	100											
BH116	21.45 - 24.0	24	D	Grey silty CLAY	26	68	26	42	100											
BH116	2.50	1	U	Very dark grey organic CLAY	103	3				1.52	0.75	25 50 100	38 39 40	19	19	0.5				Oedometer Consolidation Test
BH116	7.50	2	U	Firm to stiff dark grey silty CLAY	33					1.97	1.49	75 150 300	151 154 162	78	71	1.5				Oedometer Consolidation Test
BH116	9.50	3	U	Firm fissured dark brown silty CLAY	33					1.98	1.50	100	126	63						
BH116	15.00	5	U	Stiff fissured dark grey silty CLAY	26					2.00	1.58	150 300 600	227 254 268	125	106	2.5				

**SUMMARY OF GEOTECHNICAL TESTING** 

PROJECT NO:

EDMONTON ECOPARK Project No: SI1688 GEO / 16762

Date	19/04/2011
Approved	J Sturges
Page	7 of 7

	Sample deta	ils				Class	sificati	on Te	sts	Densi	ty Tests		Undrained		ression Tests		Ch	emical 7		
Borehole No.	Depth (m)	No.	Туре	Description		C LL (%)			<425 mic (%)	Bulk (Mg/m³)	Dry (Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH116	18.00	6	U	Very stiff fissured dark grey sandy CLAY	21	1				1.97	1.62	200	331	166						Multistage went to 20% on 1st stage
BH116	21.00	7	U	Very stiff dark grey silty CLAY	25	5				1.99	1.59	200 400 800	215 495 531	207	72	11.5				
					-															
					][															

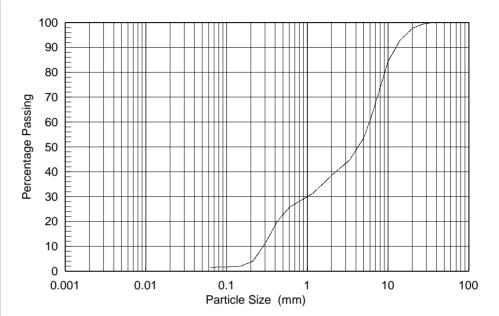
**SUMMARY OF GEOTECHNICAL TESTING** 

## **Determination of Particle Size Distribution**

BH101 Borehole Number:

Sample Number:

7


Depth (m): 5.00 - 6.00 Description:

Brown and grey sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIE	/E
Sieve	% pass
200 mm	100
125 mm	100
90 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	100
28 mm	100
20 mm	98
14 mm	93
10 mm	84
6.3 mm	63
5 mm	54
3.35 mm	45
2 mm	38
1.18 mm	31
600 µm	26
425 µm	20
300 µm	11
212 µm	4
150 µm	2
63 µm	1

LAY		SILT			SAND		(	GRAVEL	-	BLES
0	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions							
0.0	%						
61.5	%						
37.0	%						
1.4	%						
	0.0 61.5 37.0						

Checked and Approved

Initials:

SB Date: 06/05/2011 Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



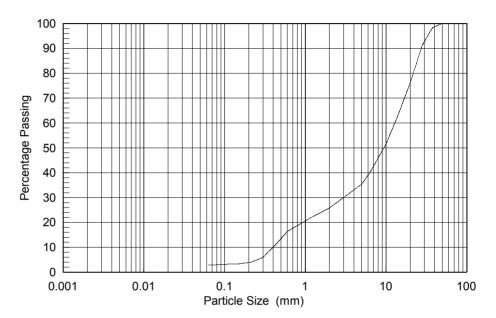


## **Determination of Particle Size Distribution**

Borehole Number: BH102

Sample Number: 7

Depth (m): 5.00 - 6.00


Description:

Grey sandy GRAVEL

BS1377 : Part 2 : Clause 9.3 : 1990 Dry Sieving Method

SIEV	SIEVE							
Sieve	% pass							
200 mm	100							
125 mm	100							
90 mm	100							
75 mm	100							
63 mm	100							
50 mm	100							
37.5 mm	98							
28 mm	91							
20 mm	76							
14 mm	63							
10 mm	52							
6.3 mm	40							
5 mm	35							
3.35 mm	31							
2 mm	26							
1.18 mm	22							
600 µm	16							
425 µm	11							
300 µm	6							
212 µm	4							
150 µm	3							
63 µm	3							

LAY	SILT			SAND			GRAVEL			
O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions							
0.0	%						
74.2	%						
23.0	%						
2.8	%						
	0.0 74.2 23.0						

Checked and Approved

Initials:

JS Date: 19/04/2011 Project Number:

Project Name:

GEO / 16786

**EDMONTON ECOPARK** 



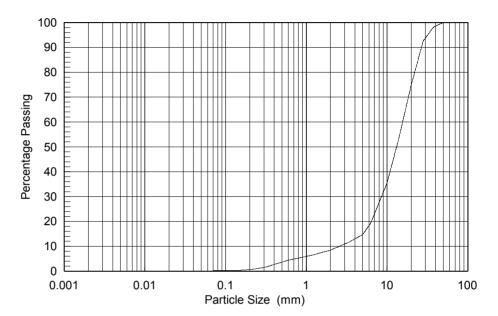
## **Determination of Particle Size Distribution**

BH103 Borehole Number:

Sample Number:

7

4.00 - 4.50 Depth (m):


Description:

Grey sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIE\	<u>/</u> Г		
Sieve	% pass		
200 mm	100		
125 mm	100		
90 mm	100		
75 mm	100		
63 mm	100		
50 mm	100		
37.5 mm	98		
28 mm	93		
20 mm	75		
14 mm	53		
10 mm	35		
6.3 mm	19		
5 mm	15		
3.35 mm	12		
2 mm	9		
1.18 mm	6		
600 µm	4		
425 µm	3		
300 µm	2		
212 µm	1		
150 µm	0		
63 µm	0		

LAY		SILT			SAND			GRAVEL		
O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions						
0.0	%					
91.5	%					
8.4	%					
0.1	%					
	0.0 91.5 8.4					

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

**GEO / 16786** 

**EDMONTON ECOPARK** 



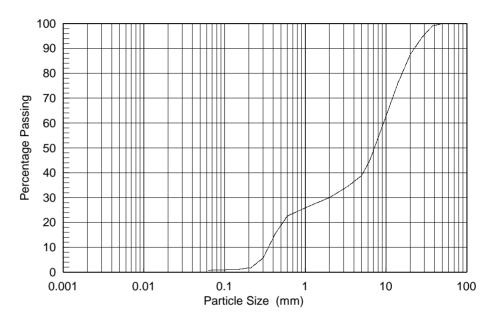
## **Determination of Particle Size Distribution**

Borehole Number: BH104

Sample Number: 9

Depth (m):

5.00 - 6.00


Description:

Brown sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEV	SIEVE						
Sieve	% pass						
200 mm	100						
125 mm	100						
90 mm	100						
75 mm	100						
63 mm	100						
50 mm	100						
37.5 mm	99						
28 mm	95						
20 mm	88						
14 mm	76						
10 mm	63						
6.3 mm	45						
5 mm	39						
3.35 mm	35						
2 mm	30						
1.18 mm	27						
600 µm	23						
425 µm	15						
300 µm	6						
212 µm	2						
150 µm	1						
63 µm	1						

LAY	SILT			SAND			GRAVEL			
O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions							
0.0	%						
70.0	%						
29.2	%						
0.8	%						
	0.0 70.0 29.2						

Checked and Approved

Initials:

**SB**Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 





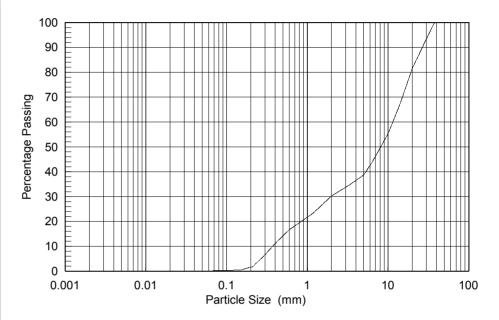
## **Determination of Particle Size Distribution**

BH105 Borehole Number:

Sample Number:

8

6.00 - 7.00 Depth (m):


Description:

Grey - brown sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIE\	/E
Sieve	% pass
200 mm	100
125 mm	100
90 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	100
28 mm	92
20 mm	82
14 mm	67
10 mm	55
6.3 mm	44
5 mm	39
3.35 mm	35
2 mm	30
1.18 mm	23
600 µm	17
425 µm	12
300 µm	7
212 µm	2
150 µm	1
63 µm	0

LAY		SILT			SAND			GRAVEL		
O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions					
0.0	%				
69.7	%				
30.1	%				
0.2	%				
	0.0 69.7 30.1				

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

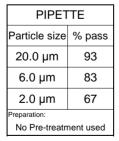
Project Name:

**GEO / 16786** 

**EDMONTON ECOPARK** 

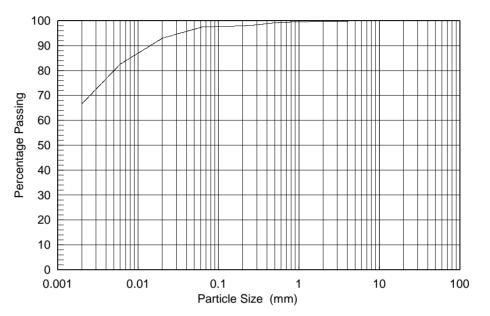


### **Determination of Particle Size Distribution**


Borehole Number: 106 Sample Number: 11

Depth (m): 9.50 - 10.00 Description: Brown silty CLAY

BS1377 : Part 2 : Clause 9.2 : 1990 Wet Sieving Method BS1377: Part 2: Clause 9.4: 1990 Sedimentation by the Pipette Method


SIEVE						
Sieve	% pass					
200 mm	100					
125 mm	100					
90 mm	100					
75 mm	100					
63 mm	100					
50 mm	100					
37.5 mm	100					
28 mm	100					
20 mm	100					
14 mm	100					
10 mm	100					
6.3 mm	100					
5 mm	100					
3.35 mm	100					
2 mm	100					
1.18 mm	100					
600 µm	99					
425 µm	99					
300 µm	98					
212 µm	98					
150 µm	98					
63 µm	98					

SIEVE			
Sieve	% pass		
200 mm	100		
125 mm	100		
90 mm	100		
75 mm	100		
63 mm	100		
50 mm	100		
37.5 mm	100		
28 mm	100		
20 mm	100		
14 mm	100		
10 mm	100		
6.3 mm	100		
5 mm	100		
3.35 mm	100		
2 mm	100		
1.18 mm	100		
600 µm	99		
425 µm	99		
300 µm	98		
212 µm	98		
150 µm	98		
63 µm	98		



Temp (°C)	20
-----------	----

−A≺		SILT		SAND		GRAVEL			BBLES	
ਹ	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	SO



Particle Proportions					
Cobbles	0.0	%			
Gravel	0.3	%			
Sand	2.2	%			
Silt	30.9	%			
Clay	66.7	%			

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

**GEO / 16762** 

**EDMONTON ECOPARK** 

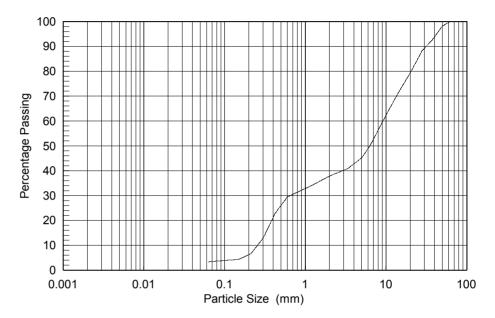




## **Determination of Particle Size Distribution**

Borehole Number: 106 Sample Number: 8

Depth (m): 6.50 - 7.00


Description:

Grey brown sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE					
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	98				
37.5 mm	93				
28 mm	88				
20 mm	79				
14 mm	71				
10 mm	62				
6.3 mm	50				
5 mm	45				
3.35 mm	41				
2 mm	38				
1.18 mm	34				
600 µm	29				
425 µm	23				
300 µm	13				
212 µm	7				
150 µm	4				
63 µm	3				

LAY		SILT		SAND		OAND GIVAVEL			BBLES	
O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	0



Particle Proportions					
Cobbles	0.0	%			
Gravel	62.1	%			
Sand	34.4	%			
Silt & Clay	3.4	%			

Checked and Approved

Initials:

JS Date: 19/04/2011 Project Number:

Project Name:

GEO / 16762

EDMONTON ECOPARK

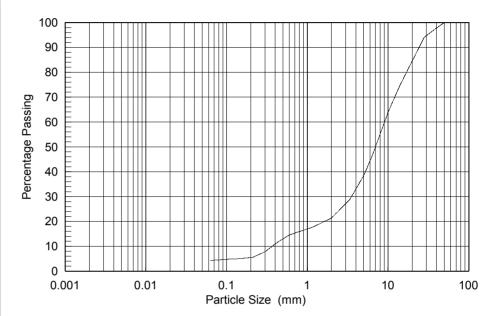




## **Determination of Particle Size Distribution**

Borehole Number: 107 Sample Number: 6

Depth (m): 3.50 - 4.00


Description:

Grey brown sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE					
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	100				
37.5 mm	97				
28 mm	94				
20 mm	85				
14 mm	75				
10 mm	64				
6.3 mm	46				
5 mm	38				
3.35 mm	29				
2 mm	21				
1.18 mm	18				
600 µm	15				
425 μm	12				
300 µm	8				
212 µm	6				
150 µm	5				
63 µm	4				

LAY		SILT	SILL I SAND I GRAVEI				BBLES			
ر	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COF



Particle Proportions					
Cobbles	0.0	%			
Gravel	78.6	%			
Sand	17.1	%			
Silt & Clay	4.3	%			

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 





## **Determination of Particle Size Distribution**

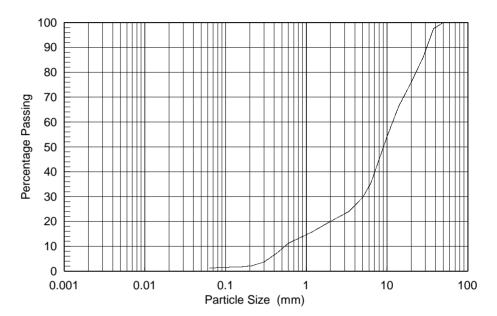
Borehole Number: BH108

Sample Number: 7

Depth (m):

3.50 - 4.00

| Brow


Brown sandy GRAVEL

Description:

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE					
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	100				
37.5 mm	98				
28 mm	86				
20 mm	76				
14 mm	66				
10 mm	54				
6.3 mm	35				
5 mm	30				
3.35 mm	24				
2 mm	20				
1.18 mm	16				
600 µm	11				
425 µm	7				
300 µm	4				
212 µm	2				
150 µm	2				
63 µm	1				

LAY	<u></u>			SAND			GRAVEL			
O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions					
0.0	%				
79.9	%				
18.7	%				
1.3	%				
	0.0 79.9 18.7				

Checked and Approved

Initials:

**SB**Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 

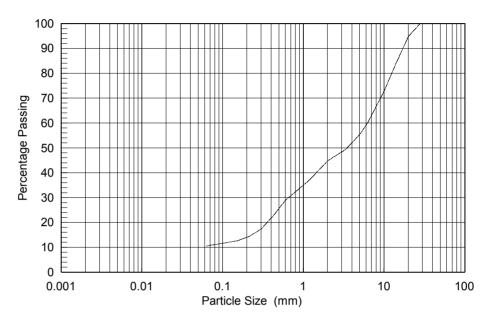




## **Determination of Particle Size Distribution**

Borehole Number: 110 Sample Number: 7

Depth (m): 3.30 - 3.50


Description:

Brown clayey sandy GRAVEL

BS1377: Part 2: Clause 9.2: 1990 Wet Sieving Method

SIEVE						
Sieve	% pass					
200 mm	100					
125 mm	100					
90 mm	100					
75 mm	100					
63 mm	100					
50 mm	100					
37.5 mm	100					
28 mm	100					
20 mm	95					
14 mm	84					
10 mm	73					
6.3 mm	60					
5 mm	55					
3.35 mm	49					
2 mm	45					
1.18 mm	37					
600 µm	29					
425 µm	23					
300 µm	17					
212 µm	14					
150 µm	13					
63 µm	11					

ĺ	LAY	5 H			SAND			GRAVEL			
	O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions					
Cobbles	0.0	%			
Gravel	55.3	%			
Sand	34.1	%			
Silt & Clay	10.6	%			

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

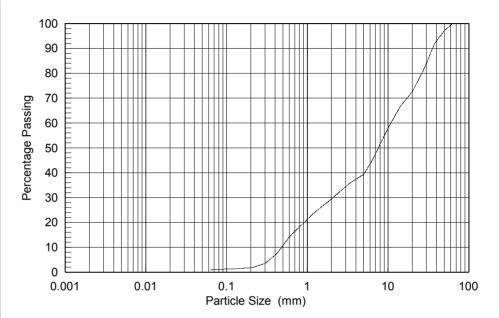




## **Determination of Particle Size Distribution**

Borehole Number: 110 Sample Number: 11

Depth (m): 5.30 - 6.00


Description:

Brown sandy GRAVEL

BS1377 : Part 2 : Clause 9.3 : 1990 Dry Sieving Method

SIEVE						
Sieve	% pass					
200 mm	100					
125 mm	100					
90 mm	100					
75 mm	100					
63 mm	100					
50 mm	97					
37.5 mm	92					
28 mm	82					
20 mm	73					
14 mm	66					
10 mm	58					
6.3 mm	45					
5 mm	39					
3.35 mm	36					
2 mm	30					
1.18 mm	24					
600 µm	14					
425 µm	8					
300 µm	4					
212 µm	2					
150 µm	1					
63 µm	1					

LAY		SILT		SAND			GRAVEL			3BLES
S	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions					
Cobbles	0.0	%			
Gravel	70.5	%			
Sand	28.6	%			
Silt & Clay	1.0	%			

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

**GEO / 16762** 

EDMONTON ECOPARK



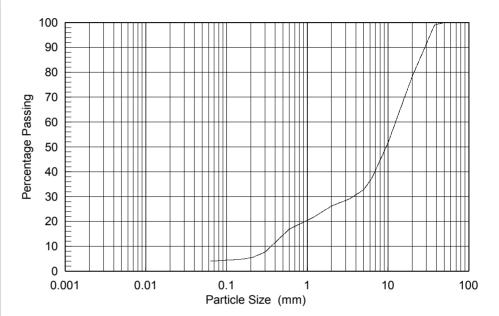


## **Determination of Particle Size Distribution**

BH113 Borehole Number:

Sample Number:

7


Depth (m): 4.50 - 5.50 Description:

Dark grey sandy GRAVEL

BS1377: Part 2: Clause 9.2: 1990 Wet Sieving Method

SIEVE						
Sieve	% pass					
200 mm	100					
125 mm	100					
90 mm	100					
75 mm	100					
63 mm	100					
50 mm	100					
37.5 mm	99					
28 mm	89					
20 mm	78					
14 mm	65					
10 mm	52					
6.3 mm	37					
5 mm	33					
3.35 mm	29					
2 mm	26					
1.18 mm	22					
600 µm	17					
425 µm	12					
300 µm	8					
212 µm	6					
150 µm	5					
63 µm	4					

LAY	SILT			SAND			GRAVEL			BBLES
S	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CO



Particle Proportions					
Cobbles	0.0	%			
Gravel	73.8	%			
Sand	22.2	%			
Silt & Clay	4.1	%			

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

**GEO / 16786** 

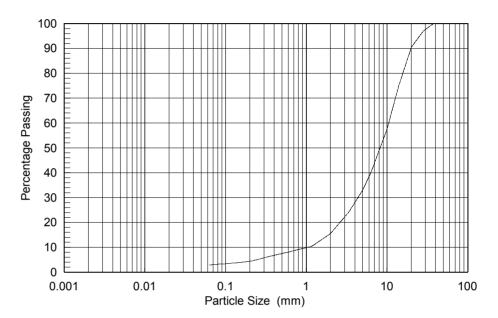
**EDMONTON ECOPARK** 



## **Determination of Particle Size Distribution**

Borehole Number: 114 Sample Number: 6

Depth (m): 3.00 - 3.45


Description:

Grey sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE					
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	100				
37.5 mm	100				
28 mm	97				
20 mm	91				
14 mm	75				
10 mm	58				
6.3 mm	40				
5 mm	33				
3.35 mm	24				
2 mm	16				
1.18 mm	11				
600 µm	8				
425 μm	7				
300 µm	6				
212 µm	5				
150 µm	4				
63 µm	3				

LAY		SILT	LT SA		SAND	ND		GRAVEL		3BLES
O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions					
Cobbles	0.0	%			
Gravel	84.5	%			
Sand	12.6	%			
Silt & Clay	2.9	%			

Checked and Approved

Initials:

JS Date: 19/04/2011 Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

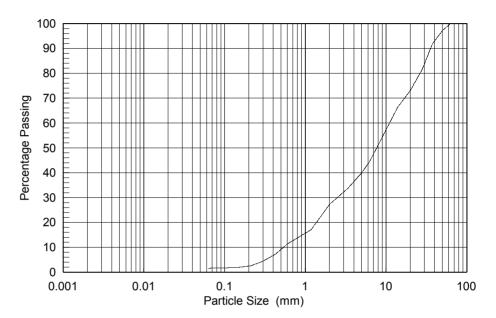




## **Determination of Particle Size Distribution**

Borehole Number: 114 Sample Number: B9

Depth (m): 6.00 - 6.45


Description:

Grey sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE						
Sieve	% pass					
200 mm	100					
125 mm	100					
90 mm	100					
75 mm	100					
63 mm	100					
50 mm	97					
37.5 mm	92					
28 mm	82					
20 mm	73					
14 mm	66					
10 mm	57					
6.3 mm	45					
5 mm	40					
3.35 mm	34					
2 mm	27					
1.18 mm	17					
600 µm	11					
425 µm	7					
300 µm	4					
212 µm	3					
150 µm	2					
63 µm	2					

LAY	SILT		SAND			GRAVEL			BBLES	
S	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CO



Particle Proportions					
Cobbles	0.0	%			
Gravel	72.7	%			
Sand	25.7	%			
Silt & Clay	1.6	%			

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

EDMONTON ECOPARK

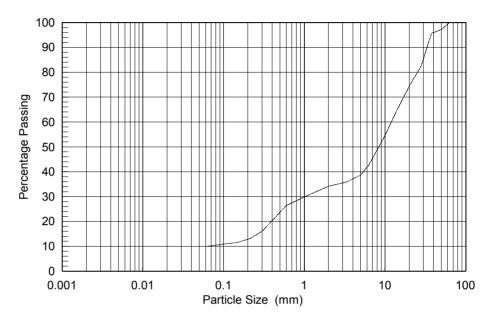




## **Determination of Particle Size Distribution**

Borehole Number: 116 Sample Number: 6

Depth (m): 3.40 - 4.00


Description:

Grey brown clayey sandy GRAVEL

BS1377: Part 2: Clause 9.2: 1990 Wet Sieving Method

SIEVE					
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	97				
37.5 mm	96				
28 mm	83				
20 mm	74				
14 mm	65				
10 mm	55				
6.3 mm	43				
5 mm	39				
3.35 mm	36				
2 mm	34				
1.18 mm	31				
600 µm	26				
425 µm	21				
300 µm	16				
212 µm	13				
150 µm	12				
63 µm	10				

LAY	SILT			SAND			GRAVEL			
S	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions					
Cobbles	0.0	%			
Gravel	65.8	%			
Sand	24.1	%			
Silt & Clay	10.1	%			

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

EDMONTON ECOPARK

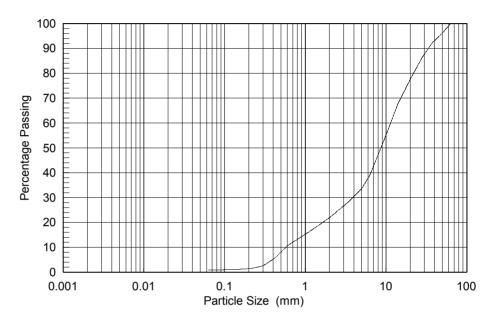




## **Determination of Particle Size Distribution**

Borehole Number: 116 Sample Number: 7

Depth (m): 4.50 - 5.00


Description:

Grey sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE						
Sieve	% pass					
200 mm	100					
125 mm	100					
90 mm	100					
75 mm	100					
63 mm	100					
50 mm	96					
37.5 mm	92					
28 mm	86					
20 mm	78					
14 mm	68					
10 mm	55					
6.3 mm	39					
5 mm	34					
3.35 mm	28					
2 mm	22					
1.18 mm	17					
600 µm	11					
425 µm	6					
300 µm	3					
212 µm	2					
150 µm	1					
63 µm	1					

LAY		SILT		SAND			GRAVEL			BLES
O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions					
Cobbles	0.0	%			
Gravel	78.1	%			
Sand	21.1	%			
Silt & Clay	0.8	%			

Checked and Approved

Initials:

JS Date: 19/04/2011 Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 



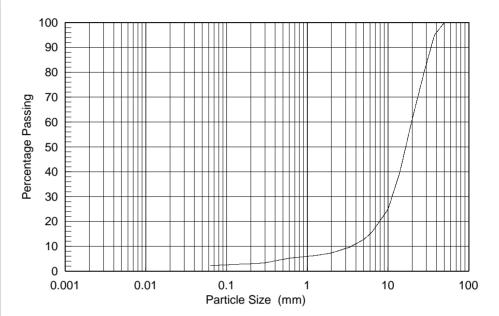


## **Determination of Particle Size Distribution**

BH117 Borehole Number:

Sample Number:

8


Depth (m): 4.50 - 5.00 Description:

Grey slightly sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE						
Sieve	% pass					
200 mm	100					
125 mm	100					
90 mm	100					
75 mm	100					
63 mm	100					
50 mm	100					
37.5 mm	95					
28 mm	80					
20 mm	61					
14 mm	40					
10 mm	25					
6.3 mm	16					
5 mm	13					
3.35 mm	10					
2 mm	7					
1.18 mm	6					
600 µm	5					
425 µm	4					
300 µm	3					
212 µm	3					
150 µm	3					
63 µm	2					

LAY		SILT		SAND		(	GRAVEL	-	OBBLES	
S	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COF



Particle Proportions					
0.0	%				
92.7	%				
5.1	%				
2.2	%				
	0.0 92.7 5.1				

Checked and Approved

Initials:

SB Date: 06/05/2011 Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 





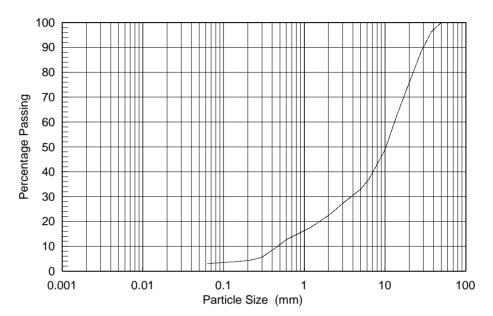
## **Determination of Particle Size Distribution**

Borehole Number: BH118

Sample Number: 6

Depth (m):

4.00 - 4.50


Description:

Dark grey and black sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE					
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	100				
37.5 mm	96				
28 mm	88				
20 mm	76				
14 mm	63				
10 mm	49				
6.3 mm	37				
5 mm	33				
3.35 mm	29				
2 mm	22				
1.18 mm	18				
600 µm	13				
425 µm	9				
300 µm	6				
212 µm	4				
150 µm	4				
63 µm	3				





Particle Proportions					
Cobbles	0.0	%			
Gravel	77.5	%			
Sand	19.4	%			
Silt & Clay	3.1	%			

Checked and Approved

Initials:

**SB**Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 

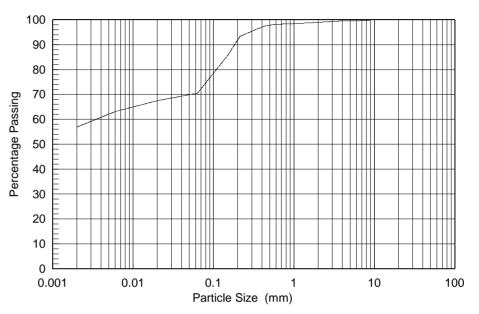




### **Determination of Particle Size Distribution**

Borehole Number: BH118 Sample Number: 12

Depth (m): 14.50 - 16.00


Description:

Grey silty sandy CLAY

BS1377 : Part 2 : Clause 9.2 : 1990 Wet Sieving Method BS1377 : Part 2 : Clause 9.4 : 1990 Sedimentation by the Pipette Method

SIEVE						
Sieve	% pass					
200 mm	100					
125 mm	100					
90 mm	100					
75 mm	100					
63 mm	100					
50 mm	100					
37.5 mm	100					
28 mm	100					
20 mm	100					
14 mm	100					
10 mm	100					
6.3 mm	100					
5 mm	100					
3.35 mm	99					
2 mm	99					
1.18 mm	99					
600 µm	98					
425 µm	97					
300 µm	95					
212 µm	93					
150 µm	86					
63 µm	71					

<del> </del>		SILT		SAND		GRAVEL			BBLES	
lo 🗆	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COE



Particle Proportions						
Cobbles	0.0	%				
Gravel	1.0	%				
Sand	28.4	%				
Silt	13.6	%				
Clay	56.9	%				

PIPETTE					
Particle size	% pass				
20.0 µm	68				
6.0 µm	63				
2.0 µm	57				
Preparation:					
No Pro troots	nont ucod				

Temp (°C) 20

Checked and Approved

Initials:

**SB**Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

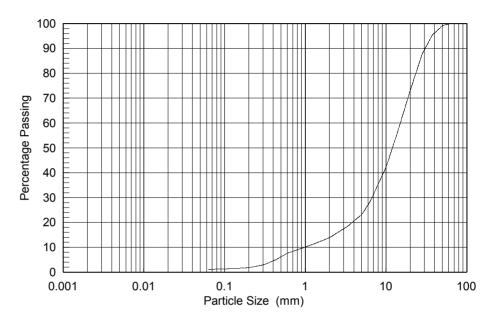




## **Determination of Particle Size Distribution**

Borehole Number: 119 Sample Number: 9

Depth (m): 5.00 - 5.45


Description:

Grey brown sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE						
Sieve	% pass					
200 mm	100					
125 mm	100					
90 mm	100					
75 mm	100					
63 mm	100					
50 mm	99					
37.5 mm	95					
28 mm	88					
20 mm	73					
14 mm	57					
10 mm	42					
6.3 mm	28					
5 mm	23					
3.35 mm	19					
2 mm	14					
1.18 mm	11					
600 µm	8					
425 µm	5					
300 µm	3					
212 µm	2					
150 µm	2					
63 µm	1					

LAY		SILT		SAND		(	GRAVEL	-	BBLES	
S	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CO



Particle Proportions					
Cobbles	0.0	%			
Gravel	86.1	%			
Sand	12.8	%			
Silt & Clay	1.1	%			

Checked and Approved

Initials:

JS Date: 19/04/2011 Project Number:

Project Name:

GEO / 16762

EDMONTON ECOPARK

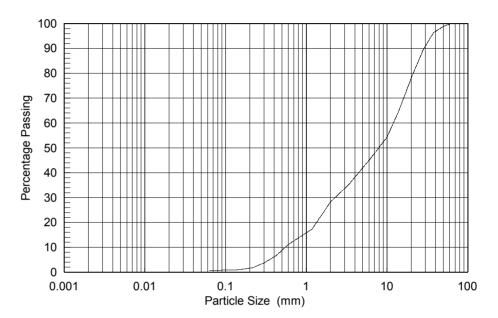




## **Determination of Particle Size Distribution**

Borehole Number: 120 Sample Number: 10

Depth (m): 5.00 - 6.00


Description:

Grey sandy GRAVEL

#### BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEV	/E	
Sieve	% pass	
200 mm	100	
125 mm	100	
90 mm	100	
75 mm	100	
63 mm	100	
50 mm	99	
37.5 mm	96	
28 mm	89	
20 mm	78	
14 mm	65	
10 mm	54	
6.3 mm	46	
5 mm	42	
3.35 mm	35	
2 mm	28	
1.18 mm	17	
600 µm	11	
425 µm	7	
300 µm	4	
212 µm	2	
150 µm	1	
63 µm	1	

LAY		SILT	SILT SAND GRAVEL				_	3BLES		
S	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions				
0.0	%			
71.7	%			
27.6	%			
0.6	%			
	0.0 71.7 27.6			

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

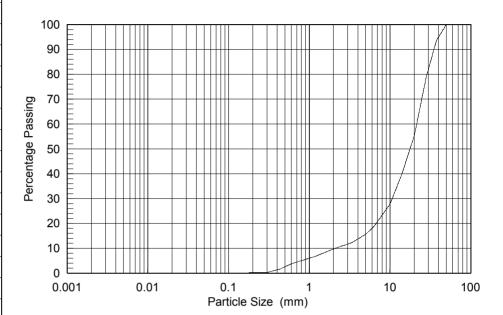




## **Determination of Particle Size Distribution**

Borehole Number: 121 Sample Number: 8

Depth (m): 5.00 - 5.45


Description:

Brown sandy GRAVEL

BS1377 : Part 2 : Clause 9.3 : 1990 Dry Sieving Method

SIEV	Æ
Sieve	% pass
200 mm	100
125 mm	100
90 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	94
28 mm	79
20 mm	55
14 mm	40
10 mm	28
6.3 mm	19
5 mm	16
3.35 mm	12
2 mm	10
1.18 mm	7
600 µm	4
425 µm	2
300 µm	0
212 µm	0
150 µm	0
63 µm	0





Particle Proportions				
0.0	%			
90.2	%			
9.7	%			
0.0	%			
	90.2			

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

EDMONTON ECOPARK

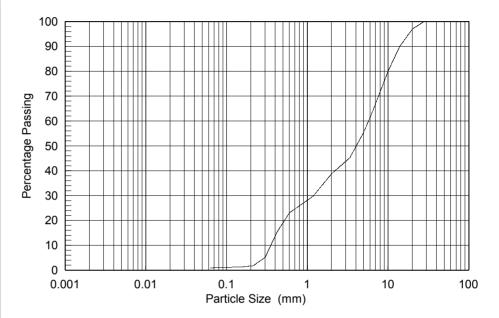




## **Determination of Particle Size Distribution**

Borehole Number: 122 Sample Number: 10

Depth (m): 6.00 - 7.00


Description:

Grey sandy GRAVEL

BS1377 : Part 2 : Clause 9.3 : 1990 Dry Sieving Method

SIE	/E
Sieve	% pass
200 mm	100
125 mm	100
90 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	100
28 mm	100
20 mm	97
14 mm	90
10 mm	80
6.3 mm	63
5 mm	55
3.35 mm	45
2 mm	39
1.18 mm	30
600 µm	23
425 µm	15
300 µm	5
212 µm	2
150 µm	1
63 µm	1

LAY		SILT		SAND		(	GRAVEL	_	BLES	
O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions				
Cobbles	0.0	%		
Gravel	61.2	%		
Sand	37.8	%		
Silt & Clay	1.0	%		

Checked and Approved

Initials:

JS Date: 19/04/2011 Project Number:

Project Name:

GEO / 16762

EDMONTON ECOPARK



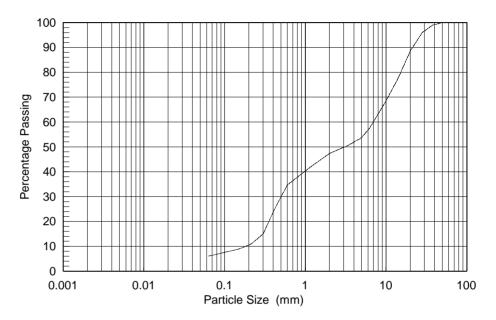


## **Determination of Particle Size Distribution**

Borehole Number: BH123

Sample Number: 6

Depth (m): 3.40 - 4.00


Description:

Dark grey slightly clayey silty sandy GRAVEL

BS1377: Part 2: Clause 9.2: 1990 Wet Sieving Method

SIE	/E
Sieve	% pass
200 mm	100
125 mm	100
90 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	99
28 mm	96
20 mm	89
14 mm	77
10 mm	68
6.3 mm	58
5 mm	54
3.35 mm	51
2 mm	47
1.18 mm	42
600 µm	35
425 µm	26
300 µm	15
212 µm	11
150 µm	9
63 µm	6

LAY		SILT		SILL I SAND		GRAVEL			BBLES	
O	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CO



Particle Proportions					
Cobbles	0.0	%			
Gravel	52.6	%			
Sand	41.3	%			
Silt & Clay	6.0	%			

Checked and Approved

Initials:

**SB**Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



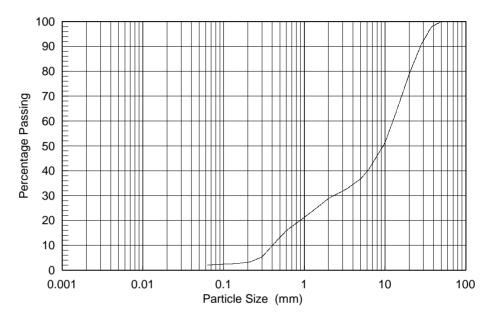


## **Determination of Particle Size Distribution**

BH123 Borehole Number:

Sample Number:

8


Depth (m): 5.00 - 5.45 Description:

Black and grey sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE					
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	100				
37.5 mm	98				
28 mm	91				
20 mm	79				
14 mm	64				
10 mm	51				
6.3 mm	41				
5 mm	37				
3.35 mm	33				
2 mm	29				
1.18 mm	23				
600 µm	16				
425 µm	11				
300 µm	5				
212 µm	3				
150 µm	3				
63 µm	2				

CLAY	SILT			SAND			GRAVEL			BLES
	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions					
Cobbles	0.0	%			
Gravel	71.1	%			
Sand	26.7	%			
Silt & Clay	2.2	%			

Checked and Approved

Initials:

SB Date: 06/05/2011 Project Number:

Project Name:

GEO / 16819

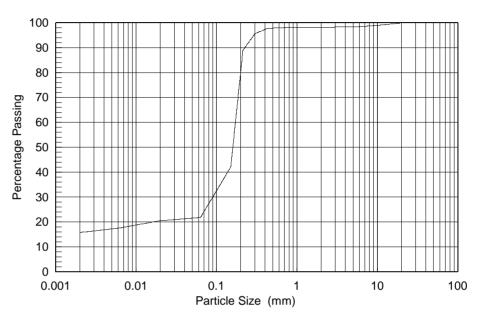
**EDMONTON ECOPARK** 



#### BS1377: Part 2: Clause 9: 1990

#### **Determination of Particle Size Distribution**

Borehole Number: BH123 Sample Number: 16


Depth (m): 17.50 - 18.00 Description:

Brown silty clayey SAND

BS1377 : Part 2 : Clause 9.2 : 1990 Wet Sieving Method BS1377: Part 2: Clause 9.4: 1990 Sedimentation by the Pipette Method

SIEVE				
Sieve	% pass			
200 mm	100			
125 mm	100			
90 mm	100			
75 mm	100			
63 mm	100			
50 mm	100			
37.5 mm	100			
28 mm	100			
20 mm	100			
14 mm	99			
10 mm	99			
6.3 mm	98			
5 mm	98			
3.35 mm	98			
2 mm	98			
1.18 mm	98			
600 µm	98			
425 µm	98			
300 µm	96			
212 µm	89			
150 µm	42			
63 µm	22			

AY		SILT		SAND		GRAVEL			BBLES	
ਹ ਹ	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COE



Particle Proportions					
Cobbles 0.0 %					
Gravel	1.8	%			
Sand	76.4	%			
Silt	6.0	%			
Clay	15.8	%			

PIPETTE				
Particle size	% pass			
20.0 µm	21			
6.0 µm	18			
2.0 µm 16				
Preparation:				
No Pro troots	nont ucod			

Temp (°C) 20

Checked and Approved

Initials:

Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



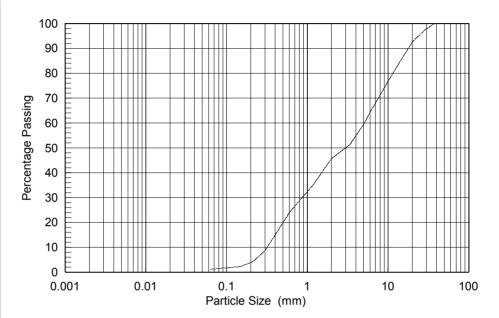


#### BS1377 : Part 2 : Clause 9 : 1990

#### **Determination of Particle Size Distribution**

Borehole Number: 124 Sample Number: 8

Depth (m): 4.00 - 4.45


Description:

Grey sandy GRAVEL

BS1377 : Part 2 : Clause 9.3 : 1990 Dry Sieving Method

SIEVE				
Sieve	% pass			
200 mm	100			
125 mm	100			
90 mm	100			
75 mm	100			
63 mm	100			
50 mm	100			
37.5 mm	100			
28 mm	97			
20 mm	93			
14 mm	85			
10 mm	77			
6.3 mm	66			
5 mm	60			
3.35 mm	51			
2 mm	46			
1.18 mm	35			
600 µm	24			
425 µm	16			
300 µm	9			
212 µm	4			
150 µm	2			
63 µm	1			

LAY		SILT		SAND		GRAVEL			3BLES	
S	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions				
Cobbles 0.0 %				
54.3	%			
44.6	%			
Silt & Clay 1.1 %				
	0.0 54.3 44.6			

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

EDMONTON ECOPARK

**Project No: SI1688** 



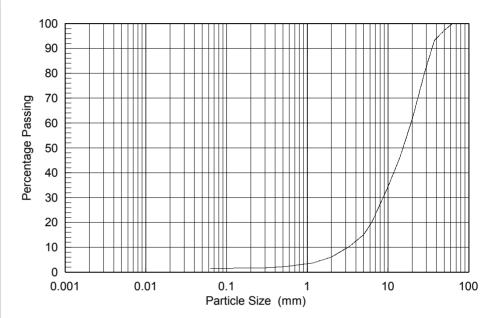


#### BS1377 : Part 2 : Clause 9 : 1990

#### **Determination of Particle Size Distribution**

Borehole Number: 124 Sample Number: 11

Depth (m): 6.80 - 7.30


Description:

Grey slightly sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEV	/E
Sieve	% pass
200 mm	100
125 mm	100
90 mm	100
75 mm	100
63 mm	100
50 mm	97
37.5 mm	93
28 mm	80
20 mm	62
14 mm	46
10 mm	34
6.3 mm	20
5 mm	15
3.35 mm	10
2 mm	6
1.18 mm	4
600 µm	2
425 μm	2
300 µm	2
212 µm	2
150 µm	2
63 µm	1

LAY		SILT		SAND		GRAVEL			3BLES	
S	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions				
Cobbles	0.0	%		
Gravel	93.9	%		
Sand	4.6	%		
Silt & Clay	1.5	%		

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

EDMONTON ECOPARK

**Project No: SI1688** 



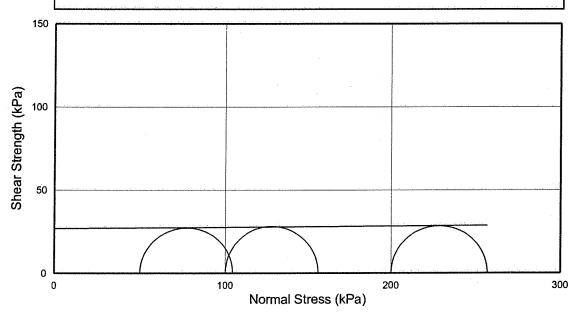
Borehole Number:

BH106

Sample Number: Depth (m):

1 5.10 Description:

Soft mottled light grey and grey CLAY with rare


shell fragments and roots

# 3 Stage Specimen

the first of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont	J .		Action to the second second second second
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	102.0		
Moisture Content (%):	31		
Bulk Density (Mg/m³):	2.00		
Dry Density (Mg/m³):	1.52		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.8	2.0	2.2
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	50	100	200
Strain at failure (%):	15.4	16.9	19.9
Maximum Deviator Stress (kPa):	54	56	57
Shear Stress Cu (kPa):	27	28	28

Mode of failure:





Ø = 0.5° c = 27 kPa

Checked and **Approved** 

Initials:

Date: 19/04/2011

Project Number:

Project Name:

**GEO / 16762** 

**EDMONTON ECOPARK** 

**Project No: SI1688** 



GEOLABS ®

osition of sample

**Borehole Number:** 

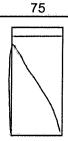
BH106

Sample Number: Depth (m):

2 8.50 Description:

Firm to stiff dark grey CLAY

#### 3 Stage Specimen


Specimen details	Single Specimen		
Specimen conditions:	Undisturbed	·	
Length (mm):	202.0		
Diameter (mm):	102.5		
Moisture Content (%):	32		
Bulk Density (Mg/m³):	1.98		
Dry Density (Mg/m³):	1.50		Contract to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.8	0.9	1.0
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	75	150	300

Mode of failure:

Strain at failure (%):

Shear Stress Cu (kPa):

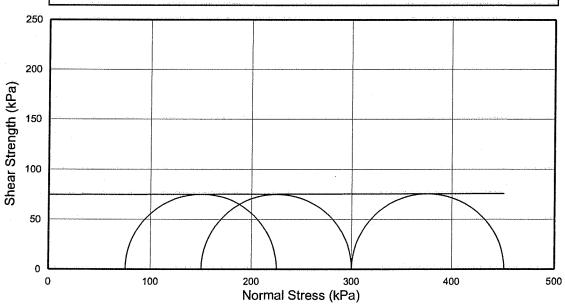
Maximum Deviator Stress (kPa):



5.4

150

5.9


150

75

6.9

151

76



Ø = 0° c = 75 kPa

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

**GEO / 16762** 

**EDMONTON ECOPARK** 

**Project No: SI1688** 



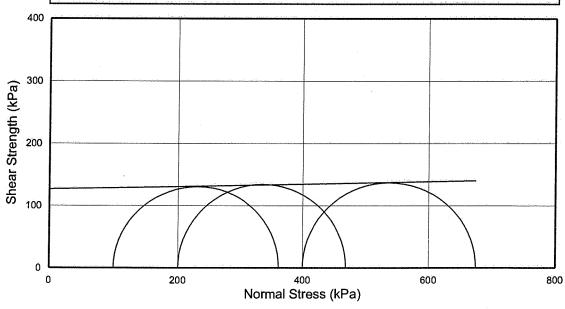
GEOLABS ®

Borehole Number:

**BH106** 

Description:

Sample Number: Depth (m):


3 11.00 Stiff dark grey silty CLAY

# 3 Stage Specimen

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		and the second second	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.7		
Diameter (mm):	101.3		
Moisture Content (%):	28		
Bulk Density (Mg/m³):	2.06		
Dry Density (Mg/m³):	1.61		en en en en en en en en en en en en en e
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.5	0.6	0.7
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	6.4	8.9	9.9
Maximum Deviator Stress (kPa):	261	269	274
Shear Stress Cu (kPa):	131	135	137

Mode of failure:





c = 127 kPa $Ø = 1^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

**GEO / 16762** 

**EDMONTON ECOPARK** 

**Project No: SI1688** 



**GEOLABS** ®

Borehole Number: Sample Number:

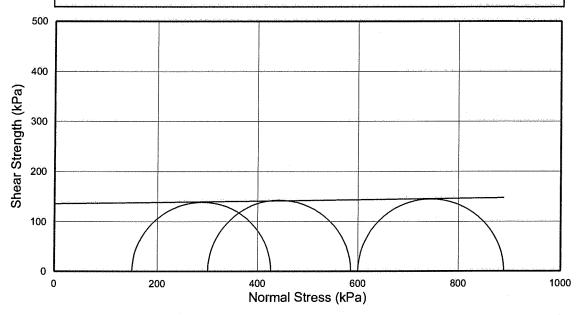
BH106

4

Description:

Stiff dark grey fine sandy silty CLAY

Depth (m):


14.00

#### 3 Stage Specimen

	<b>.</b> .	and the second second second	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.2		
Diameter (mm):	102.7		
Moisture Content (%):	25		
Bulk Density (Mg/m³):	2.01		
Dry Density (Mg/m³):	1.60		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.2	1.4	1.6
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	150	300	600
Strain at failure (%):	8.4	10.4	12.9
Maximum Deviator Stress (kPa):	277	286	290
Shear Stress Cu (kPa):	139	143	145

Mode of failure:





c = 136 kPaØ = 0.5°

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

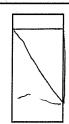
**Project No: SI1688** 

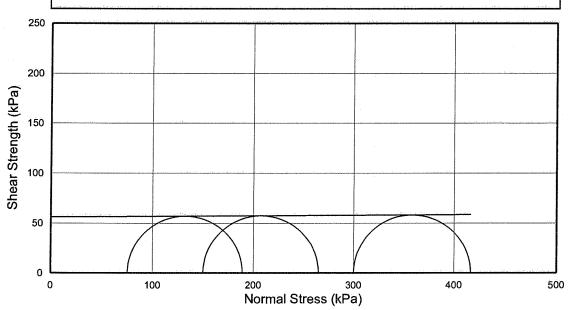


Borehole Number:

BH107

Description:


Sample Number: Depth (m):


1 6.50 Firm dark brown CLAY

# 3 Stage Specimen

Specimen details	Single Specimen		<u> </u>
Specimen conditions:	Undisturbed		
Length (mm):	156.2		
Diameter (mm):	103.0		
Moisture Content (%):	33		
Bulk Density (Mg/m³):	1.97		
Dry Density (Mg/m³):	1.49		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.0	1.1	1.3
Axial displacement rate (%/min):	2.6	2.6	2.6
Cell pressure (kPa):	75	150	300
Strain at failure (%):	7.0	7.7	9.6
Maximum Deviator Stress (kPa):	114	115	116
Shear Stress Cu (kPa):	57	57	58

Mode of failure:





c = 56 kPa  $\emptyset = 0.5^{\circ}$ 

Checked and Approved

Initials:

SB Date: 19/04/2011 Project Number:

Project Name:

**GEO / 16762** 

**EDMONTON ECOPARK** 

**Project No: SI1688** 



GEOLABS ®

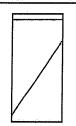
Borehole Number:

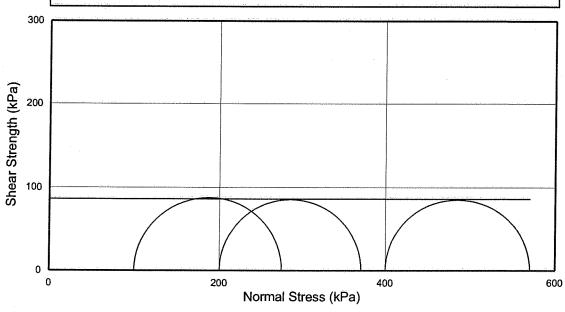
BH107

2

Description:

Stiff fissured dark grey silty CLAY


Sample Number: Depth (m):


8.50

# 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.2		
Diameter (mm):	102.8		
Moisture Content (%):	35		
Bulk Density (Mg/m³):	1.96		
Dry Density (Mg/m³):	1.45		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.6	0.6	0.7
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	3.5	4.0	4.5
Maximum Deviator Stress (kPa):	175	171	170
Shear Stress Cu (kPa):	88	85	85

Mode of failure:





Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



**GEOLABS** ®

Ø = 0°

Orientation and position of sample

c = 86 kPa

Borehole Number:

BH110

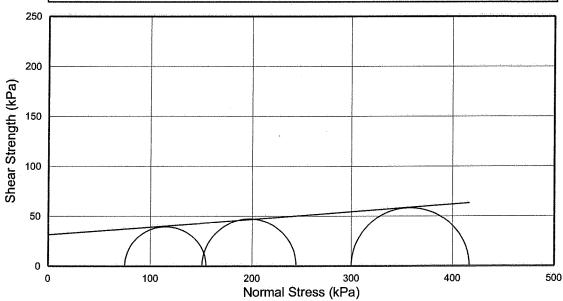
Sample Number: Depth (m):

1 2.50 Description:

Firm black and brown slightly organic gravelly CLAY

# 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	102.6		
Moisture Content (%):	48		
Bulk Density (Mg/m³):	2.07		
Dry Density (Mg/m³):	1.40		and the second second
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.3	1.5	2.2


Axial displacement rate (%/min): 2.0 2.0 2.0 75 150 300 19.9 9.4 12.4 Maximum Deviator Stress (kPa): 79 94 117 Shear Stress Cu (kPa): 47 58 40

Mode of failure:

Cell pressure (kPa):

Strain at failure (%):





 $\emptyset = 4.5^{\circ}$ c = 31 kPa

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



**GEOLABS** ®

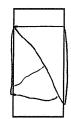
osition of sample Orientation and

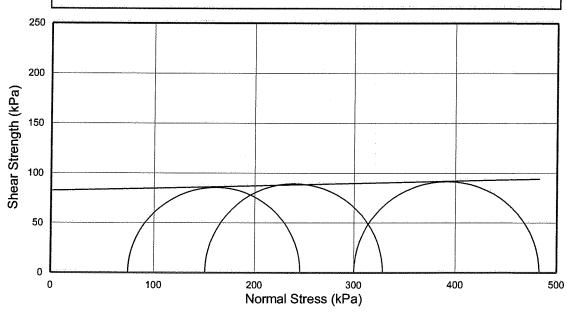
Borehole Number:

BH110

Sample Number: Depth (m):

2 7.50 Description:


Firm to stiff dark grey silty CLAY


#### 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.3		
Diameter (mm):	103.0		
Moisture Content (%):	28		
Bulk Density (Mg/m³):	2.00		
Dry Density (Mg/m³):	1.56		and the second second
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3

Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.7	1.1	1.5
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	75	150	300
Strain at failure (%):	4.5	7.9	11.4
Maximum Deviator Stress (kPa):	171	179	183
Shear Stress Cu (kPa):	86	89	91

Mode of failure:





 $Ø = 1.5^{\circ}$ c = 82 kPa

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



**GEOLABS** ®

Borehole Number:

**BH110** 

Sample Number: Depth (m):

3 9.50 Description:

Very stiff dark grey silty CLAY with rare fine sand

8.4

487

244

10.9

614

307

#### 3 Stage Specimen

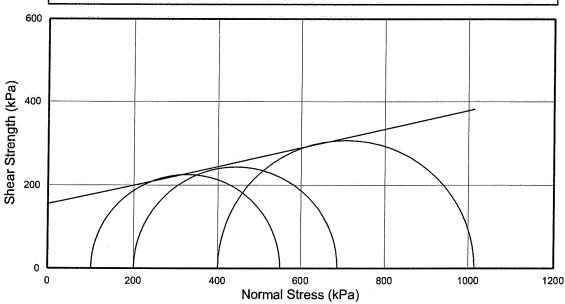
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		A CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O	No. 4 to 1 to 1 to 1 to 1 to 1 to 1 to 1 to
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.3		
Diameter (mm):	103.1		
Moisture Content (%):	24		
Bulk Density (Mg/m³):	2.11		
Dry Density (Mg/m³):	1.70		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.9	1.2	1.4
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400

Orientation and position of sample

Mode of failure:

Strain at failure (%):

Shear Stress Cu (kPa):


Maximum Deviator Stress (kPa):



6.0

451

225



c = 155 kPaØ = 12.5°

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



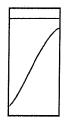
Borehole Number:

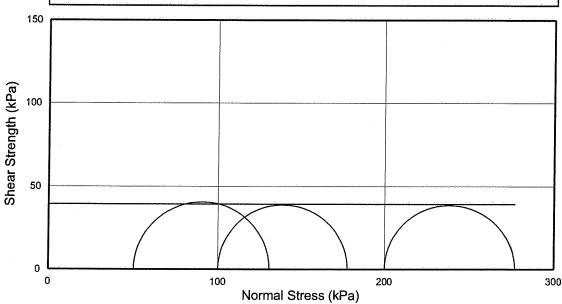
**BH119** 

Sample Number: Depth (m):

4.00

Description:


Soft dark grey slightly organic fine sandy clayey SILT


with rare shell fragments

#### 3 Stage Specimen

	•		
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.2		
Diameter (mm):	102.8		
Moisture Content (%):	48		
Bulk Density (Mg/m³):	1.45		
Dry Density (Mg/m³):	0.98		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.8	1.0	1.1
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	50	100	200
Strain at failure (%):	5.5	7.0	7.5
Maximum Deviator Stress (kPa):	81	78	77
Shear Stress Cu (kPa):	41	39	39

Mode of failure:





Ø = 0° c = 39 kPa

Checked and Approved

Initials:

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



Borehole Number:

BH119

Sample Number: Depth (m):

2 7.00 Description:

Stiff dark grey silty CLAY with rare fine sand

9.4

197

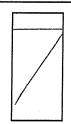
98

11.4

206

103

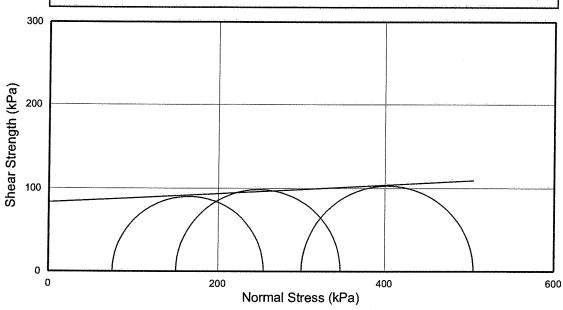
# 3 Stage Specimen


Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		4-1-1-1
Length (mm):	201.5		
Diameter (mm):	103.8		
Moisture Content (%):	27		
Bulk Density (Mg/m³):	2.05		
Dry Density (Mg/m³):	1.62		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.0	1.2	1.4
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	75	150	300

Mode of failure:

Strain at failure (%):

Shear Stress Cu (kPa):


Maximum Deviator Stress (kPa):



7.4

180

90



c = 83 kPaØ = 3°

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



GEOLABS ®

Borehole Number:

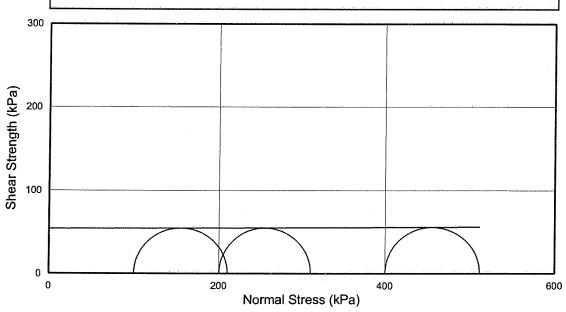
**BH119** 

Sample Number:

3

Description:

Firm fissured dark grey silty CLAY


Depth (m): 9.00

# 3 Stage Specimen

Specimen details	Single Specimen	<del>,</del>	
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	103.1		
Moisture Content (%):	32		
Bulk Density (Mg/m³):	1.98		
Dry Density (Mg/m³):	1.50		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.6	1.8	1.9
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	13.4	14.9	15.9
Maximum Deviator Stress (kPa):	110	110	112
Shear Stress Cu (kPa):	55	55	56

Mode of failure:





 $c = 54 \text{ kPa} \quad \emptyset = 0^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



GEOLABS ®

Borehole Number:

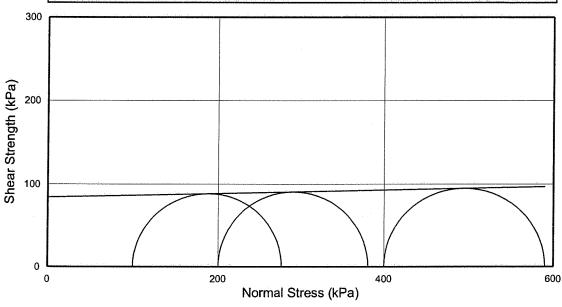
BH120

Description:

Sample Number: Depth (m):

8.00

Firm dark grey silty CLAY with rare pyrite nodules


#### 3 Stage Specimen

	<del>,</del>	<del>district the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat</del>	·
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	102.9		
Moisture Content (%):	28		
Bulk Density (Mg/m³):	2.03		
Dry Density (Mg/m³):	1.58		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.8	1.0	1.2
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	5.0	6.9	8.4
Maximum Deviator Stress (kPa):	177	181	190
Shear Stress Cu (kPa):	88	90	95

Orientation and position of sample

Mode of failure:





 $Ø = 1^{\circ}$ c = 84 kPa

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



Borehole Number:

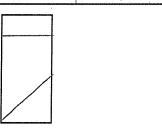
BH121

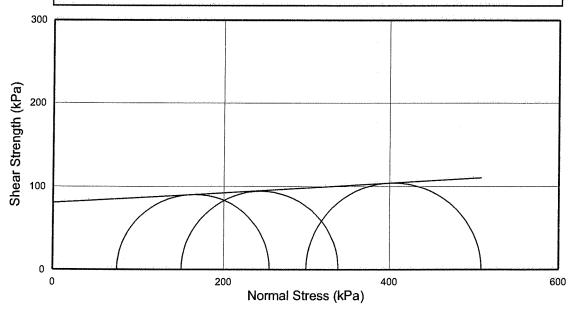
2

Description:

Stiff fissured dark grey silty CLAY

Sample Number:


Depth (m):


7.00

# 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	103.0		
Moisture Content (%):	27		
Bulk Density (Mg/m³):	2.01		
Dry Density (Mg/m³):	1.58		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.1	1.3	1.7
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	75	150	300
Strain at failure (%):	7.9	9.9	13.9
Maximum Deviator Stress (kPa):	181	189	208
Shear Stress Cu (kPa):	90	94	104

Mode of failure:





Ø = 3.5° c = 81 kPa

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



GEOLABS ®

# BS1377: Part 7: Clause 9: 1990

# **Quick Undrained Triaxial Test**

Borehole Number:

BH121

3

Description:

Stiff dark grey silty CLAY with rare fine sand

293

147

314

157

Sample Number:

Depth (m):

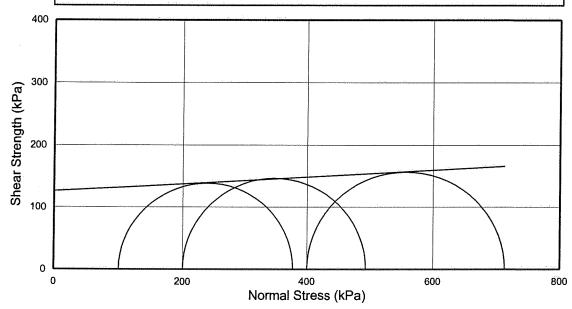
9.00

# 3 Stage Specimen


		5.0	
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed	i	
Length (mm):	201.5		
Diameter (mm):	103.5		
Moisture Content (%):	23		
Bulk Density (Mg/m³):	2.00		
Dry Density (Mg/m³):	1.63		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.8	2.0	2.2
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	15.9	18.4	19.9

Orientation and position of sample

Mode of failure:


Maximum Deviator Stress (kPa):

Shear Stress Cu (kPa):



277

139



c = 126 kPa  $Ø = 3^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



Borehole Number:

**BH122** 

Sample Number: Depth (m):

3.00

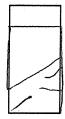
Description:

Stiff dark grey CLAY with rare

fine to medium gravel

#### 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	75.0		
Diameter (mm):	37.6		
Moisture Content (%):	31		
Bulk Density (Mg/m³):	1.97		
Dry Density (Mg/m³):	1.50		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.9	2.1	2.4
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	25	50	100


Orientation and position of sample

Mode of failure:

Strain at failure (%):

Shear Stress Cu (kPa):

Maximum Deviator Stress (kPa):

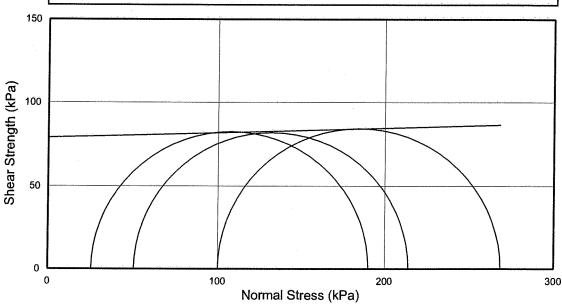


10.7

165

83

12.7


164

82

14.7

169

84



c = 79 kPaØ = 1.5°

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

**GEO / 16762** 

**EDMONTON ECOPARK** 

**Project No: SI1688** 



Borehole Number:

BH122

Sample Number: Depth (m):

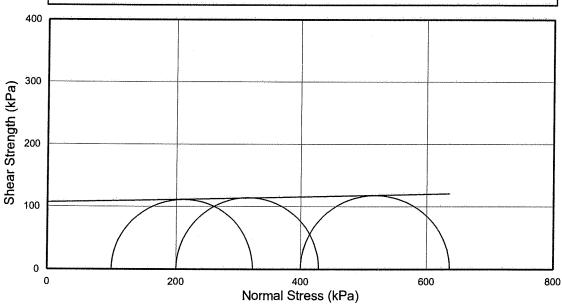
2 9.20 Description:

Stiff dark grey silty CLAY with rare pyrite nodules

115

118

#### 3 Stage Specimen


A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA			
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		<u> </u>
Length (mm):	201.5		
Diameter (mm):	103.0		
Moisture Content (%):	26		
Bulk Density (Mg/m³):	2.03		
Dry Density (Mg/m³):	1.61		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.2	1.4	1.7
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	8.9	10.9	14.4
Maximum Deviator Stress (kPa):	223	229	236

Orientation and position of sample

Shear Stress Cu (kPa): Mode of failure:



111



c = 107 kPa $Ø = 1^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 

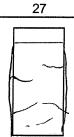


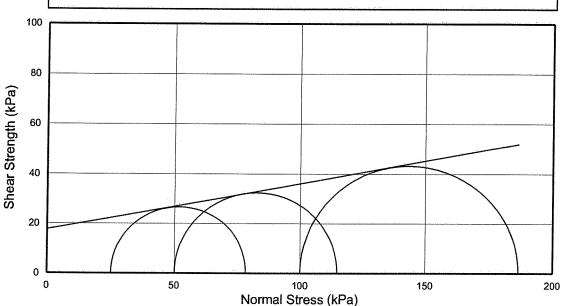
Borehole Number:

BH124

Sample Number: Depth (m):

3.00


Description:


Soft dark grey sandy gravelly CLAY

#### 3 Stage Specimen

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	103.5		
Moisture Content (%):	16		
Bulk Density (Mg/m³):	1.90		
Dry Density (Mg/m³):	1.64		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.8	0.9	1.3
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	25	50	100
Strain at failure (%):	5.5	6.5	9.9
Maximum Deviator Stress (kPa):	53	65	86
Shear Stress Cu (kPa):	27	32	43

Mode of failure:





c = 18 kPa Ø = 10.5°

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

**GEO / 16762** 

**EDMONTON ECOPARK** 

**Project No: SI1688** 



GEOLABS ®

Borehole Number:

BH124

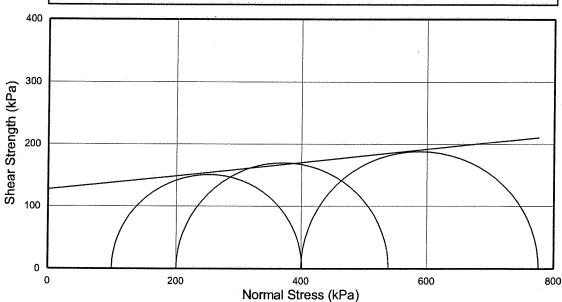
2

Description:

Very stiff grey fine sandy CLAY

Sample Number:


Depth (m):


8.50

# 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	103.6		
Moisture Content (%):	25		
Bulk Density (Mg/m³):	2.07		
Dry Density (Mg/m³):	1.66		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.6	0.7	0.8
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	7.9	10.4	12.9
Maximum Deviator Stress (kPa):	301	340	376
Shear Stress Cu (kPa):	151	170	188

Mode of failure:





c = 127 kPaØ = 6°

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



Borehole Number:

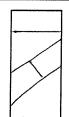
BH109

Sample Number: Depth (m):

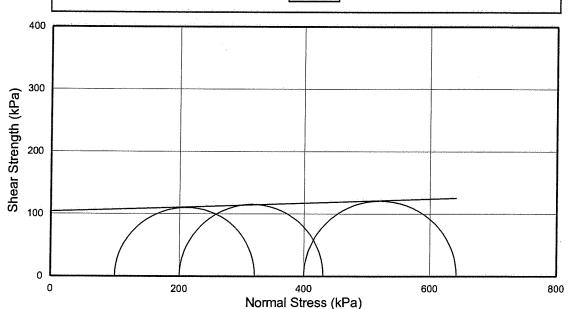
3 10.50 Description:

Stiff dark grey silty fine sandy CLAY

115


121

# 3 Stage Specimen


The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	•		
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	102.6		
Moisture Content (%):	27		
Bulk Density (Mg/m³):	2.02		
Dry Density (Mg/m³):	1.59		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.1	1.3	1.4
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	7.9	9.4	10.9
Maximum Deviator Stress (kPa):	221	231	242

Mode of failure:

Shear Stress Cu (kPa):



110



c = 104 kPaØ = 2°

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



GEOLABS ®

Borehole Number:

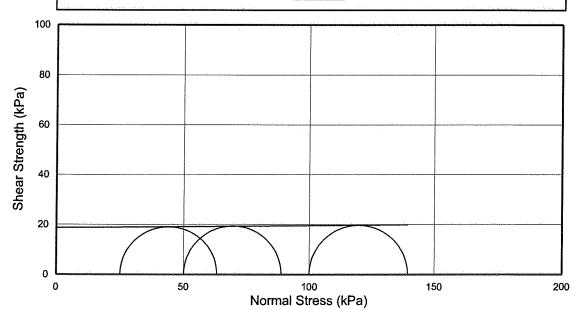
BH116

Description:

Very dark grey organic CLAY

Sample Number: Depth (m):

2.50


# 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.6		
Diameter (mm):	102.0		
Moisture Content (%):	103		
Bulk Density (Mg/m³):	1.52		
Dry Density (Mg/m³):	0.75		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.1	1.4	1.5
Axial displacement rate (%/min):	20	2 0	20

2.0 25 50 Cell pressure (kPa): 100 Strain at failure (%): 7.9 10.4 11.9 Maximum Deviator Stress (kPa): 38 39 39 Shear Stress Cu (kPa): 19 19 20

Mode of failure:





c = 19 kPa Ø = 0.5°

Checked and Approved

Initials:

SB Date: 19/04/2011 Project Number:

Project Name:

**GEO / 16762** 

**EDMONTON ECOPARK** 

**Project No: SI1688** 



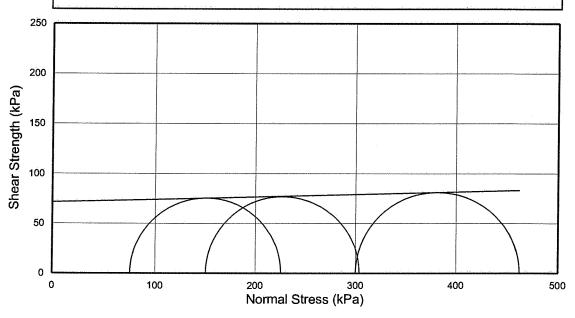
**GEOLABS** ®

Borehole Number: Sample Number:

Depth (m):

**BH116** 


2 7.50 Description:


Firm to stiff dark grey silty CLAY

#### 3 Stage Specimen

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	3 1		and the second second
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.7		
Diameter (mm):	102.7		
Moisture Content (%):	33		
Bulk Density (Mg/m³):	1.97		
Dry Density (Mg/m³):	1.49		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.0	1.1	1.4
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	75	150	300
Strain at failure (%):	6.9	7.9	10.9
Maximum Deviator Stress (kPa):	151	154	162
Shear Stress Cu (kPa):	75	77	81

Mode of failure:





c = 71 kPaØ = 1.5°

Checked and Approved

Initials:

SB Date: 19/04/2011 Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



**GEOLABS** ®

Borehole Number: Sample Number:

BH116 3 Description:

Sample Number Depth (m):

9.50

Firm fissured dark brown silty CLAY

#### Single Stage Specimen

Specimen details	Single Specimen
Specimen condition:	Undisturbed
Length (mm):	201.3
Diameter (mm):	101.9
Moisture Content (%):	33
Bulk Density (Mg/m³):	1.98
Dry Density (Mg/m³):	1.50
Test details	
Latex membrane thickness (mm):	0.3
Membrane correction (kPa):	0.4
Axial displacement rate (%/min):	2.0
Cell pressure (kPa):	100
Strain at failure (%):	2.5
Maximum Deviator Stress (kPa):	127
Shear Stress Cu (kPa):	63
Made of fallows	

Mode of failure:



Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



Borehole Number: Sample Number:

Depth (m):

BH116

5 15.00 Description:

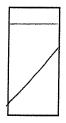
Stiff fissured dark grey silty CLAY

#### 3 Stage Specimen

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
Length (mm):	201.5		
Diameter (mm):	102.1		
Moisture Content (%):	26		
Bulk Density (Mg/m³):	2.00		
Dry Density (Mg/m³):	1.58		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.9	1.2	1.3
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	150	300	600

600 9.9 268

134


Orientation and position of sample

Mode of failure:

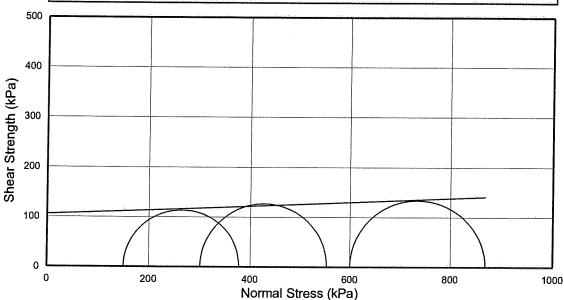
Strain at failure (%):

Shear Stress Cu (kPa):

Maximum Deviator Stress (kPa):



6.0


227

114

8.9

254

127



c = 106 kPa $Ø = 2.5^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

**GEO / 16762** 

**EDMONTON ECOPARK** 

**Project No: SI1688** 



Borehole Number:

BH116

Description:

Very stiff fissured dark grey sandy CLAY

Sample Number:

Depth (m):

18.00

### Single Stage Specimen

	enigie etage epocimen	
Specimen details	Single Specimen	
Specimen condition:	Undisturbed	- B - B
Length (mm):	201.5	Orientation and position of sample
Diameter (mm):	101.6	atio
Moisture Content (%):	21	nent
Bulk Density (Mg/m³):	1.97	0 8
Dry Density (Mg/m³):	1.62	
Test details		
Latex membrane thickness (mm):	0.3	
Membrane correction (kPa):	2.2	
Axial displacement rate (%/min):	2.0	
Cell pressure (kPa):	200	
Strain at failure (%):	19.9	
Maximum Deviator Stress (kPa):	331	
Shear Stress Cu (kPa):	166	
Mode of failure:		

Multistage went to 20% on 1st stage

Checked and Project Number: Approved

Initials:

88

Date: 19/04/2011

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 

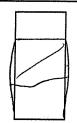


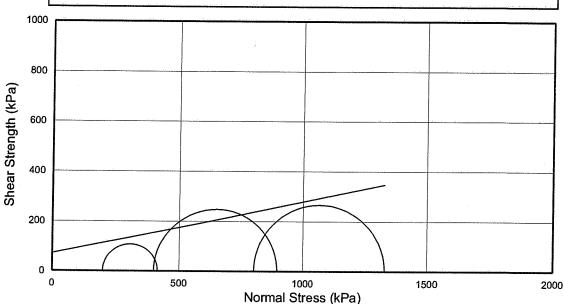
GEOLABS •

Borehole Number:

BH116

Sample Number: Depth (m):


7 21.00 Description:


Very stiff dark grey silty CLAY

#### 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.3		
Diameter (mm):	102.9		
Moisture Content (%):	25		
Bulk Density (Mg/m³):	1.99		
Dry Density (Mg/m³):	1.59		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.8	2.0	2.2
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	200	400	800
Strain at failure (%):	14.9	17.4	19.9
Maximum Deviator Stress (kPa):	215	495	531
Shear Stress Cu (kPa):	108	248	266

Mode of failure:





Ø = 11.5 ° c = 72 kPa

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO / 16762

**EDMONTON ECOPARK** 

**Project No: SI1688** 



GEOLABS ®

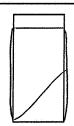
Borehole Number:

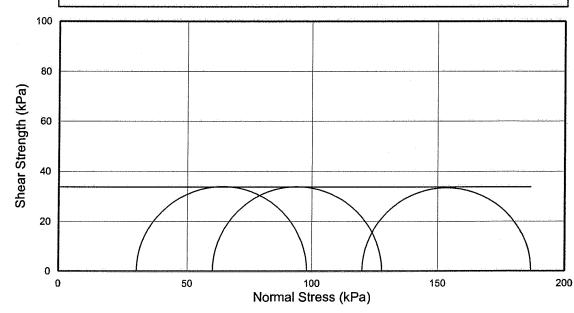
BH103

1

Description:

Soft black organic CLAY


Sample Number: Depth (m):


3.00

# 3 Stage Specimen

			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	102.4		
Moisture Content (%):	124		
Bulk Density (Mg/m³):	1.31		
Dry Density (Mg/m³):	0.59		Same to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.0	1.1	1.3
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	30	60	120
Strain at failure (%):	6.9	7.9	9.4
Maximum Deviator Stress (kPa):	68	68	67
Shear Stress Cu (kPa):	34	34	33

Mode of failure:





c = 34 kPa Ø = 0°

Checked and Approved

Initials:

*SB*Date: 19/04/2011

Project Name:

Project Number:

**GEO/16786** 

**EDMONTON ECOPARK** 

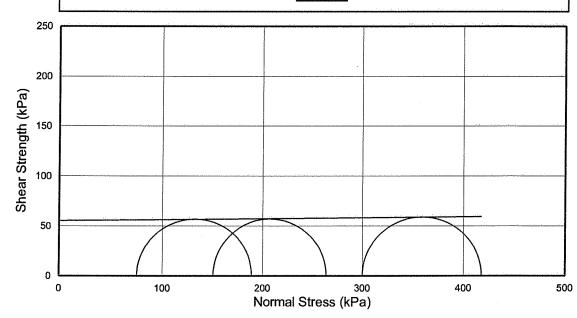


GEOLABS •

Borehole Number:

BH103

Sample Number: 2 Depth (m): 7.00 Description:


Firm dark grey silty CLAY with rare fine to medium sand and gravel

# 3 Stage Specimen

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	· ·		and the second second
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	102.0		
Moisture Content (%):	32		
Bulk Density (Mg/m³):	2.05		
Dry Density (Mg/m³):	1.55		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.9	0.9	0.9
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	75	150	300
Strain at failure (%):	5.7	5.7	6.2
Maximum Deviator Stress (kPa):	114	114	118
Shear Stress Cu (kPa):	57	57	59

Mode of failure:





c = 55 kPa $Ø = 0.5^{\circ}$ 

Checked and **Approved** 

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO/16786

**EDMONTON ECOPARK** 



**GEOLABS** ®

Borehole Number:

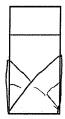
BH103

Sample Number: Depth (m):

3 8.70 Description:

Stiff dark grey silty CLAY

# 3 Stage Specimen


the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract o	•	and the second second second second	1.4
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.2		
Diameter (mm):	103.0		
Moisture Content (%):	23		
Bulk Density (Mg/m³):	2.06		
Dry Density (Mg/m³):	1.67		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.6	1.9	2.2
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	13.4	16.9	19.9

Orientation and position of sample

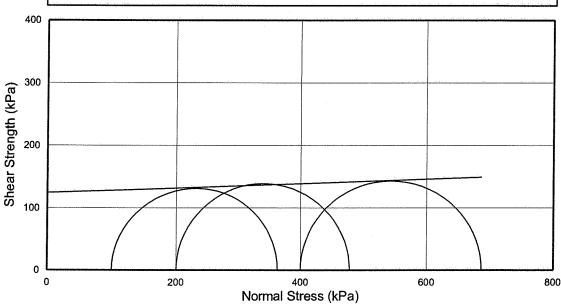
Mode of failure:

Maximum Deviator Stress (kPa):

Shear Stress Cu (kPa):



263


132

278

139

287

143



 $Ø = 2^{\circ}$ c = 125 kPa

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO/16786

**EDMONTON ECOPARK** 



Borehole Number: Sample Number:

Depth (m):

BH103

er: 4 11.50 B Description:

Very stiff dark grey silty CLAY with rare

11.9

500

250

14.4

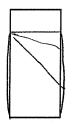
553

277

pyrite nodules

# 3 Stage Specimen

Specimen details	Single Specimen			
Specimen conditions:	Undisturbed			
Length (mm):	201.6			
Diameter (mm):	102.5			
Moisture Content (%):	24			
Bulk Density (Mg/m³):	2.08			
Dry Density (Mg/m³):	1.68			
Test details	Stage 1	Stage 2	Stage 3	
Latex membrane thickness (mm):	0.3	0.3	0.3	
Membrane correction (kPa):	1.3	1.5	1.7	
Axial displacement rate (%/min):	2.0	2.0	2.0	
Cell pressure (kPa):	150	300	600	


Orientation and position of sample

Mode of failure:

Strain at failure (%):

Shear Stress Cu (kPa):

Maximum Deviator Stress (kPa):



9.4

430

215



 $c = 179 \text{ kPa} \quad \emptyset = 6.5^{\circ}$ 

Checked and Approved

Initials:

*SB*Date: 19/04/2011

Project Number:

Project Name:

**GEO/16786** 

**EDMONTON ECOPARK** 



GEOLABS •

Borehole Number:

BH105

Sample Number: Depth (m):

2 4.00 Description:

Firm dark grey gravelly sandy CLAY

80

15.9

69

35

160

17.9

81

41

#### 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.4		
Diameter (mm):	102.0		
Moisture Content (%):	17		
Bulk Density (Mg/m³):	1.96		
Dry Density (Mg/m³):	1.67		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.7	1.9	2.0
Axial displacement rate (%/min):	2.0	2.0	2.0

Orientation and position of sample

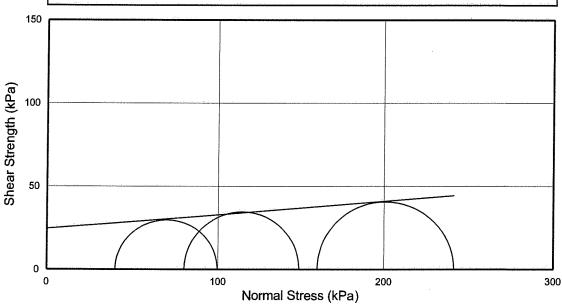

Mode of failure:

Cell pressure (kPa):

Strain at failure (%):

Shear Stress Cu (kPa):

Maximum Deviator Stress (kPa):




40

13.9

60

30



c = 25 kPa $\emptyset = 4.5^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

GEO/16786

**EDMONTON ECOPARK** 



Borehole Number:

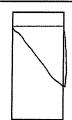
BH113

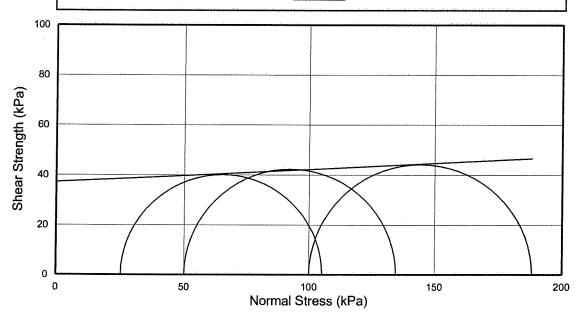
1

Description:

Firm dark grey slightly organic CLAY

Sample Number: Depth (m):


2.00


# 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		i delica
Length (mm):	201.3		
Diameter (mm):	101.5		
Moisture Content (%):	48		
Bulk Density (Mg/m³):	1.85		
Dry Density (Mg/m³):	1.26		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.8	1.1	1.2
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	25	50	100
Strain at failure (%):	5.5	7.5	8.9
Maximum Deviator Stress (kPa):	80	85	88
Shear Stress Cu (kPa):	40	42	44

Orientation and position of sample

Mode of failure:





 $c = 37 \text{ kPa} \quad \emptyset = 3^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 19/04/2011

Project Number:

Project Name:

**GEO/16786** 

**EDMONTON ECOPARK** 



**Borehole Number:** 

**BH113** 

2

Description:

Soft sandy gravelly CLAY

Sample Number: Depth (m):

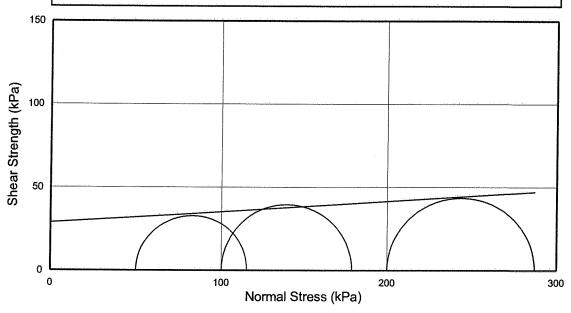
4.00

# 3 Stage Specimen

9 - 1		
Single Specimen		
Undisturbed	A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp	
201.8		
103.0		
12		
2.13		
1.90		
Stage 1	Stage 2	Stage 3
0.3	0.3	0.3
1.8	2.1	2.2
2.0	2.0	2.0
50	100	200
14.9	18.8	19.8
66	79	87
	Undisturbed 201.8 103.0 12 2.13 1.90 Stage 1 0.3 1.8 2.0 50 14.9	Undisturbed 201.8 103.0 12 2.13 1.90 Stage 1 Stage 2 0.3 0.3 1.8 2.1 2.0 50 100 14.9 18.8

Orientation and position of sample

Mode of failure:


Shear Stress Cu (kPa):



33

40

44



c = 29 kPaØ = 3.5°

Checked and Approved

Initials:

SB Date: 19/04/2011 Project Number:

Project Name:

GEO/16786

**EDMONTON ECOPARK** 



Borehole Number: Sample Number:

Depth (m):

BH101

1 3.00 Description:

Soft grey organic silty CLAY with rare

10.4

66

33

13.8

70

35

plant remains

#### 3 Stage Specimen

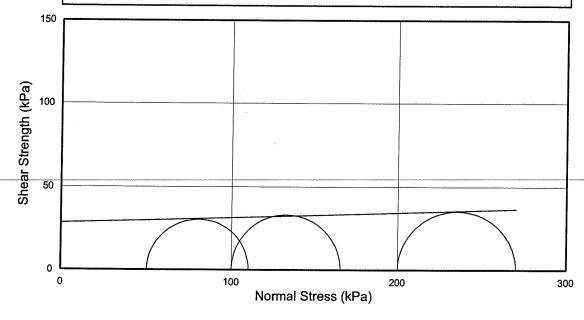
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	202.3		
Diameter (mm):	103.0		
Moisture Content (%):	80		
Bulk Density (Mg/m³):	1.56		
Dry Density (Mg/m³):	0.87	and the second second	6.6
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.1	1.3	1.7
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	50	100	200

Orientation and position of sample

Mode of failure:

Strain at failure (%):

Shear Stress Cu (kPa):


Maximum Deviator Stress (kPa):



7.9

60

30



c = 28 kPa Ø = 1.5°

Checked and Approved

Initials:

SB Date: 06/05/2011 Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



**GEOLABS** ®

Borehole Number:

BH101

2

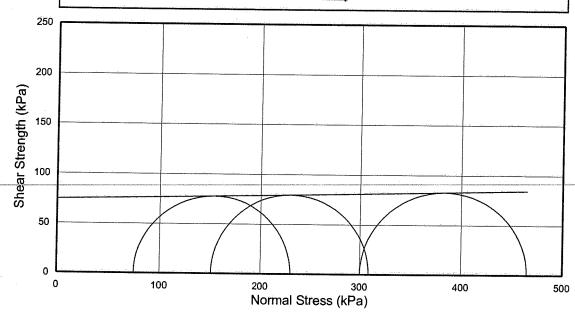
Description:

Firm to stiff fissured grey silty CLAY

79

Sample Number: Depth (m):

8.00


#### 3 Stage Specimen

Specimen details	Single Specimen	l	
Specimen conditions:	Undisturbed	- tt	man to the terms of the
Length (mm):	201.9		
Diameter (mm):	103.4		
Moisture Content (%):	31		
Bulk Density (Mg/m³):	1.96		
Dry Density (Mg/m³):	1.50		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.4	0.5	0.7
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	75	150	300
Strain at failure (%):	2.5	3.2	4.5
Maximum Deviator Stress (kPa):	155	159	165

Mode of failure:

Shear Stress Cu (kPa):





 $Ø = 1^{\circ}$ c = 74 kPa

83

Checked and **Approved** 

Initials:

SB

Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



**GEOLABS** 6

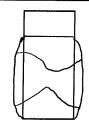
Borehole Number:

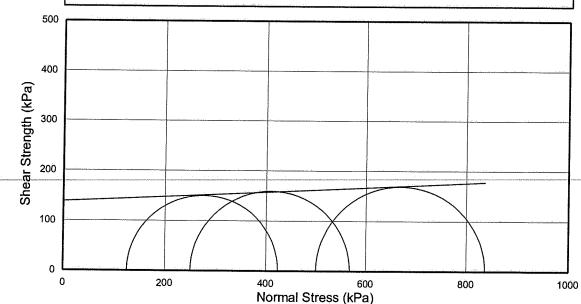
BH101

4

Sample Number: Depth (m):

13.00


Description:


Very stiff dark grey silty CLAY

#### 3 Stage Specimen

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	•		
Specimen details	Single Specimen		Maria and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same
Specimen conditions:	Undisturbed		
Length (mm):	201.8		
Diameter (mm):	103.1		
Moisture Content (%):	23		
Bulk Density (Mg/m³):	2.09		
Dry Density (Mg/m³):	1.69		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.6	1.9	2.2
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	125	250	500
Strain at failure (%):	13.4	16.4	19.8
Maximum Deviator Stress (kPa):	299	318	337
Shear Stress Cu (kPa):	150	159	169

Mode of failure:





c = 138 kPaØ = 2.5°

Checked and Approved

initials:

SB

Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



GEOLABS ®

Orientation and position of sample

Borehole Number:

BH104

Description:

Sample Number: 1 Depth (m): 1.

1 1.20 MADE GROUND: (Firm dark brown silty clay with rare fine to medium gravel, brick and mortar fragments)

## Single Stage Specimen

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
Specimen details	Single Specimen
Specimen condition:	Undisturbed
Length (mm):	201.5
Diameter (mm):	102.4
Moisture Content (%):	27
Bulk Density (Mg/m³):	1.99
Dry Density (Mg/m³):	1.57
Test details	
Latex membrane thickness (mm):	0.3
Membrane correction (kPa):	0.8
Axial displacement rate (%/min):	2.0
Cell pressure (kPa):	15
Strain at failure (%):	5.5
Maximum Deviator Stress (kPa):	115
Shear Stress Cu (kPa):	57
Mode of failure:	

mode of failure.

Sample failed on first stage of Multistage test

Checked and Approved

Initials:

*SB*Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



GEOLABS •

Borehole Number:

BH104

2

Description:

Sample Number: Depth (m):

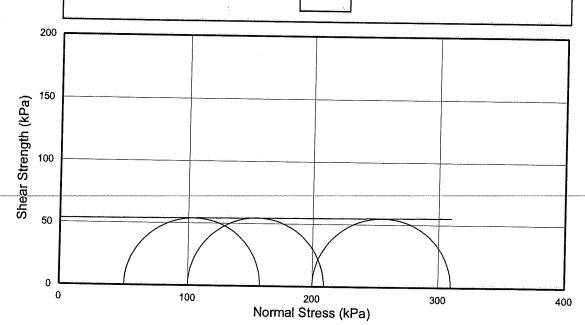
3.00

Firm brown and dark grey calcareous CLAY with

55


rare gravel

## 3 Stage Specimen


man in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		00.111011	
Specimen details	Single Specimen		<del> </del>
Specimen conditions:	Undisturbed	<u> </u>	eta. yang
Length (mm):	201.4		
Diameter (mm):	102.9		
Moisture Content (%):	33		
Bulk Density (Mg/m³):	1.95		
Dry Density (Mg/m³):	1.47		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.9	1.1	1.2
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	50	100	200
Strain at failure (%):	6.0	7.4	8.9
Maximum Deviator Stress (kPa):	108	109	110

Mode of failure:

Shear Stress Cu (kPa):



54



c = 53 kPa Ø = 0.5°

55

Checked and Approved

Initials:

SB

Date: 06/05/2011

Project Number:

Project Name:

**GEO / 16819** 

**EDMONTON ECOPARK** 



GEOLABS ®

Orientation and position of sample

Borehole Number: Sample Number:

BH104

Depth (m):

3 8.00 Description:

Firm dark grey silty CLAY with rare

134

67

138

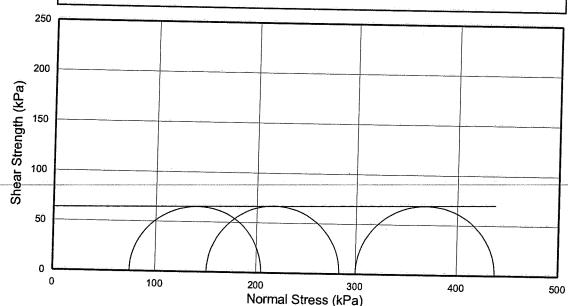
69

fine sand


#### 3 Stage Specimen

	publication and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		000111011	
	Specimen details	Single Specimer	<u> </u>	**************************************
	Specimen conditions:	Undisturbed		
	Length (mm):	201.3		
	Diameter (mm):	102.3		
	Moisture Content (%):	27		
	Bulk Density (Mg/m³):	2.03		
0	Dry Density (Mg/m³):	1.61		
	Test details	Stage 1	Stage 2	Stage 3
	Latex membrane thickness (mm):	0.3	0.3	0.3
	Membrane correction (kPa):	0.7	0.8	0.9
	Axial displacement rate (%/min):	2.0	2.0	2.0
	Cell pressure (kPa):	75	150	300
	Strain at failure (%):	4.5	5.5	6.5
- 1	Mostingua David Communication 1		1	

Mode of failure:


Maximum Deviator Stress (kPa):

Shear Stress Cu (kPa):



130

65



c = 63 kPa $Ø = 1^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



**GEOLABS** ®

Orientation and position of sample

Borehole Number: Sample Number:

BH108

1

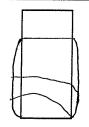
Description:

Soft dark brown clayey PEAT

Depth (m):

2.50

#### 3 Stage Specimen

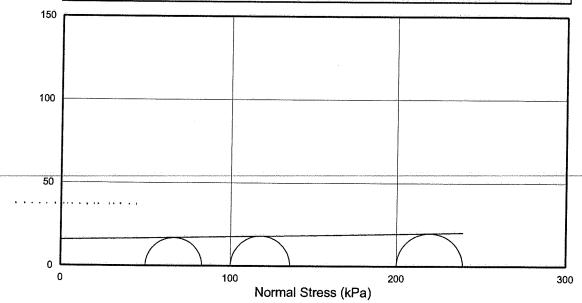

the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th	~ .			
Specimen details	Single Specimen			
Specimen conditions:	Undisturbed			
Length (mm):	201.8			
Diameter (mm):	102.5			
Moisture Content (%):	67			
Bulk Density (Mg/m³):	1.44			
Dry Density (Mg/m³):	0.87			
Test details	Stage 1	Stage 2	Stage 3	
Latex membrane thickness (mm):	0.3	0.3	0.3	
Membrane correction (kPa):	1.8	2.0	2.2	
Axial displacement rate (%/min):	2.0	2.0	2.0	
Cell pressure (kPa):	50	100	200	
Strain at failure (%):	14.9	17.3	19.8	

Orientation and position of sample

Mode of failure:

Maximum Deviator Stress (kPa):

Shear Stress Cu (kPa):




33

17

36

18



c = 15 kPa $Ø = 1^{\circ}$ 

39

20

Checked and Approved

Initials:

SB

Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



**GEOLABS** ®

Borehole Number:

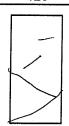
BH108

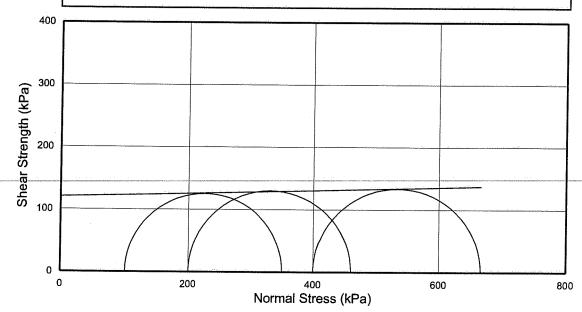
3

Description:

Sample Number: Depth (m):

8.50


Stiff dark grey silty CLAY with


rare fine sand

#### 3 Stage Specimen

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			
Specimen details	Single Specimen	***	nekili di salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah
Specimen conditions:	Undisturbed		
Length (mm):	201.8		
Diameter (mm):	102.2		
Moisture Content (%):	25		
Bulk Density (Mg/m³):	2.01		
Dry Density (Mg/m³):	1.61		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.0	1.2	1.4
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	6.9	8.9	10.9
Maximum Deviator Stress (kPa):	251	260	267
Shear Stress Cu (kPa):	125	130	134

Mode of failure:





c = 120 kPa $Ø = 1.5^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



GEOLABS ®

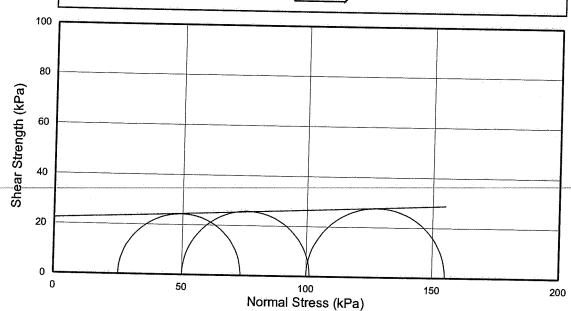
Orientation and position of sample

Borehole Number:

BH117

Sample Number: Depth (m):

1 2.50 Description:


Soft grey organic CLAY

#### 3 Stage Specimen

F			
Specimen details	Single Specimer	<u> </u>	A. 11 1 4 1 1 1 1
Specimen conditions:	Undisturbed		
Length (mm):	201.8		
Diameter (mm):	102.9		
Moisture Content (%):	69		
Bulk Density (Mg/m³):	1.54		
Dry Density (Mg/m³):	0.91		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.9	1.4	2.2
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	25	50	100
Strain at failure (%):	6.4	10.9	19.8
Maximum Deviator Stress (kPa):	49	51	55
Shear Stress Cu (kPa):	24	26	28

Mode of failure:





c = 22 kPa Ø = 2.5°

Checked and Approved

Initials:

SB

Date: 06/05/2011

Project Number:

Project Name:

**GEO / 16819** 

**EDMONTON ECOPARK** 



**GEOLABS** ®

# BS1377 : Part 7 : Clause 9 : 1990

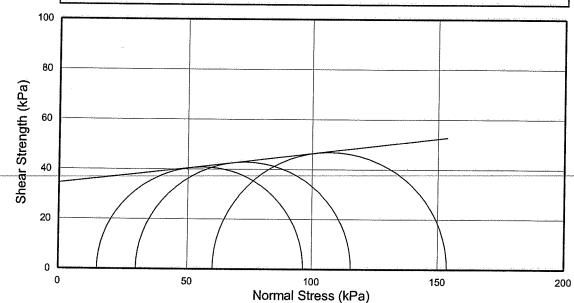
#### **Quick Undrained Triaxial Test**

Borehole Number:

BH118

Sample Number: Depth (m): 1 1.50 Description:

Soft to firm dark grey CLAY with rare fine sand and black staining


#### 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.5		
Diameter (mm):	102.1		
Moisture Content (%):	28		
Bulk Density (Mg/m³):	1.96		
Dry Density (Mg/m³):	1.53		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.3	1.5	2.2

Axial displacement rate (%/min): 2.0 2.0 2.0 Cell pressure (kPa): 15 30 60 Strain at failure (%): 9.4 11.9 19.9 Maximum Deviator Stress (kPa): 82 86 94 Shear Stress Cu (kPa): 41 43 47

Mode of failure:





 $c = 34 \text{ kPa} \quad \emptyset = 7^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



GEOLABS ®

position of sample

Borehole Number:

BH118

Sample Number: Depth (m):

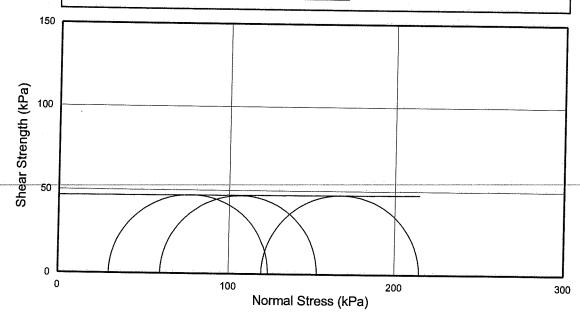
2 3.00 Description:

Soft to firm dark brown clayey PEAT

#### 3 Stage Specimen

5 F			
Specimen details	Single Specimer	}	
Specimen conditions:	Undisturbed		· · · · · · · · · · · · · · · · · · ·
Length (mm):	201.4		
Diameter (mm):	101.5		
Moisture Content (%):	180		
Bulk Density (Mg/m³):	1.28		
Dry Density (Mg/m³):	0.46		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.7	0.8	1.0
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	30	60	120
Strain at failure (%):	4.5	5.5	7.0
Maximum Deviator Stress (kPa):	94	94	95

Mode of failure:


Shear Stress Cu (kPa):



47

47

47



c = 46 kPa  $\emptyset = 0.5^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



**GEOLABS** ®

Orientation and position of sample

Borehole Number: Sample Number:

BH118 3

Depth (m): 6.50 Description:

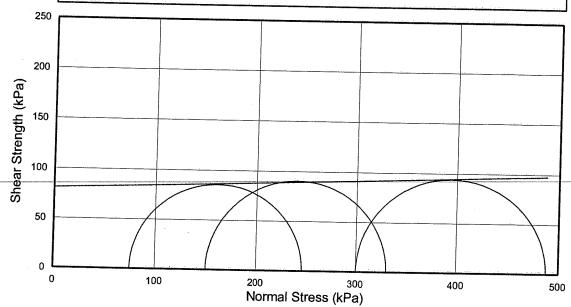
Firm to stiff fissured dark grey CLAY with

90

94

rare fine sand

#### 3 Stage Specimen


		<b>4</b> 0	
Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		<del></del>
Length (mm):	201.0		
Diameter (mm):	103.4		
Moisture Content (%):	30		
Bulk Density (Mg/m³):	2.03		
Dry Density (Mg/m³):	1.56		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.9	2.1	2.2
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	75	150	300
Strain at failure (%):	16.4	18.9	19.9
Maximum Deviator Stress (kPa):	171	181	188

Mode of failure:

Shear Stress Cu (kPa):



86



c = 81 kPa $Ø = 2^{\circ}$ 

Checked and Approved

Initials:

SB

Date: 06/05/2011

Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



**GEOLABS** ®

Borehole Number: Sample Number:

BH118

Depth (m):

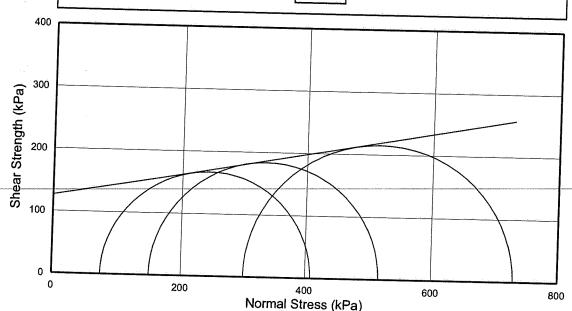
8.00

Description:

Very stiff dark grey silty CLAY with

184

rare fine sand


#### 3 Stage Specimen

	o Stage Sp	pecimen	
Specimen details	Single Specimer	<u> </u>	
Specimen conditions:	Undisturbed		
Length (mm):	201.4		
Diameter (mm):	102.0		
Moisture Content (%):	23		
Bulk Density (Mg/m³):	2.12		
Dry Density (Mg/m³):	1.72		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.9	1.1	1.4
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	75	150	300
Strain at failure (%):	6.0	7.9	10.9
Maximum Deviator Stress (kPa):	334	367	
Shear Stroop Cu (LD-)		507	430

Mode of failure:

Shear Stress Cu (kPa):





c = 126 kPa $Ø = 10^{\circ}$ 

215

Checked and Approved

Initials:

SB Date: 06/05/2011 Project Number:

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



GEOLABS ®

Borehole Number: Sample Number:

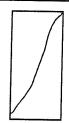
Depth (m):

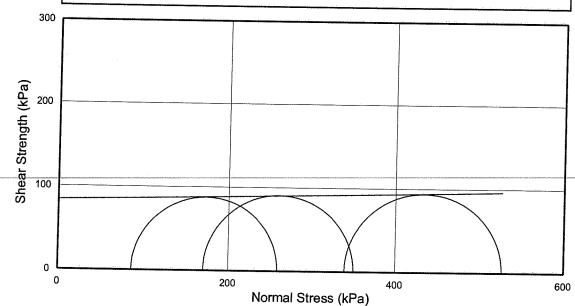
BH123

8.50

1

Description:


Firm to stiff dark grey silty CLAY with


rare fine sand

3	Sta	ge	Spe	cin	nei	n

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		300111011	
Specimen details	Single Specimer	<u> </u>	
Specimen conditions:	Undisturbed		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
Length (mm):	201.5		
Diameter (mm):	103.0		
Moisture Content (%):	22		
Bulk Density (Mg/m³):	2.05		
Dry Density (Mg/m³):	1.68		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	1.0	1.2	1.3
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	85	170	340
Strain at failure (%):	6.9	8.4	9.4
Maximum Deviator Stress (kPa):	175	181	187
Shear Stress Cu (kPa):	87	90	94

Mode of failure:





c = 84 kPa Ø = 1.5 °

Checked and Approved

Initials:

SB Date: 06/05/2011 Project Number:

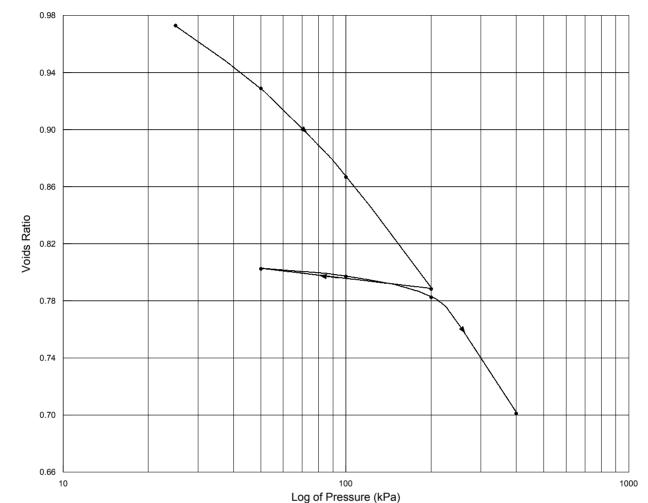
Project Name:

GEO / 16819

**EDMONTON ECOPARK** 



GEOLABS ®


Orientation and position of sample

## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH106
Sample Ref: 1
Depth (m): 5.10
Depth of test specimen (m): 5.11
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Soft grey alluvial silty CLAY



Initial Conditions: Final Conditions:

1.35

Moisture Content (%) 36 Voids Ratio 0.701 Voids Ratio 1.010

Diameter (mm) 76.3 Particle Density (Mg/m³) 2.72 (Assumed)

Height (mm) 18.5 Bulk Density (Mg/m³) 1.84 Laboratory Temperature (°C) 18.9

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.738	1.22	t50	0.973
25 - 50	0.892	0.926	t50	0.929
50 - 100	0.644	0.783	t50	0.867
100 - 200	0.420	0.859	t50	0.788
200 - 50	- 0.0525	3.19 (Sv)	t50	0.802
50 - 100	0.0589	7.13	t50	0.797
100 - 200	0.0814	6.22	t50	0.782
200 - 400	0.228	0.916	t50	0.701

Checked and Approved

Initials:

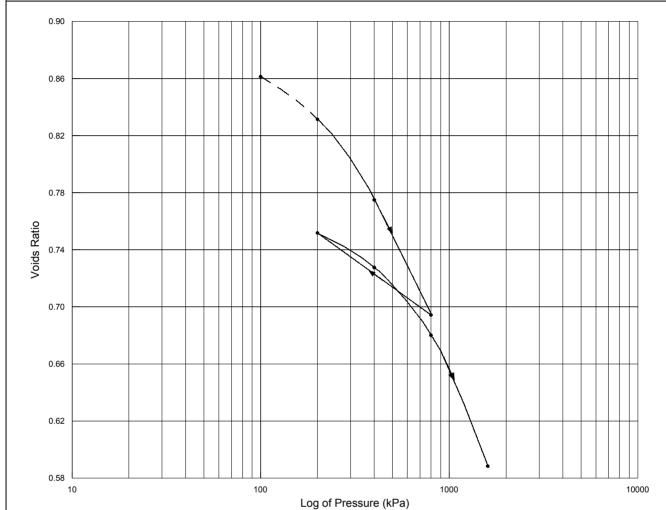
 Project Number:

Dry Density (Mg/m³)

Project Name:

GEO / 16762 EDMONTON ECOPARK






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH106
Sample Ref: 2
Depth (m): 8.50
Depth of test specimen (m): 8.58
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Stiff dark grey silty CLAY



Initial Conditions: Final Conditions:

Moisture Content (%) 32 Voids Ratio 0.588 Voids Ratio 0.871

Diameter (mm) 76.4 Particle Density (Mg/m³) 2.72 (Assumed) Height (mm) 18.8

Bulk Density (Mg/m³) 1.92 Laboratory Temperature (°C) 18.9 Dry Density (Mg/m³) 1.45

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 100	-	Specimen swelled	-	0.861
100 - 200	0.161	0.710	t50	0.831
200 - 400	0.154	0.475	t50	0.775
400 - 800	0.113	0.529	t50	0.694
800 - 200	- 0.0565	0.458 (Sv)	t50	0.752
200 - 400	0.0690	0.701	t50	0.728
400 - 800	0.0687	0.763	t50	0.680
800 - 1600	0.0683	0.647	t50	0.588

Checked and Approved

Initials:

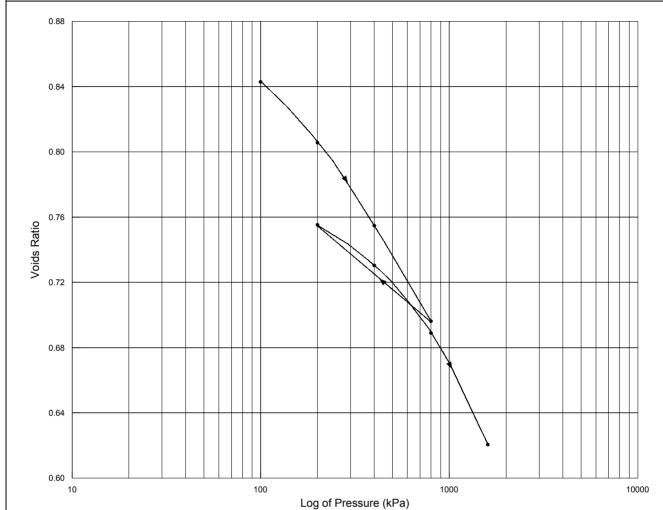
ر الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال ا Project Number:

Project Name:

GEO / 16762

EDMONTON ECOPARK






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH107
Sample Ref: 1
Depth (m): 6.50
Depth of test specimen (m): 6.94
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Stiff grey silty CLAY



Initial Conditions: Final Conditions:

Moisture Content (%) 31 Voids Ratio 0.621 Voids Ratio 0.864

Diameter (mm) 76.4 Particle Density (Mg/m³) 2.72 (Assumed)

Height (mm) 18.7

Bulk Density (Mg/m³) 1.92

Dry Density (Mg/m³) 1.46

Laboratory Temperature (°C) 18.9

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 100	0.114	0.575	t50	0.843
100 - 200	0.202	0.247	t50	0.806
200 - 400	0.140	0.280	t50	0.755
400 - 800	0.0836	0.391	t50	0.696
800 - 200	- 0.0581	0.298 (Sv)	t50	0.755
200 - 400	0.0708	0.423	t50	0.730
400 - 800	0.0599	0.488	t50	0.689
800 - 1600	0.0506	0.520	t50	0.621

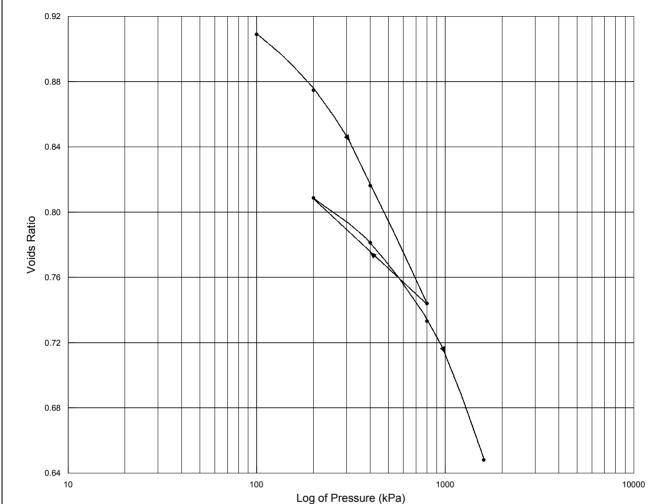
Checked and Approved

Initials:

ر الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال ا Project Number:

GEO / 16762
Project Name:

EDMONTON ECOPARK
Project No: SI1688






## Determination of One Dimensional Consolidation Properties of Soil

BH107 Borehole No: Sample Ref: 2 Depth (m): 8.50 Depth of test specimen (m): 8.56 Orientation: Vertical Specimen preparation: Undisturbed Description:

Firm grey silty CLAY



**Initial Conditions:** Final Conditions:

0.648 Moisture Content (%) 34 Voids Ratio Voids Ratio 0.920

Particle Density (Mg/m³) Diameter (mm) 76.2 2.72 (Assumed)

Height (mm) 18.6

Bulk Density (Mg/m³) Laboratory Temperature (°C) 1.90 18.9 Dry Density (Mg/m³) 1.42

Pressure Range	M∨	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 100	0.0592	13.2	t90	0.909
100 - 200	0.179	0.316	t50	0.875
200 - 400	0.156	0.335	t50	0.816
400 - 800	0.0995	0.453	t50	0.744
800 - 200	- 0.0618	0.298 (Sv)	t50	0.809
200 - 400	0.0757	0.440	t50	0.781
400 - 800	0.0674	0.488	t50	0.733
800 - 1600	0.0614	0.585	t50	0.648

Checked and Approved

Initials:

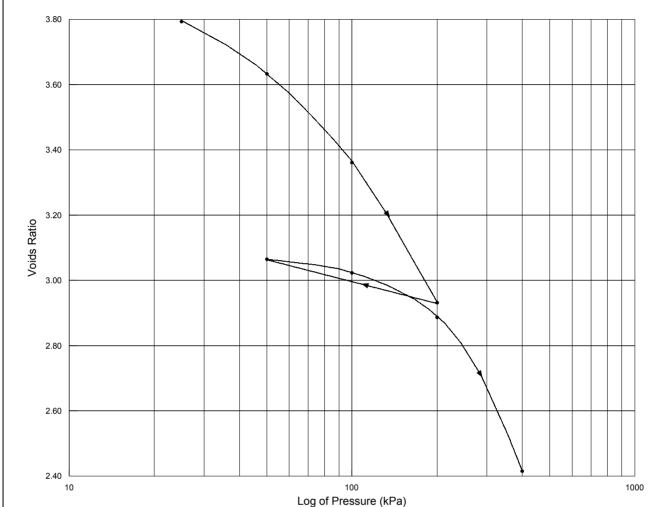
JS 15/04/2011 Project Number:

Project Name:

**EDMONTON ECOPARK Project No: SI1688** 

GEO / 16762






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH110
Sample Ref: 1
Depth (m): 2.50
Depth of test specimen (m): 2.55
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Firm fibrous very dark brown PEAT



Initial Conditions: Final Conditions:

0.40

Moisture Content (%) 173 Voids Ratio 2.415 Voids Ratio 3.939

Diameter (mm) 76.3 Particle Density (Mg/m³) 1.97 (Measured)
Height (mm) 18.9

Bulk Density (Mg/m³) 1.09 Laboratory Temperature (°C) 18.9

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	1.18	9.04	t90	3.793
25 - 50	1.33	7.06	t90	3.633
50 - 100	1.17	5.24	t90	3.361
100 - 200	0.985	3.71	t90	2.931
200 - 50	- 0.226	2.82 (Sv)	t90	3.064
50 - 100	0.204	5.30	t90	3.023
100 - 200	0.339	3.13	t90	2.887
200 - 400	0.606	0.641	t90	2 415

Checked and Approved

Initials:

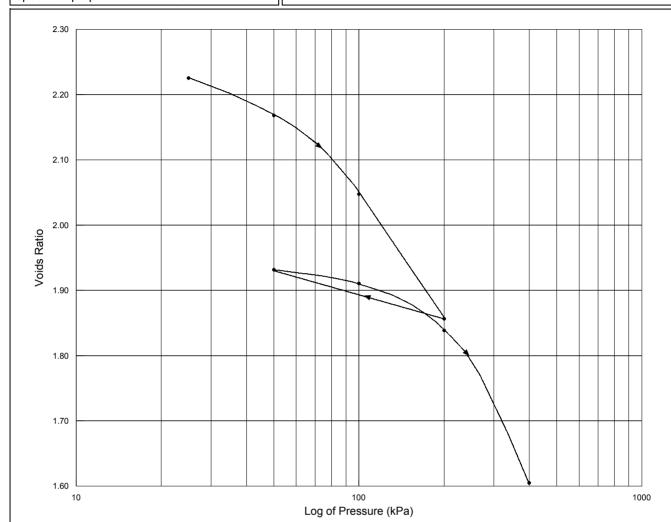
ر الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال ا Project Number:

Dry Density (Mg/m³)

GEO / 16762
Project Name:

EDMONTON ECOPARK






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH116
Sample Ref: 1
Depth (m): 2.50
Depth of test specimen (m): 2.55
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Soft green grey and orange brown mottled alluvial silty CLAY with pockets of very dark grey organic clay



Initial Conditions: Final Conditions: Voide Retire

Moisture Content (%) 81 Voids Ratio 1.605 Voids Ratio 2.252

Diameter (mm) 76.4 Particle Density (Mg/m³) 2.72 (Assumed)

Height (mm) 18.8

Bulk Density (Mg/m³) 1.51

Dry Density (Mg/m³) 0.84

Laboratory Temperature (°C) 18.9

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.334	1.27	t90	2.225
25 - 50	0.707	0.390	t50	2.168
50 - 100	0.763	0.329	t50	2.047
100 - 200	0.627	0.213	t50	1.856
200 - 50	- 0.175	0.382 (Sv)	t50	1.932
50 - 100	0.144	0.947	t50	1.910
100 - 200	0.248	0.454	t50	1.838
200 - 400	0.411	0.158	t50	1 605

Checked and Approved

Initials:

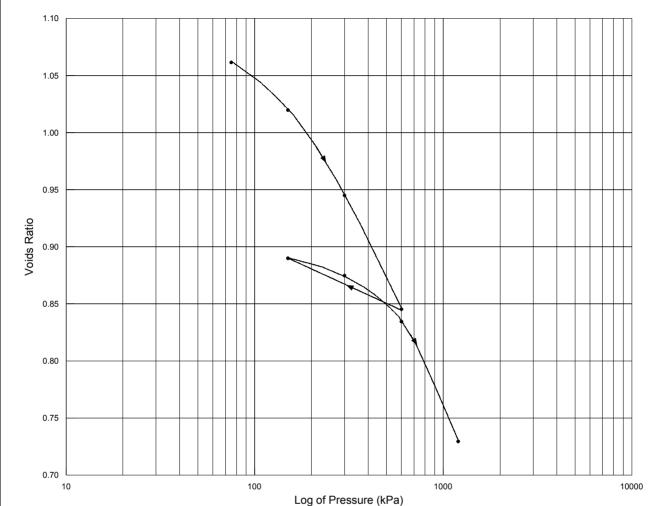
*JS* ^{Date:} 15/04/2011 Project Number:

GEO / 16762
Project Name:

EDMONTON ECOPARK






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH116
Sample Ref: 2
Depth (m): 7.50
Depth of test specimen (m): 7.66
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Soft to firm silty CLAY with traces of fine to medium gravel

sized siltstone and pockets of pale grey silt



Initial Conditions: Final Conditions:

Moisture Content (%) 42 Voids Ratio 0.729 Voids Ratio 1.098

Diameter (mm) 76.3 Particle Density (Mg/m³) 2.72 (Assumed)
Height (mm) 18.7

Height (mm) 18.7
Bulk Density (Mg/m³) 1.84
Laboratory Temperature (°C) 18.9

Dry Density (Mg/m³) 1.84 Laboratory Temperature (°C) 18.9 Laboratory (Mg/m³) 1.30

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 75	0.233	2.13	t50	1.061
75 - 150	0.271	0.788	t50	1.020
150 - 300	0.247	0.617	t50	0.945
300 - 600	0.171	0.666	t50	0.845
600 - 150	- 0.0539	0.777 (Sv)	t50	0.890
150 - 300	0.0538	1.71	t50	0.875
300 - 600	0.0716	1.10	t50	0.834
600 - 1200	0.0954	0.648	t50	0.729

Checked and Approved

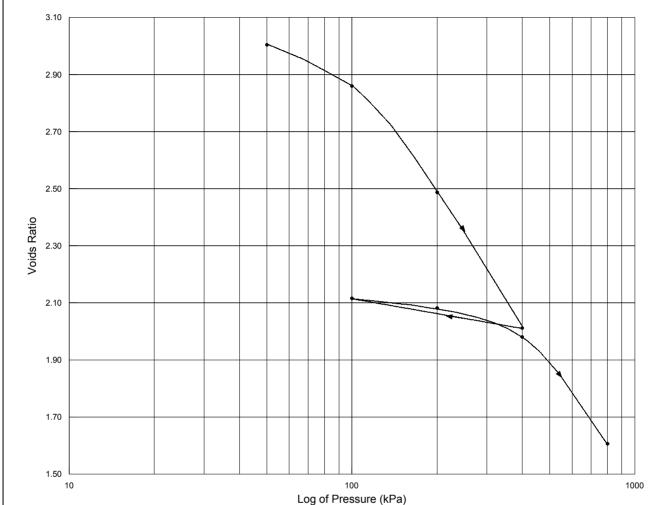
Initials:

*JS* ^{Date:} 15/04/2011 Project Number:

GEO / 16762
Project Name:

EDMONTON ECOPARK
Project No: SI1688






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH119
Sample Ref: 1
Depth (m): 4.00
Depth of test specimen (m): 4.05
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Firm amorphous very dark brown PEAT



Initial Conditions: Final Conditions:

Moisture Content (%) 135 Voids Ratio 1.606 Voids Ratio 3.160

Diameter (mm) 75.2 Particle Density (Mg/m³) 2.26 (Measured)
Height (mm) 19.0

Height (mm) 19.0
Bulk Density (Mg/m³) 1.28 Laboratory Temperature (°C) 18.9
Dry Density (Mg/m³) 0.54

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 50	0.752	17.3	t50	3.004
50 - 100	0.722	16.1	t50	2.859
100 - 200	0.965	2.28	t50	2.487
200 - 400	0.681	1.41	t50	2.012
400 - 100	- 0.115	1.33 (Sv)	t50	2.116
100 - 200	0.110	12.9	t50	2.082
200 - 400	0.165	9.80	t50	1.980
400 - 800	0.314	0.657	t50	1.606

Checked and Approved

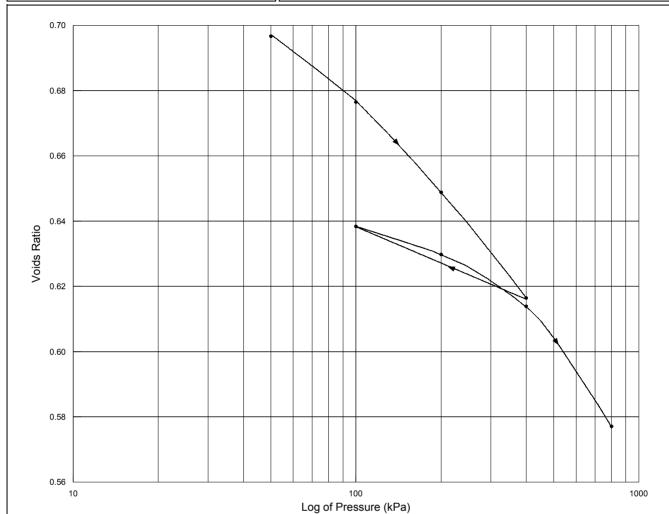
Initials:

ر Date: 15/04/2011 Project Number:

GEO / 16762
Project Name:

EDMONTON ECOPARK






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH119
Sample Ref: 2
Depth (m): 7.00
Depth of test specimen (m): 7.05
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Firm dark grey silty alluvial CLAY



Initial Conditions: Final Conditions:

Moisture Content (%) 25 Voids Ratio 0.577 Voids Ratio 0.716

Diameter (mm) 76.3 Particle Density (Mg/m³) 2.72 (Assumed)

Height (mm) 18.5

Bulk Density (Mg/m³) 1.99

Dry Density (Mg/m³) 1.59

Laboratory Temperature (°C) 18.9

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 50	0.226	6.36	t50	0.697
50 - 100	0.238	3.64	t50	0.676
100 - 200	0.165	3.76	t50	0.649
200 - 400	0.0984	4.87	t50	0.616
400 - 100	- 0.0453	5.07 (Sv)	t50	0.638
100 - 200	0.0526	9.64	t50	0.630
200 - 400	0.0486	9.46	t50	0.614
400 - 800	0.0570	5.31	t50	0.577

Checked and Approved

Initials:

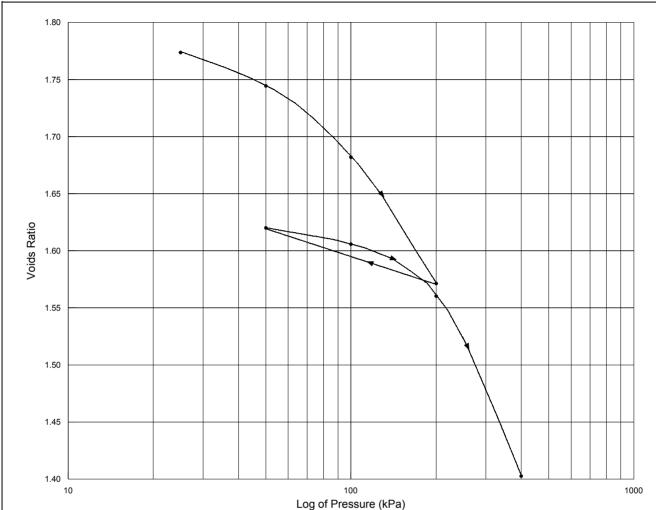
*」ら* ^{Date:} 15/04/2011 Project Number:

GEO / 16762
Project Name:

EDMONTON ECOPARK
Project No: SI1688






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH121
Sample Ref: 1
Depth (m): 2.00
Depth of test specimen (m): 2.41
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Firm very dark grey and pale grey marbled alluvial silty CLAY

[2.00 to 2.40 m is MADE GROUND]



Initial Conditions: Final Conditions:

Moisture Content (%) 60 Voids Ratio 1.403 Voids Ratio 1.793

Diameter (mm) 76.3 Particle Density (Mg/m³) 2.72 (Assumed)
Height (mm) 18.8

Height (mm) 18.8

Bulk Density (Mg/m³) 1.56

Dry Density (Mg/m³) 0.97

Laboratory Temperature (°C) 18.9

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.281	1.58	t90	1.773
25 - 50	0.422	0.608	t50	1.744
50 - 100	0.455	0.529	t50	1.682
100 - 200	0.412	0.359	t50	1.571
200 - 50	- 0.126	0.418 (Sv)	t50	1.620
50 - 100	0.109	1.28	t50	1.606
100 - 200	0.175	0.635	t50	1.560
200 - 400	0.308	0.228	t50	1 403

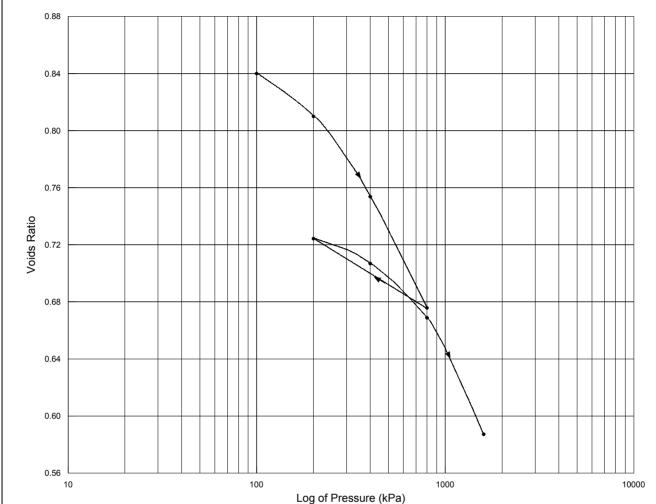
Checked and Approved

Initials:

 Project Number:

GEO / 16762
Project Name:

EDMONTON ECOPARK






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH122 Sample Ref: 1 Depth (m): 3.00 Depth of test specimen (m): 3.430 Orientation: Vertical Specimen preparation: Undisturbed Description:

Firm grey silty CLAY



**Initial Conditions:** Final Conditions:

0.587 Moisture Content (%) 31 Voids Ratio Voids Ratio 0.862

Particle Density (Mg/m³) Diameter (mm) 75.1 2.72 (Assumed) 19.0

Height (mm)

Bulk Density (Mg/m³) Laboratory Temperature (°C) 1.92 18.9 Dry Density (Mg/m³) 1.46

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 100	0.121	6.79	t90	0.840
100 - 200	0.163	0.727	t50	0.810
200 - 400	0.155	0.448	t50	0.754
400 - 800	0.111	0.344	t50	0.676
800 - 200	- 0.0483	0.390 (Sv)	t50	0.724
200 - 400	0.0509	0.763	t50	0.707
400 - 800	0.0554	0.549	t50	0.669
800 - 1600	0.0612	0.287	t50	0.587

Checked and Approved

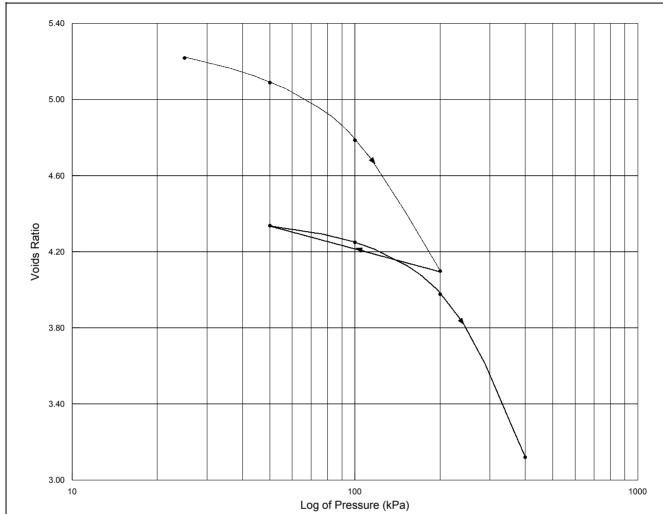
Initials:

JS 15/04/2011 Project Number:

GEO / 16762 Project Name:

**EDMONTON ECOPARK** 






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH124
Sample Ref: 1
Depth (m): 3.00
Depth of test specimen (m): 3.050
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Firm very dark brown pseudo fibrous PEAT



Initial Conditions: Final Conditions:

Moisture Content (%) 245 Voids Ratio 3.120 Voids Ratio 5.308

Diameter (mm) 76.4 Particle Density (Mg/m³) 1.97 (Assumed)

Height (mm) 18.7

Bulk Density (Mg/m³) 1.08 Laboratory Temperature (°C) 18.9 Dry Density (Mg/m³) 0.31

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.571	6.53	t90	5.218
25 - 50	0.831	9.91	t90	5.088
50 - 100	0.993	6.84	t90	4.786
100 - 200	1.19	1.17	t90	4.099
200 - 50	- 0.312	2.39 (Sv)	t90	4.337
50 - 100	0.327	3.68	t90	4.250
100 - 200	0.521	3.53	t90	3.976
200 - 400	0.860	0.325	t90	3.120

Checked and Approved

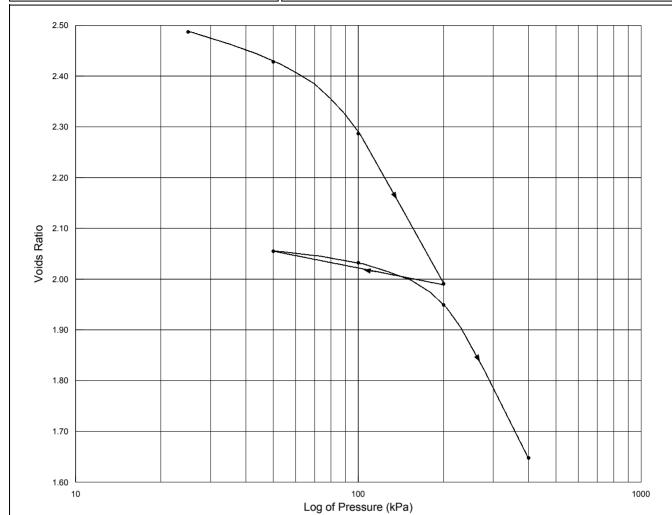
Initials:

ر الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال ا Project Number:

GEO / 16762
Project Name:

EDMONTON ECOPARK






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH101
Sample Ref: 1
Depth (m): 3.00
Depth of test specimen (m): 3.55
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Soft dark grey organic silty CLAY



Initial Conditions: Final Conditions:

Moisture Content (%) 85 Voids Ratio 1.648

Voids Ratio 2.557

0.75

Diameter (mm) 76.3 Particle Density (Mg/m³) 2.68 (Assumed)

Height (mm) 18.9

Dry Density (Mg/m³)

Bulk Density (Mg/m³) 1.39 Laboratory Temperature (°C) 19.3

Pressure Range	M∨	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.781	3.91	t50	2.487
25 - 50	0.676	2.93	t50	2.428
50 - 100	0.826	1.36	t50	2.287
100 - 200	0.900	0.367	t50	1.991
200 - 50	- 0.143	0.548 (Sv)	t50	2.055
50 - 100	0.148	2.16	t50	2.032
100 - 200	0.274	1.15	t50	1.949
200 - 400	0.510	0.177	t50	1.648

Checked and Approved

Initials:

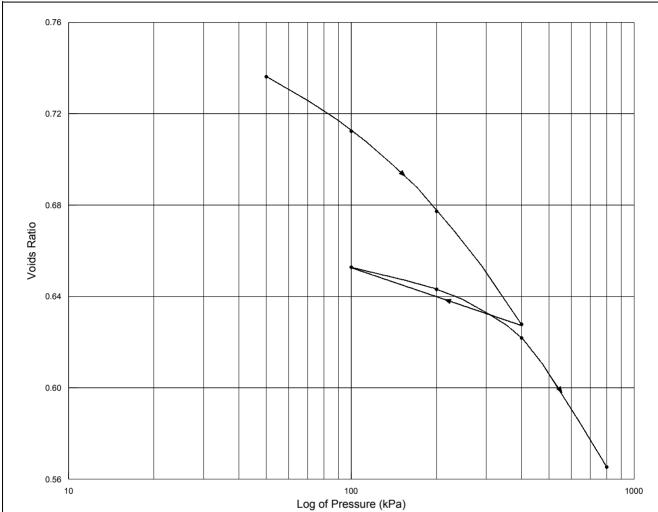
JS
Date: 06/05/2011

Project Number

Project Name:

GEO / 16819 EDMONTON ECOPARK






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH104 Sample Ref:

Depth (m): 1.20 Depth of test specimen (m): 1.75 Orientation: Vertical Specimen preparation: Undisturbed Description:

Firm dark grey silty CLAY with occasional pockets of silt



Initial Conditions: Final Conditions:

Moisture Content (%) Voids Ratio 0.565 28

Voids Ratio 0.761

76.2 Particle Density (Mg/m³) 2.72 (Assumed) Diameter (mm) Height (mm) 18.7

Bulk Density (Mg/m³) 1.98 Laboratory Temperature (°C) 19.3 Dry Density (Mg/m³) 1.54

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 50	0.281	8.60	t90	0.736
50 - 100	0.275	5.69	t50	0.712
100 - 200	0.204	3.33	t50	0.677
200 - 400	0.147	2.38	t50	0.628
400 - 100	- 0.0510	2.42 (Sv)	t50	0.653
100 - 200	0.0586	5.36	t50	0.643
200 - 400	0.0647	4.70	t50	0.622
400 - 800	0.0871	1.65	t50	0.565

Checked and Approved

Initials

JS Date: 06/05/2011 Project Number

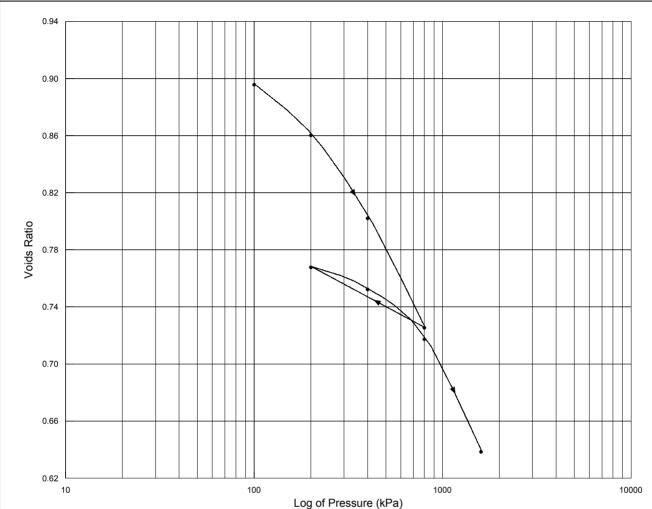
Project Name:

**GEO / 16819** 

**EDMONTON ECOPARK** 








## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH104
Sample Ref: 2
Depth (m): 3.00
Depth of test specimen (m): 3.46
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Firm to stiff brown and dark grey silty CLAY with occasional fine to medium gravel



Initial Conditions: Final Conditions:

1.42

Moisture Content (%) 32 Voids Ratio 0.638

Voids Ratio 0.917

Diameter (mm) 75.2 Particle Density (Mg/m³) 2.72 (Assumed) Height (mm) 19.1

Bulk Density (Mg/m³) 1.87 Laboratory Temperature (°C) 19.3

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 100	0.111	5.98	t50	0.896
100 - 200	0.187	0.731	t50	0.860
200 - 400	0.156	0.463	t50	0.802
400 - 800	0.106	0.416	t50	0.725
800 - 200	- 0.0408	0.486 (Sv)	t50	0.768
200 - 400	0.0434	1.15	t50	0.752
400 - 800	0.0500	0.769	t50	0.717
800 - 1600	0.0573	0.382	t50	0.638

Checked and Approved

Initials:

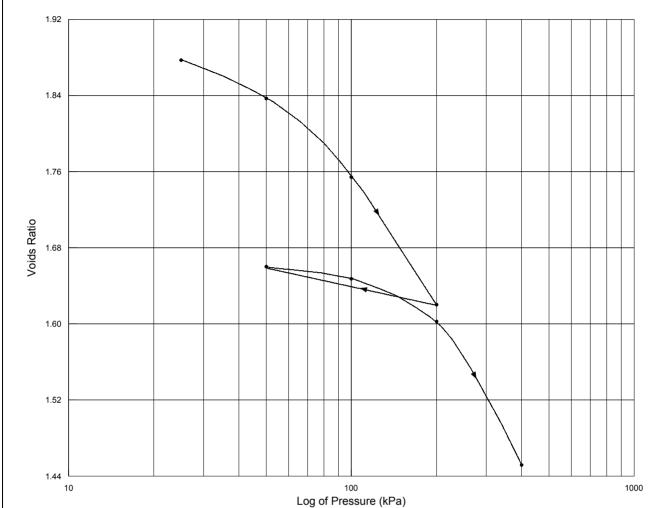
 Project Number:

Dry Density (Mg/m³)

Project Name:

GEO / 16819

**EDMONTON ECOPARK** 






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH117 Sample Ref: Depth (m): 2.50 Depth of test specimen (m): 3.05 Orientation: Vertical Specimen preparation: Undisturbed Description:

Very soft dark grey and grey mottled organic silty CLAY with abundant vertically running decomposing roots



Initial Conditions: Final Conditions:

Moisture Content (%) Voids Ratio 1.452 66

Voids Ratio 1.902

76.2 Particle Density (Mg/m³) 2.65 (Assumed) Diameter (mm) Height (mm) 18.8

Bulk Density (Mg/m³) 1.51 Laboratory Temperature (°C) 19.3 Dry Density (Mg/m³) 0.91

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.345	4.09	t50	1.877
25 - 50	0.561	0.883	t50	1.837
50 - 100	0.582	0.640	t50	1.754
100 - 200	0.487	0.399	t50	1.620
200 - 50	- 0.101	0.482 (Sv)	t50	1.660
50 - 100	0.0953	2.59	t50	1.647
100 - 200	0.170	0.785	t50	1.602
200 - 400	0.290	0.238	t50	1.452

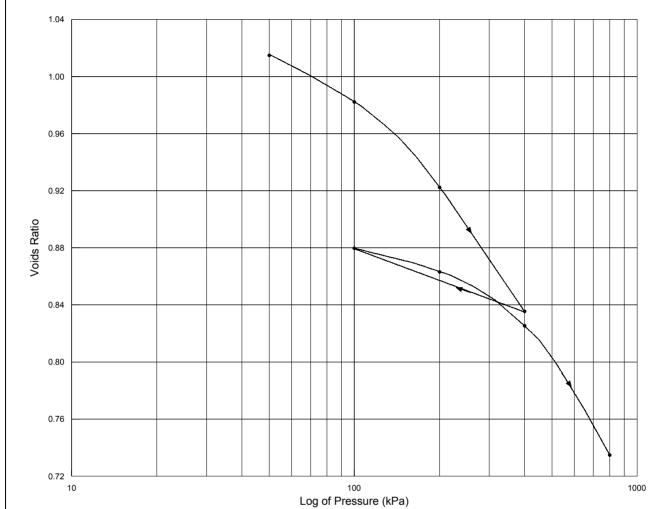
Checked and Approved

Initials

JS Date: 06/05/2011 Project Number

Project Name:

GEO / 16819 **EDMONTON ECOPARK** 






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH118 Sample Ref: Depth (m): 1.50 Depth of test specimen (m): 2.00 Orientation: Vertical Specimen preparation: Undisturbed Description:

Firm grey silty CLAY



Initial Conditions: Final Conditions:

Moisture Content (%) Voids Ratio 0.735 36

Voids Ratio 1.033

Diameter (mm) 76.3 Particle Density (Mg/m³) 2.72 (Assumed)

Height (mm) 18.7

1.82 Bulk Density (Mg/m³) Laboratory Temperature (°C) 19.3 Dry Density (Mg/m³) 1.34

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 50	0.180	5.71	t50	1.015
50 - 100	0.324	1.07	t50	0.982
100 - 200	0.302	0.749	t50	0.922
200 - 400	0.226	0.557	t50	0.835
400 - 100	- 0.0803	0.597 (Sv)	t50	0.880
100 - 200	0.0881	1.06	t50	0.863
200 - 400	0.101	0.883	t50	0.825
400 - 800	0.124	0.515	t50	0.735

Checked and Approved

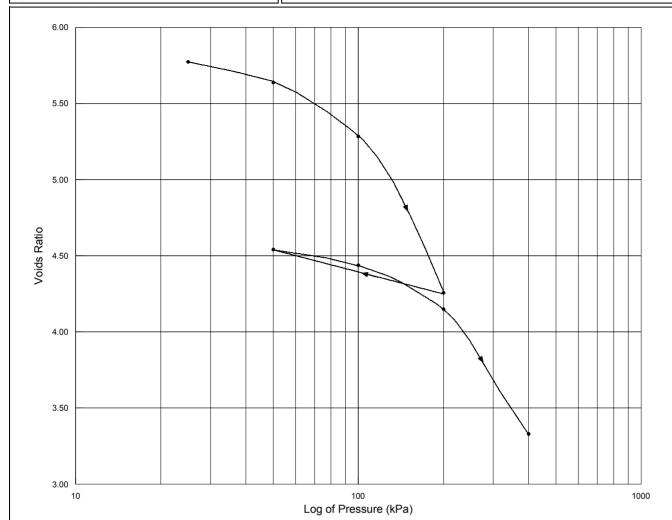
Initials:

JS Date: 06/05/2011 Project Number

Project Name:

**GEO / 16819 EDMONTON ECOPARK** 






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH118 Sample Ref: Depth (m): 3.00 Depth of test specimen (m): 3.55 Orientation: Vertical Specimen preparation: Undisturbed

Description:

Soft dark grey organic silty clayey PEAT



Initial Conditions: Final Conditions:

0.39

Moisture Content (%) 206 Voids Ratio 3.331

Voids Ratio 5.850 76.2 Diameter (mm)

Particle Density (Mg/m³) 2.68 (Assumed)

Height (mm) 18.5

Dry Density (Mg/m³)

Bulk Density (Mg/m³) 1.20 Laboratory Temperature (°C) 19.3

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.453	3.43	t50	5.772
25 - 50	0.798	2.58	t50	5.637
50 - 100	1.06	0.998	t50	5.284
100 - 200	1.64	0.204	t50	4.256
200 - 50	- 0.361	0.254 (Sv)	t50	4.541
50 - 100	0.372	0.669	t50	4.438
100 - 200	0.531	0.528	t50	4.149
200 - 400	0.795	0.0966	t50	3.331

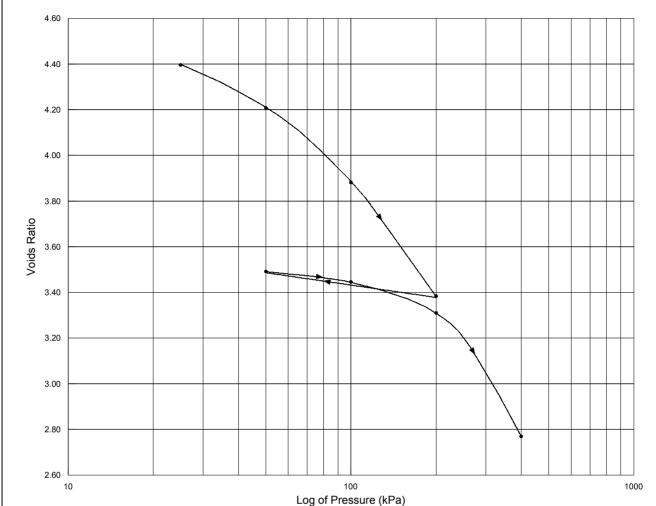
Checked and Approved

Initials

JS Date: 06/05/2011 Project Number

Project Name:

**GEO / 16819 EDMONTON ECOPARK** 






## Determination of One Dimensional Consolidation Properties of Soil

BH103 Borehole No: Sample Ref: 1 Depth (m): 3.00 Depth of test specimen (m): 3.05 Orientation: Vertical Specimen preparation: Undisturbed Description:

Very dark brown amorphous PEAT



**Initial Conditions:** Final Conditions:

Moisture Content (%) 178 Voids Ratio 2.769 Voids Ratio 4.528

Particle Density (Mg/m³) Diameter (mm) 76.4 2.27 (Assumed)

Height (mm) 18.8 Bulk Density (Mg/m³) 1.14 18.9

Laboratory Temperature (°C) Dry Density (Mg/m³) 0.41

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.958	5.10	t90	4.395
25 - 50	1.39	3.21	t90	4.207
50 - 100	1.25	1.66	t50	3.881
100 - 200	1.02	0.492	t50	3.384
200 - 50	- 0.163	0.641 (Sv)	t50	3.491
50 - 100	0.203	2.36	t50	3.446
100 - 200	0.305	1.53	t50	3.310
200 - 400	0.628	0.209	t50	2.769

Checked and Approved

Initials:

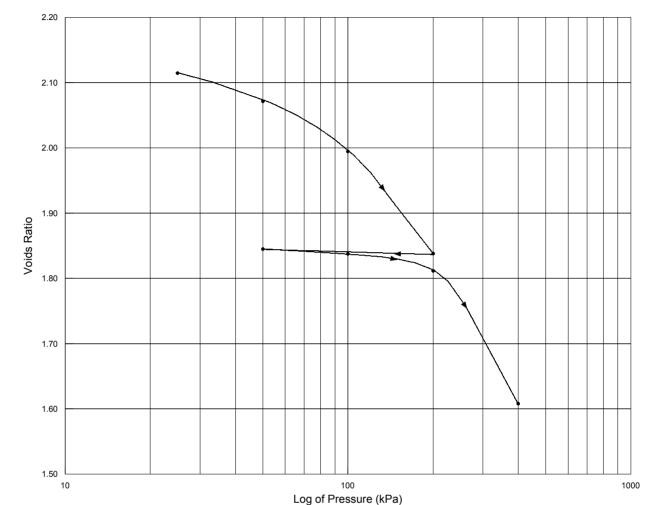
JS 27/04/2011 Project Number:

Project Name:

**EDMONTON ECOPARK** Job Number: SI1688

GEO / 16786






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH105
Sample Ref: 2
Depth (m): 4.00
Depth of test specimen (m): 4.10
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Firm dark grey alluvial SILT with very thick very dark grey veins of organic material



Initial Conditions: Final Conditions:

Moisture Content (%) 72 Voids Ratio 1.608 Voids Ratio 2.166

Diameter (mm) 75.2 Particle Density (Mg/m³) 2.70 (Assumed)

Height (mm) 19.1

Bulk Density (Mg/m³) 1.47

Dry Density (Mg/m³) 0.85

Laboratory Temperature (°C) 18.9

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.645	3.74	t90	2.114
25 - 50	0.554	3.71	t90	2.071
50 - 100	0.501	3.53	t90	1.994
100 - 200	0.522	1.03	t90	1.838
200 - 50	- 0.0160	2.54 (Sv)	t90	1.845
50 - 100	0.0525	1.33	t90	1.837
100 - 200	0.0906	1.28	t90	1.812
200 - 400	0.362	2.58	t90	1 608

Checked and Approved

Initials:

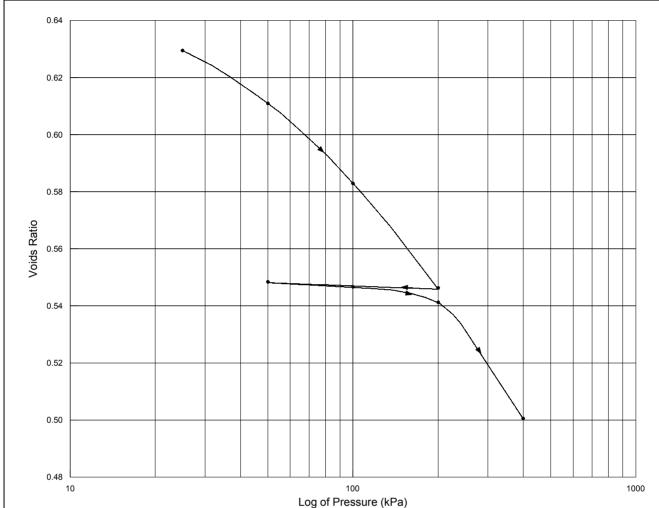
*JS* ^{Date:} 27/04/2011 Project Number:

Project Name:

EDMONTON ECOPARK
Job Number: SI1688

GEO / 16786






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH113
Sample Ref: 1
Depth (m): 2.00
Depth of test specimen (m): 2.36
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Firm dark grey very sandy silty alluvial CLAY



Final Conditions:

Moisture Content (%) 21 Voids Ratio 0.500

Voids Ratio 0.656

Diameter (mm) 75.1 Particle Density (Mg/m³) 2.70 (Assumed)

Height (mm) 19.0

Pulls Pensity (Ma/m³) 1.07

Bulk Density (Mg/m³) 1.97 Laboratory Temperature (°C) 18.9 Dry Density (Mg/m³) 1.63

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.642	16.4	t90	0.629
25 - 50	0.454	11.3	t90	0.611
50 - 100	0.348	12.4	t90	0.583
100 - 200	0.231	11.6	t90	0.546
200 - 50	- 0.00902	4.23 (Sv)	t90	0.548
50 - 100	0.0225	19.2	t90	0.547
100 - 200	0.0350	11.2	t90	0.541
200 - 400	0.132	11.3	t90	0.500

Checked and Approved

**Initial Conditions:** 

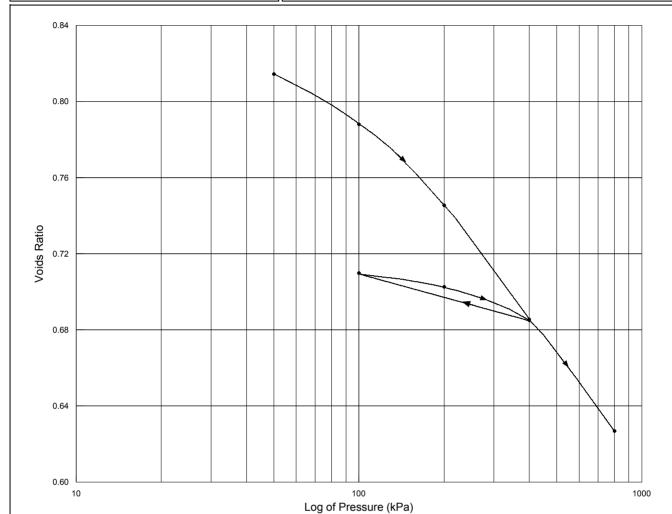
Initials:

ر الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال الحال ا Project Number:

GEO / 16786 Project Name:

EDMONTON ECOPARK






## Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH113
Sample Ref: 2
Depth (m): 4.00
Depth of test specimen (m): 4.09
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Firm dark grey silty alluvial CLAY



Initial Conditions: Final Conditions:

Moisture Content (%) 30 Voids Ratio 0.627 Voids Ratio 0.827

Diameter (mm) 75.1 Particle Density (Mg/m³) 2.71 (Assumed)

Height (mm) 19.1
Bulk Density (Mg/m³) 1.92 Laboratory Temperature (°C) 18.9
Dry Density (Mg/m³) 1.48

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 50	0.139	2.35	t50	0.814
50 - 100	0.290	1.42	t50	0.788
100 - 200	0.239	1.03	t50	0.745
200 - 400	0.171	1.07	t50	0.686
400 - 100	- 0.0482	1.32 (Sv)	t50	0.710
100 - 200	0.0426	2.64	t50	0.703
200 - 400	0.0515	2.31	t50	0.685
400 - 800	0.0864	0.762	t50	0.627

Checked and Approved

Initials:

*」ら* ^{Date:} 27/04/2011 Project Number:

GEO / 16786 Project Name:

EDMONTON ECOPARK







Depot Road Newmarket CB8 OAL Tel: 01638 606070

May Gurney Ayton Road Wymondham Norfolk NR18 ORH

FAO D Dunn / P Lewin 12 April 2011

Dear D Dunn / P Lewin

**Test Report Number** 

135540

Your Project Reference

SI1688 - Edmonton Ecopark

Please find enclosed the results of analysis for the samples received 4 April 2011.

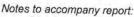
All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

Authorised Signatory

□ Phil Hellier □ Keith Jones □ John Crawford


Director Technical Manager Quality Manager

□ Malcolm Avis

Darrell Hall

Director

Director



The sign < means 'less than'

Tests marked 'U' hold UKAS accreditation

Tests marked 'M' hold MCertS (and UKAS) accreditation

Tests marked 'N' do not currently hold UKAS accreditation

Tests marked 'S' were subcontracted to an approved laboratory

n/e means 'not evaluated'

i/s means 'insufficient sample'

u/s means 'unsuitable sample'

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested





Test Report 135540 Cover Sheet

# LABORATORY TEST REPORT



Report Date 12 April 2011

Results of analysis of 21 samples received 04 April 2011

FAO D Dunn / P Lewin SI1688 - Edmonton Ecopark

Login Batch No					135540								
Chemtest LIMS ID					AF91719	AF91720	AF91721	AF91723	AF91724	AF91725	AF91726	AF91727	
Sample	ID				BH114	BH116	BH116	BH106	BH106	BH107	BH107	BH110	
Sample No					D2	D17	D21	D9	D17	D2	D11	D5	
Sampling Date					01/04/2011	01/04/2011	01/04/2011	01/04/2011	01/04/2011	01/04/2011	01/04/2011	01/04/2011	
Depth				2m - 2.45m	12.45m	16.5m - 16.95m	5.55m	12.5m - 12.95m	1.1m	5.8m	1.9m		
Matrix			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			
SOP↓	Determinand↓	CAS No↓	Units↓	*									
2220	Chloride (extractable)	16887006	g l-¹	M	0.085	0.018	0.029	0.021	0.021	0.076	0.021	0.15	
	Nitrate (extractable)	14797558	g l-¹	N	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	
2120	Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	M	0.35	0.51	0.64	0.65	0.33	0.55	0.24	0.05	
2420	Magnesium (soluble)	7439954	g I-¹	N	<0.01	<0.01	<0.01	0.01	<0.01	0.03	<0.01	<0.01	
2010	рН			M	7.6	8.2	8.2	7.9	8.3	7.8	7.8	7.7	

FAO D Dunn / P Lewin

2120 Sulfate (2:1 water soluble) as SO4

2420 Magnesium (soluble)

2010 pH

# LABORATORY TEST REPORT



**Report Date** 12 April 2011

0.10

<0.01

8.5

0.35

0.02

8.0

Results of analysis of 21 samples received 04 April 2011

SI1688 - Edmonton Ecopark

0.16

<0.01

8.2

g l-1

g l-1

14808798

7439954

М

N

М

Login Batch No				135540								
Chemtest LIMS	IS ID				AF91728	AF91729	AF91730	AF91731	AF91733	AF91735	AF91736	AF91737
Sample ID					BH110	BH119	BH119	BH120	BH120	BH121	BH122	BH122
Sample No					D14	D3	D8	D8	D16	D8	D7	D11
Sampling Date	e				01/04/2011	01/04/2011	01/04/2011	01/04/2011	01/04/2011	01/04/2011	01/04/2011	01/04/2011
Depth					8.5m - 8.95m	3m - 3.45m	8m - 8.45m	2.2m - 2.3m	9m - 9.45m	8m - 8.45m	7m - 7.45m	9.8m - 10.25m
Matrix					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SOP↓ Detern	minand↓	CAS No↓	Units↓	*								
2220 Chlorid	de (extractable)	16887006	g I-1	М	0.018	0.16	0.038	0.077	0.019	0.017	0.021	0.030
Nitrate	e (extractable)	14797558	g l-¹	N	<0.010	<0.010	<0.010	0.010	<0.010	<0.010	<0.010	<0.010

0.44

<0.01

7.5

0.23

<0.01

6.7

0.26

<0.01

7.9

0.24

< 0.01

8.3

0.45

0.01

8.0

# LABORATORY TEST REPORT



**Report Date** 12 April 2011

Results of analysis of 21 samples received 04 April 2011

SI1688 - Edmonton Ecopark

FAO D Dunn / P Lewin

Login Batch No				135540
Chemtest LIMS ID				AF91739
Sample ID				BH124
Sample No				D1
Sampling Date				01/04/2011
Depth				1.2m - 1.65m
Matrix				SOIL
SOP↓ Determinand↓	CAS No↓	Units↓	*	
2220 Chloride (extractable)	16887006	g l-¹	M	0.016
Nitrate (extractable)	14797558	g l-¹	N	<0.010
2120 Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	М	1.3
2420 Magnesium (soluble)	7439954	g l-¹	N	0.06
2010 pH			М	7.7

FAO D Dunn / P Lewin

# LABORATORY TEST REPORT



Report Date 12 April 2011

Results of analysis of 21 samples received 04 April 2011

SI1688 - Edmonton Ecopark

Login E	Batch No		135540					
Chemte	est LIMS ID				AF91722	AF91732	AF91734	AF91738
Sample	ID				BH116	BH110	BH120	BH122
Sample	: No				W1	W1	W1	W1
Samplii	ng Date				01/04/2011	01/04/2011	01/04/2011	01/04/2011
Depth					1m	3.6m	4m	5.3m
Matrix					WATER	WATER	WATER	WATER
SOP↓	Determinand↓	CAS No↓	Units↓	*				
1010	рН	PH		U	7.0	7.5	7.0	7.0
1220	Chloride	16887006	mg l-1	U	37	480	300	240
	Nitrate	14797558	mg l-1	U	<0.50	<0.50	<0.50	<0.50
1415	Magnesium	7439954	mg l-1	U	47	9.4	20	29
1220	Sulfate	14808798	mg l-1	U	900	420	170	110



Depot Road Newmarket CB8 0AL Tel: 01638 606070

May Gurney Ayton Road Wymondham Norfolk NR18 0RH

FAO D Dunn / P Lewin 14 April 2011

Dear D Dunn / P Lewin

Test Report Number 123204

Your Project Reference SI1688 - Edmonton Ecopark

Please find enclosed the results of analysis for the samples received 6 April 2011.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

**Authorised Signatory** 

Notes to accompany report:

The sign < means 'less than'</li>

Tests marked 'U' hold UKAS accreditation

Tests marked 'M' hold MCertS (and UKAS) accreditation
 Tests marked 'N' do not currently hold UKAS accreditation

Tests marked 'S' were subcontracted to an approved laboratory

n/e means 'not evaluated'

i/s means 'insufficient sample'

u/s means 'unsuitable sample'

Comments or interpretations are beyond the scope of UKAS accreditation

□ Darrell Hall

□ Phil Hellier

Keith Jones

□ John Crawford

□ Malcolm Avis

Director

Director

Director

Technical Manager

Quality Manager

The results relate only to the items tested

UKAS TESTING 2183





Test Report 123204 Cover Sheet

# LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

Results of analysis of 5 samples received 6 April 2011

FAO D Dunn / P Lewin

SI1688 - Edmonton Ecopark

Report Date 14 April 2011

Login I	Batch No					123	204	
Chemte	est LIMS ID				AF92462	AF92463	AF92465	AF92466
Sample	·ID				BH118	BH118	BH123	BH123
Sample	· No				D3	D9	D1	D9
Sampli	ng Date				05/04/2011	05/04/2011	05/04/2011	05/04/2011
Depth					1.2m	6.95m - 7m	1.2m - 1.65m	10m - 10.15m
Matrix					SOIL	SOIL	SOIL	SOIL
SOP↓	Determinand↓	CAS No↓	Units↓	*				
2010	рН			М	8.1	8.6	7.9	8.3
2220	Chloride (extractable)	16887006	g l-1	М	0.024	0.041	0.13	0.020
	Nitrate (extractable)	14797558	g l-¹	N	<0.010	<0.010	<0.010	<0.010
2120	Sulfate (2:1 water soluble) as SO4	14808798	g l-1	М	0.65	0.65	1.8	0.33
2420	Magnesium (soluble)	7439954	g l-¹	N	0.03	<0.01	0.01	0.01

# LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

mples

Report Date 14 April 2011

Results of analysis of 5 samples received 6 April 2011

FAO D Dunn / P Lewin

SI1688 - Edmonton Ecopark

Login I	123204				
Chemte	est LIMS ID				AF92464
Sample	e ID				BH118
Sample	e No				W2
Sampli	ng Date				05/04/2011
Depth					11.8m
Matrix					WATER
SOP↓	Determinand↓	CAS No↓	Units↓	*	
1010	рН	PH		U	7.9
1220	Chloride	16887006	mg l-1	U	93
	Nitrate	14797558	mg l-1	U	<0.50
1415	Magnesium	7439954	mg l-1	U	20
1220	Sulfate	14808798	mg l-1	U	90



Depot Road Newmarket CB8 DAL Tel: 01638 606070

May Gurney Ayton Road Wymondham Norfolk NR18 ORH

FAO D Dunn 25 March 2011

Dear D Dunn

**Test Report Number** 135066

Your Project Reference SI1688 - Edmonton Ecopark

Please find enclosed the results of analysis for the samples received 17 March 2011.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services

□ Darrell Hall

□ Phil Hellier

Keith Jones

□ John Crawford

□ Malcolm Avis

Director

Director

Director

Technical Manager

Quality Manager

Yours sincerely

Notes to accompany report:

The sign < means 'less than'

Tests marked 'U' hold UKAS accreditation

Tests marked 'M' hold MCertS (and UKAS) accreditation

Tests marked 'N' do not currently hold UKAS accreditation Tests marked 'S' were subcontracted to an approved laboratory

n/e means 'not evaluated'

i/s means 'insufficient sample'

u/s means 'unsuitable sample'

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

**Authorised Signatory** 









Test Report 135066 Cover Sheet

FAO D Dunn

# LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

25 March 2011

Report Date

Results of analysis of 5 samples received 17 March 2011

SI1688 - Edmonton Ecopark

Login Batch No			135066					
Chemtest LIMS ID				AF85833	AF85834	AF85835	AF85837	
Sample ID				BH103	BH103	BH103	BH113	
Sample No				D2	D6	D10	D2	
Sampling Date				16/03/2011	16/03/2011	16/03/2011	16/03/2011	
Depth				2m - 2.45m	6m - 6.45m	10m - 10.45m	2.45m - 2.85m	
Matrix				SOIL	SOIL	SOIL	SOIL	
SOP↓ Determinand↓	CAS No↓	Units↓	*					
2010 pH			М	7.4	8.2	8.6	7.9	
2220 Chloride (extractable)	16887006	g l-¹	М	0.061	0.012	0.017	0.051	
Nitrate (extractable)	14797558	g l-¹	N	<0.010	<0.010	<0.010	<0.010	
2120 Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	М	0.29	0.01	0.35	0.03	
2420 Magnesium (soluble)	7439954	q l-1	N	<0.01	<0.01	<0.01	<0.01	

# LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

Results of analysis of 5 samples received 17 March 2011

FAO D Dunn SI1688 - Edmonton Ecopark

Report Date 25 March 2011

	Batch No est LIMS ID				<b>135066</b> AF85836
Sample	e ID				BH105
Sample	e No				W1
Sampli	ng Date				16/03/2011
Depth					4.3m
Matrix					WATER
SOP↓	Determinand↓	CAS No↓	Units↓	*	
1010	рН	PH		U	7.0
1220	Chloride	16887006	mg l-1	U	98
	Nitrate	14797558	mg l-1	U	0.94
1415	Magnesium	7439954	mg l-1	U	14
1220	Sulfate	14808798	mg l-1	U	170



Depot Road Newmarket CB8 OAL Tel: 01638 606070

May Gurney Ayton Road Wymondham Norfolk NR18 ORH

FAO D Dunn/P Lewin 05 April 2011

Dear D Dunn/P Lewin

**Test Report Number** 123071

Your Project Reference SI1688 - Edmonton Ecopark

Please find enclosed the results of analysis for the samples received 28 March 2011.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

□ Darrell Hall

D Phil Hellier

□ Keith Jones

□ John Crawford

□ Malcolm Avis

Director

Director

Director

Technical Manager

Quality Manager

Yours sincerely

Authorised Signatory

Notes to accompany report:

The sign < means 'less than'

Tests marked 'U' hold UKAS accreditation

Tests marked 'M' hold MCertS (and UKAS) accreditation

Tests marked 'N' do not currently hold UKAS accreditation Tests marked 'S' were subcontracted to an approved laboratory

n/e means 'not evaluated'

i/s means 'insufficient sample'

u/s means 'unsuitable sample'

Comments or interpretations are outside of the scope of UKAS accreditation

The results relate only to the items tested

Stones represent the quantity of material removed prior to analysis

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, phenols

For all other tests the samples were dried at < 37°C prior to analysis

Uncertainties of measurement for the determinands tested are available upon request

Soil descriptions, including colour and texture, are beyond the scope of MCertS accreditation

None of the test results included in this report have been recovery corrected

MCERTS

ISO 14001





Test Report 123071 Cover Sheet

# LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

Report Date 05 April 2011

Results of analysis of 8 samples received 28 March 2011

FAO D Dunn/P Lewin

SI1688 - Edmonton Ecopark

Login Batch No				123071						
Chemtest LIMS ID				AF89383	AF89384	AF89385	AF89387	AF89388		
Sample ID				BH101	BH104	BH104	BH108	BH109		
Sample No										
				O5	D5	D13	D6	D10		
Sampling Date				24/03/2011	24/03/2011	24/03/2011	24/03/2011	24/03/2011		
Depth				3.5m - 3.6m	2m - 2.45m	9m - 9.45m	2.1m	5.2m - 5.65m		
Matrix				SOIL	SOIL	SOIL	SOIL	SOIL		
SOP↓ Determinand↓	CAS No↓	Units↓	*							
2010 pH			M	7.1	8.0	8.1	7.7	7.9		
2220 Chloride (extractable)	16887006	g l-¹	M	0.17	0.048	0.049	0.33	0.026		
Nitrate (extractable)	14797558	g l-¹	N	<0.010	<0.010	<0.010	<0.010	<0.010		
2120 Sulfate (2:1 water soluble) as SO4	14808798	g l-¹	M	0.31	0.46	0.38	0.49	0.22		
2420 Magnesium (soluble)	7439954	g l-¹	N	<0.01	0.02	<0.01	<0.01	<0.01		

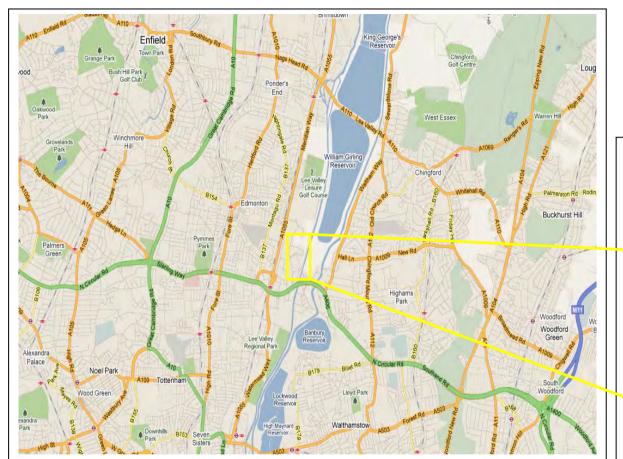
FAO D Dunn/P Lewin

# LABORATORY TEST REPORT

Chemtest
The right chemistry to deliver results

Report Date 05 April 2011

# Results of analysis of 8 samples received 28 March 2011


SI1688 - Edmonton Ecopark

Login B	atch No	123071							
Chemtes	st LIMS ID				AF89386 AF89389 AF893				
Sample	ID	BH104	BH115	BH117					
Sample	No								
					W1	W1	W1		
Samplin	g Date				24/03/2011	24/03/2011	24/03/2011		
Depth					3.9m	1.9m	2.9m		
Matrix					WATER	WATER	WATER		
SOP↓	Determinand↓	CAS No↓	Units↓	*					
1010	рН	PH		U	6.9	7.5	7.0		
1220	Chloride	16887006	mg l-1	U	180	170	160		
	Nitrate	14797558	mg l-1	U	<0.5	<0.5	<0.5		
1415	Magnesium	7439954	mg l-1	U	24	15	26		
1220	Sulfate	14808798	mg l-1	U	240	220	310		



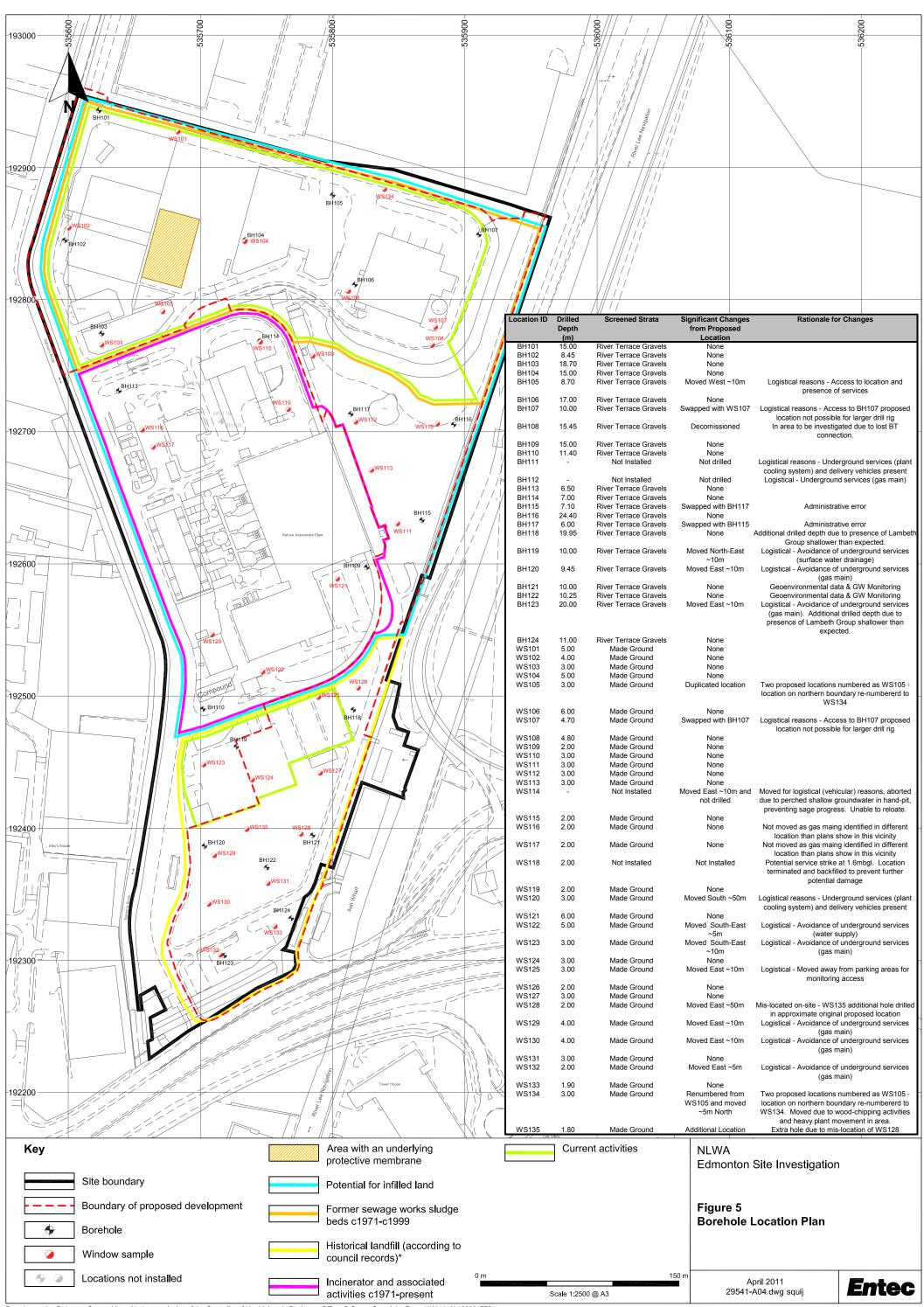
## **APPENDIX D**

## **SITE PLANS**





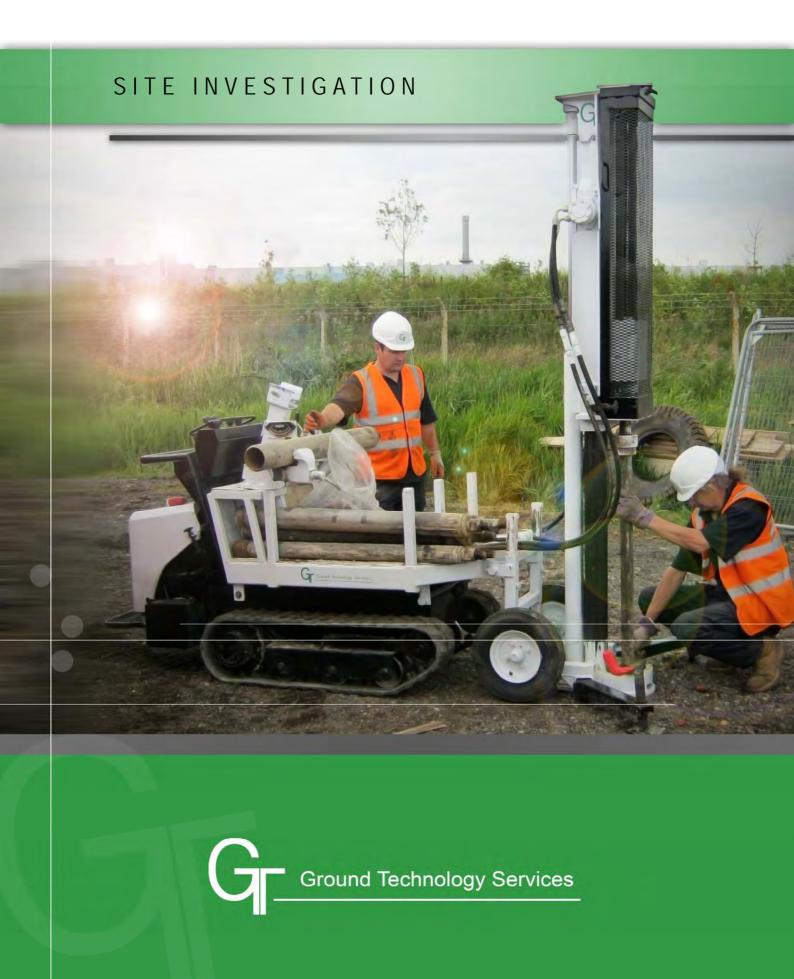



TITLE:	SITE LOCATION PLAN	SCALE:	NTS

SITE: LONDON WASTE ECOPARK, EDMONTON SI REF: SI1688

**CLIENT: ENTEC UK LIMITED** 




Geotechnical - Site Investigation, Ayton Road, Wymondham, Norfolk, NR18 0RH. Tel: 01953 609844 Fax: 01953 609819



Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC Environment and Infrastructure UK Limited



## **GROUND INVESTIGATION REPORT**

**Report Reference GTS-11-055** 

Date: January 2012

Site:

Phase 2 - Edmonton Ecopark LondonWaste EcoPark Edmonton

Client:



AMEC Environment & Infrastructure UK Limited
17 Angel Gate
City Road
London



Maple Road Kings Lynn Norfolk PE34 3AF

Tel: 01553 817657

www.groundtechnology.co.uk



## **Contents**

Introduction	Page 4
Site Details	Page 4
Fieldwork	Page 6
Laboratory Testing	Page 7
Ground Conditions	Page 8
References	Page 9
Document Control	Page 11

Page 2 GTS-11-055



## **Appendices**

Appendix A Exploratory Hole Records

Appendix B In-situ Test Results

Appendix C Installation

Appendix D Geotechnical Laboratory Results

Appendix E Exploratory Hole Location Plan

Appendix F Calibration Certificates

GTS-11-055 Page 3



#### **Section 1: Introduction**

#### 1.1 General Introduction

Ground Technology Services (GTS)were **AMEC** Environment instructed bν Infrastructure Limited (AMEC), to carry out a site investigation in order to obtain information on the geotechnical and chemical composition of the underlying soils at LondonWaste Ecopark, Edmonton, North London. An initial phase of site investigation was completed by May Gurney Limited (Report Ref: SI1688_Rev01). This second phase of intrusive works is to provided supplementary information and further information on the Lambeth Group below the site.

The specification for the site investigation was completed by AMEC and details the full scope of works. GTS were appointed as Ground Investigation Contractor for the intrusive investigation.

The site investigation comprised four cable percussion boreholes with gas and groundwater monitoring standpipes. In addition, geotechnical laboratory testing was also completed on recovered samples. The fieldwork was carried out between the 5th and 13th December 2011.

This report contains a record of the fieldwork conducted, strata encountered and laboratory test results.

#### 1.2 Objectives

The objectives of the ground investigation are to provide an assessment of the geological, hydrological and chemical condition underlying the site.

#### 1.3 Scope

The scope of works for this ground investigation comprises:

- An supplementary ground investigation comprising cable percussion boreholes and monitoring standpipes.
- A series of geotechnical laboratory testing.
- A factual report detailing the site works undertaken, findings of the ground investigation and geotechnical laboratory test results.

#### **Section 2: Site Details**

#### 2.1 Location and Description

The site is situated west of the River Lee Navigation and bordered to the south by the North Circular Road, in Edmonton within the London Borough of Enfield.

At the time of the intrusive investigation the site comprised a municipal waste incinerator and waste-to-energy power station which burns London's waste to provide electricity for the National Grid. The site was divided into various waste sorting locations, with numerous associated buildings to sort and contain waste. A composting facility was also present within the waste facility.

The site is centred on National Grid Reference 535750 192650, as shown on the site location plan presented within Appendix D.

#### 2.2 Geology

The available information¹ indicates the solid geology underlying the site is the London Clay Formation, of the Eocene period. The London Clay Formation comprises grey, weathering to brown fine sandy silty CLAY and clayey SILT. The sequence becomes increasingly sandy towards the base, with occasional glauconitic sands.

Underlying the London Clay Formation is the Lambeth Group, which is made up of the Reading, Woolwich and Upnor Formations. The Reading Formation includes the Upper Mottled Clay and the Lower Mottled Clay; the Woolwich Formation includes the Upper Shelly Clay, the Laminated Beds, the 'Striped Loams' and the Lower Shelly Clay; the Upnor Formation includes the Pebble Bed.

This solid geology is masked by drift deposits of the Kempton Park Gravels which generally comprise sand and gravel, locally with lenses of clay, silt and peat. The post diversionary Thames deposit is generally 5-6m thick, however locally can be encountered deeper due to infilling of deep hollows.

Overlying the Kempton Park Gravels at the site, Alluvium is indicated associated with the River Lea and small tributaries of the River Lea.

Page 4 GTS-11-055



#### **Section 2: Site Details**

## 2.3 Hydrology

The River Lea Navigation, which is canalised, forms part of the eastern boundary of the site flowing southwards. Within this area the River Lea is extensively managed and consequently the river does not follow its natural course. This main River Lea is tidal however due to canalisation in this area the River Lea Navigation is not influenced by tidal water fluctuations.

A tributary of the River Lea, identified as Salmons Brook, forms part of the western boundary of the site.

#### 2.4 Hydrogeology

The Hydrogeology of the site is likely to be characterised by the Kempton Park Gravels, which is a Secondary A Aquifer. A secondary A Aquifer contains permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

The underlying solid geology of the London Clay Formation is designated as unproductive strata and acts as an aquiclude to the underlying Lambeth Group.

The hydrology of the Lambeth Group is dependant on the substrata but is also classified as a Secondary A Aquifer.

At depth below the site, the Upper Chalk Formation is designated a principle aquifer. A principle aquifer has high intergranular and/or fracture permeability - meaning that they usually provide a high level of water storage. These may support water supply and/or river base flow on a strategic scale.

The site is also situated within a Source Protection Zone One (SPZ1), inner zone protection defined as a 50 day travel time from any point below the water table to the source.

GTS-11-055 Page 5



#### **Section 3: Fieldwork**

#### 3.1 Scope of Works

The scope of the field work was specified by AMEC and was undertaken in general accordance with Eurocode 7 Part 2², The Steering Group Specification (1993)⁶ and where there is no conflict BS 5930:1999⁷. The soil descriptions used in the exploratory hole records are in broad accordance with the relevant European Standards^{3&4} and Section Six of BS 5930: 1999⁷.

The prevailing ground conditions were determined by:

Hole Type	Quantity
Cable Percussion Borehole	4

The exploratory hole locations were set out by AMEC as indicated on the exploratory hole location plan presented in Appendix E.

Before commencement of drilling and excavation all the exploratory hole positions were scanned using a cable avoidance tool (CAT). Within all exploratory hole locations a 1.20m deep hand excavated trail pit was completed to check for the presence of any near surface services that may have been damaged by the investigation.

#### 3.2 **Environmental Sampling**

A selection of environmental samples were taken from the exploratory holes to allow chemical testing to be completed. All environmental samples were obtained by an experienced environmental engineer form AMEC. The environmental samples were placed in both plastic and glass containers and stored in cool boxes for transit.

Samples were collected from site on a daily basis and placed into laboratory storage. Prior to scheduling, all samples were maintained at temperatures below 5 degrees Celsius within a refrigerator.

The sample frequencies and depths were determined by AMEC.

#### 3.3 Geotechnical Sampling

Geotechnical samples were obtained from the boreholes and trial pits. The following sample classes and categories were obtained in accordance with BS EN 1997-2².

Sample Type	Category	Class
Disturbed (D)	С	5
Bulk (B)	С	5
Disturbed (D) Split Spoon	В	3-5
Undisturbed Thin wall (UT)	Α	1-2
Undisturbed (U)	В	3-5

#### 3.3 Cable Percussion Boreholes

Four cable percussion boreholes (BH201 to BH204) were sunk to depths of up to 26.55mbgl, utilising a Dando 2000 Rig.

The bores were supported, where necessary, by the use of 250mm, 200mm and 150mm diameter temporary steel casing. The boreholes were drilled between the 5th and 13th December 2011.

The recovered strata were recorded by and disturbed samples taken during boring, as an aid to the production of borehole logs. The engineer verified logs are contained within Appendix A, and are based upon the results of in-situ testing, laboratory test results and the descriptions of recovered samples. All onsite logging was completed by AMEC.

In-situ standard penetration tests (SPTs) were carried out at regular intervals as a guide to the relative density/consistency of the soils encountered. The trip hammers utilised is calibrated in accordance with BS EN ISO 22476-3 (2005). The calibration certificates are presented in Appendix F and a graphic presentation of obtained SPT N values vs. depth is presented in Appendix B.

Page 6 GTS-11-055



#### **Section 3: Fieldwork**

Following completion of logging and sampling, all boreholes were installed with gas and groundwater monitoring standpipes.

#### 3.4 Instrumentation and Monitoring

Full details of the instrumentation installed is presented in Appendix C and also on the exploratory hole records within Appendix A. The purpose of the instrumentations was to establish ground gas concentrations and groundwater levels.

All gas and groundwater monitoring was completed by AMEC and is not included as part of this report.

#### **Section 4: Laboratory Testing**

#### 4.1 Geotechnical Testing

A schedule of geotechnical laboratory testing, prepared by GTS and completed by AMEC, was carried out in accordance with BS1377:1990⁸ as noted below.

- 1 -	<b>D</b> (		N 67 4
Test Type	Part	Method	No. of Tests
Moisture Content	2	3	24
Liquid Limit	2	4	11
Plastic Limit and Plasticity Index	2	5	11
Particle Size Distribution (Dry Sieve)	2	9.3	3
Particle Size Distribution (Wet Sieve)	2	9.2	5
Particle Size Distribution (Sedimentation)	2	9.4	3
Multi Stage Unconsolidated Undrained Triaxial	7	9	13
Triaxial Permeability	6	6	4

Seven soil and three water samples were also tested for pH, Water Soluble Sulphate, Magnesium, Chloride and Nitrate to aid concrete design.

The geotechnical laboratory results are presented in Appendix E.

At the time of writing this report the four Triaxial Permeability tests are not completed. The permeability results will be issued as an addendum once testing is complete.

## 4.2 <u>Chemical Testing</u>

A detailed chemical testing regime was completed by AMEC on the environmental samples obtained during the investigation. The results from the chemical testing are not presented within this report.

GTS-11-055 Page 7



#### **Section 5: Ground Conditions**

#### 5.1 **Summary of Ground Conditions**

Reference should be made to the Appended exploratory hole records for full details of the strata encountered by this investigation. However, this supplementary site investigation has generally confirmed ground conditions encountered in the initial phase of works. A brief summary of the ground conditions from this supplementary phase of works is discussed below.

Made Ground was encountered at all exploratory hole locations to depths between 2.00m and 2.60mbgl. The Made Ground comprised mixed granular and cohesive layers and contained brick, concrete, flint, pottery, wood, metal, ash, quartzite, clinker. Occasional brick and concrete cobbles were noted.

Underlying the Made Ground, a thin layer of Alluvium was encountered in the vast majority of locations, which was subsequently underlain by the Kempton Park Gravel.

The Kempton Park Gravel was encountered from depths of between 2.80m and 4.40mbgl to a maximum depth of 7.30mbgl. This stratum comprised various layers of silty gravelly SAND, silty SAND and GRAVEL and silty sandy GRAVEL.

The solid geology of the London Clay Formation was encountered underlying the Kempton Park Gravel and was proven to a maximum depth of 23.10mbgl. The London Clay Formation comprised firm to very stiff, medium to very hight strength CLAY, locally silty and with occasional fine sand partings.

Below the London Clay Formation the Lambeth Group was encountered from depths of between 11.30m and 23.10mbgl to a maximum depth of 26.55mbgl. The Lambeth Group comprised various layer of dense silty fine and medium SAND and silty sandy CLAY. Occasional shell fragments and black pebbles were encountered locally.

#### 5.2 Groundwater Conditions

Reference should be made to the appended exploratory hole records for details of the groundwater encountered during the investigation.

Equilibrium groundwater levels are rarely obtained during drilling, therefore reference should be made to AMEC's monitoring results (not presented within this report) to obtain full information on the groundwater conditions.

Page 8 GTS-11-055



#### **Section 6: References**

- 1. British Geological Survey England and Wales, 1:50,000, Sheet 161, Norwich, (Solid & Drift Edition).
- 2. BS EN 1997-2 (2007): Eurocode 7 Geotechnical Design Part 2: Ground Investigation and testing.
- 3. BS EN ISO 14688-1: (2002):Geotechnical Investigation and Testing Identification and Classification of Soil Part 1: Identification and Description.
- 4. BS EN ISO 14688-2: (2004):Geotechnical Investigation and Testing Identification and Classification of Soil Part 2: Principles for a classification.
- 5. BS EN ISO 14688-3: (2005):Geotechnical Investigation and Testing Field Testing Part 3: Standard Penetration Test
- 6. Specification for ground Investigation, Site Investigation Steering Group (1993).
- 7. BS5930: (1999) Site Investigation Code of Practice, British Standards Institution.
- 8. BS1377: (1990) British Standard methods of test for Soils for Civil Engineering purposes, Insitu tests, British Standards Institution.
- 9. BOYLE, R and WITHERINGTON, P (2006). Guidance on evaluation on development proposals on sites where methane and carbon dioxide are present, incorporating 'traffic lights'. National House Building Council (NHBC).
- 10. Wilson S. et al (2006). Assessing Risks Posed by Hazardous Ground Gases to Buildings, CIRIA Project Report No C659.
- 11. BRE 1 (2005). Concrete in Aggressive Ground. Building Research Establishment Special Digest 1.
- 12. EDMONDS, C.N. (1987). The engineering geomorphology of Karst development and the prediction of subsidence risk upon the chalk outcrop of England. PhD thesis, University of London.
- 13. NHBC (1999). National House Building Council Standards, Chapter 4.2, Building near Trees.
- 14. LORD, J.A. et al. (1994). Foundations in Chalk, CIRIA Project Report No 11.
- 15. CLEA Using Soil Guideline Values (2009). The Environment Agency.
- 16. CLEA Human Health toxicological assessment of contaminants in soil (The TOX Guidance Report). The Environment Agency (2009).
- 17. CLEA Technical notes, Toxicological Reports & Supplementary information on available Soil Guideline Values (2009). The Environment Agency.
- 18. The CLEA report (2009). The Environment Agency. Updated technical Background to the CLEA model.
- 19. Contaminated Land Report 11 (CLR11) (2009). The Environment Agency. Model Procedures for the Management of Land Contamination.
- 20. CLEA Software Version 1.06 (2009) and Software Handbook.
- 21. BS10175: (2001) Investigation of Potentially Contaminated Sites Code of Practice

GTS-11-055 Page 9



#### **Section 7: References**

- 22. RD20 (1999). The Environment Agency. Methodology for the Derivation of Remedial Targets for Soil and Groundwater to Protect Water Resources.
- 23. USEPA (1994). Technical Background Document for Soil Screening Guidance.
- 24. Water Supply (Water Quality) Regulations (2000).
- 25. EQS (2008). UK Technical Advisory Group on the Water Framework Directive (WFD). Proposals for Environmental Quality Standards (EQS) for Annex VIII substances.
- 26. EQS (2004). Department for Environment, Food and Rural Affairs (DEFRA) and The Environment Agency. Environmental Quality Standards.
- 27. Interim Advise Notice 73/06. Design Guidance for Road Pavement Foundations (2006)
- 28. The LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd Edn), 2009
- 29. BS7430: (1998) Code of Practice for Earthing, British Standards Institution.
- 30. Butcher A.P et al (1996) Dynamic Probing and its uses in clay soils. Advances in site investigation practices.
- 31. Cearns, P.J and McKenzie, A (1988) Application of dynamic cone penetrometer test in East Anglia, Thomas Telford, London

Page 10 GTS-11-055



#### **Document Control**

Project ID: GTS-11-055

Site: Phase 2 - Edmonton Ecopark

Client: AMEC Environment and Infrastructure UK Limited.

AMan

Date: January 2012

Report Written by:
P LEWIN BSc

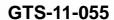
Geotechnical Engineer

Checked and Authorised for issue: B ARMSTRONG BSc MSc FGS Site Investigation Manager

## **GENERAL CONDITIONS / LIMITATIONS RELATING TO SITE INVESTIGATIONS**

The recommendations of this report are based on the findings of a series of exploratory carried out at specified locations across the site. It is possible that conditions exist other than those encountered and therefore no guarantee can be given as to the extent to which the findings are representative.

Edrustrong,


It should be noted that groundwater conditions fluctuate according to seasonal and other factors, which cannot be predicted with certainty. In low permeability soils equilibrium ground water levels are rarely established during the period of fieldwork.

All recommendations made are subject to any relevant statutory regulations in force concerning design methods and safe construction practice. In addition unless specifically stated no account has been taken of possible subsidence due to mineral extraction.

This report is for the sole and specific use of the client and Ground Technology Services Limited and shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared and provided. Should the client require to pass copies of the report to other parties for information, the whole report should be so copied, but no professional liability or warranty shall be extended to other parties by Ground Technology Services Limited in this connection without written consent.

The copyright of this report and other plans and documents prepared by Ground Technology Services Limited are owned by them.

GTS-11-055 Page 11



Phase 2
Edmonton Ecopark







# **Summary of Exporatory Holes**



Site: Phase 2 - Edmonton Ecopark	Job No:	GTS-11-055
Client AMEC Environment and Infrastructure UK Limited		
Engineer n/a		

Hole ID	Hole Type*	Ground Level (mAOD)	Eastings	Northings	Completion Depth of Hole (m)	Completion Depth of Hole (mAOD)
BH201	СР	11.56	535623.42	192943.24	22.95	-11.39
BH202	СР	11.30	535910.87	192847.27	20.95	-9.65
BH203	СР	11.63	535866.22	192635.63	26.55	-14.92
BH204	СР	12.11	535775.06	192398.46	14.95	-2.84

^{*}CP=Cable Percussion, TP=Trial Pit, WS=Window Sample Borehole



## **Key to Site Investigation Records**

Project: Phase 2 – Edmonton Ecopark

Project I.D.: GTS-11-055

Client: AMEC Environment and Infrastructure UK Limited

#### In Situ Testing & Observations

PID Photo Ionisation Detection test, reported in ppm.

S or C Standard Penetration Test as BS EN 1997-2 (2007) . Uncorrected test result shown on

the log at the relevant depth. S – split spoon or C – solid cone.

HV Hand vane test, shear strength reported in kPa.

PP Pocket penetrometer test, shear strength reported in kPa.

Groundwater strike

-

Level to which groundwater has risen after the specified time. (Nominal 20 minutes).

#### Sampling

D Small disturbed sample, around 1kg.

B Bulk disturbed sample, around 5kg.

C Core undisturbed sample.

W Water sample.

ES Environmental soil sample, in more than one container if appropriate.

U Undisturbed driven thinwall tube sample. Nominal 100mm diameter and 450mm length in

CP boreholes. The number of blows taken to drive the sample tube the full length is reported on the log sheet at the appropriate depth along with the percentage recovery. The U100 thinwall has an edge taper angle of 5 degrees, area ratio of 14.97 and an internal diameter of 104mm, which complies with BS EN ISO 22475-1 (2006), for a thin

wall open drive sampler.

#### Geological Abbreviations

Dm Structureless CHALK. Matrix supported.
Dc Structureless CHALK. Clast supported.

#### **General Comments**

- 1. Soil samples have been described in accordance with BS EN ISO 14688-2(2002), BS EN ISO 14688-2(2004) and BS5930:2007 'Code of practice for site investigation' Section 6.
- 2. Electronic data provided in relation to this project has been produced using the Association of Geotechnical & Geoenvironmental Specialists (AGS) data transfer format, with specific reference to their publication 'Electronic Transfer of Geotechnical and Geoenvironmental Data Edition 3.1, 2004 including addendum May 2005'. All legend and backfill codes are as per this document.



## **Borehole Record**

**BH201** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 11.560mAOD Coordinates: 535623.42E

192943.24N

Sheet 1 of 3

								192	943.24N
Description	Legend	Depth	O.D.	Sam	ole Test	SPT/	CPT	Remarks and	
Description	Legenu	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	Test Results PID SPT/HV/PP (Recovery) (ppm	Installations
MADE GROUND: MACADAM		0.15	11.41	D1	0.10-0.20		` '		= 3 6
MADE GROUND: CONCRETE		0.35	11.21 11.06	D2 ES1	0.35-0.45 0.50-2.60				
MADE GROUND: Red-brown sandy angular to sub-angula fine to coarse GRAVEL of granite and limestone.		0.70	10.86	D3 B4 D5	0.50-0.60 0.50-0.70 0.70-0.80				
MADE GROUND: Soft-firm grey-brown sandy gravelly CLAY. Gravel is sub-angular to rounded fine to coarse of flint, concrete, brick and mixed lithologies.		\ \ \ \ \ \ \ \		B6 S D7 B8	0.70-1.20 1.50-1.95 1.50-1.95 1.50-1.90	0.00		N=28 (2,4/6,6,6,10)	
MADE GROUND: Medium dense orange/brown silty very sandy GRAVEL. Gravel is sub-angular to sub-rounded fine to coarse of flint and mixed lithologies.  Occasional brick and concrete fragments.		2.40	9.66 9.16	B9 S	2.50-2.95	2.50	(2.30)	N=4 (1,1/1,1,1,1)	-
MADE GROUND: Very soft brown/green gravelly CLAY. Gravel is sub-angular to sub-rounded fine to coarse of mixed lithologies with brick and concrete.	×	2.70	8.86	D10 B11	2.50-2.95 2.50-3.00				
Very soft grey/green gravelly CLAY with occasional silt pockets. Gravel is sub-angular to sub-rounded fine to coarse of mixed lithologies. [ALLUVIUM]	×	4.00	7.56	U12 ES2 W22 D13	3.50-3.95 3.70-3.80 3.70 3.95-4.00			8 blows	
Very soft low strength blue/brown mottled silty CLAY with rootlets. [ALLUVIUM]	. × . × .	4.30	7.26	D14	4.00-4.10				
Grey slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to sub-angular fine and medium flint. [KEMPTON PARK GRAVEL]		<del></del>		C B15	4.50-4.95 4.50-5.00	4.50	(3.70)	N=4 (2,4/1,1,1,1)	
Loose grey slightly silty very sandy angular to sub-rounded fine to coarse flint GRAVEL. [KEMPTON PARK GRAVEL]				C B16	5.50-5.95 5.50-6.00	5.50	(3.80)	N=9 (2,2/2,2,3,2)	
Soft grey sandy gravelly CLAY. Gravel is sub-angular to sub-rounded fine to coarse of flint. [KEMPTON PARK GRAVEL]		6.40 6.50	5.16 5.06	D17 S B18	6.40-6.50 6.50-6.95 6.50-7.00	6.50	(3.60)	N=22 (2,2/5,5,5,7)	
Medium dense grey slightly silty sandy sub-angular to sub-rounded GRAVEL of flint. Becoming less sandy below 7.30m. [KEMPTON PARK GRAVEL]		7.30	4.26	D21 U19	7.30-7.40 7.50-7.95			40 blows	
Firm high strength grey CLAY. [LONDON CLAY FORMATION]				D20	7.95-8.00				
				D23 B24	8.50-8.95 8.50-9.00				
Parkets well-and				U25	9.50				-
Borehole continued		-		D26	9.95-10.00				-
				\	Nater Lev	el Obs	ervatio	ons	

								= 0.0.	0 0 0 0 1 1 0 1 1 0		
Hole Diameter Detai			Chiseling Details			Water	Standing	Standing	Casing	Depth	
Diameter	Depth	Casing	From	To	Time	Date					
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250	2.50	2.50				07/12/11	4.00	10	3.85	3.00	
200	8.00	7.50				07/12/11	4.00	20	3.70	3.00	
150	22.50	9.00				12/12/11	19.50	10	19.20	9.00	
						12/12/11	19.50	20	19.00	9.00	

Dates:

07/12/2011-12/12/2011

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: AMEC (E&I) UK LIMITED

Checked By: P. Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. 63mm HDPE Standpipe in stalled to 20.50mbgl. Hole finished with gas tap

and flush cover. Pipe installed with geosock.

3. Bentonite environmental seal placed at 2.50mbgl at reduction from 250mm

5. Bentonite environmental sear placed at 2.50mbgr at reduction from 250mm to 200mm diameter drilling tools.
4. Bentonite grout seal added at 8.00mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.
5. Trip Hammer ID=MG1

# **GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

## **Borehole Record**

**BH201** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 11.560mAOD Coordinates: 535623.42E

192943.24N

Sheet 2 of 3

							1	192943.24N
Description	Legend	Depth	O.D.	Sam	ple Test	SPT/CPT		
Description	Legend	Depth (m)	Level (m)	Туре	Depth (m)	Casing Water Depth Depth (m) (m)	Test Results  SPT/HV/PP (Recovery)	_{PID} Installations
Firm high strength grey CLAY. [LONDON CLAY		-	(111)		(m)	(m) (m)	SPT/HV/PP (Recovery)	(ppm)
FORMATION]		‡						=
		ŧ						
		}						
		-		D27 B28	11.00-11.45 11.00-11.50			
		E		520				3
		<u> </u>						
		F						
	-=-=	Ē						
		ŧ		1100	40.50			
		Ī		U29	12.50			
	<u> </u>	Ł		W35 D30	12.80 12.95-13.00			
	-	-						
		<u> </u>						3
		ŧ						
		<u> </u>		D31	14.00-14.45			
		ŧ		B32	14.00-14.50			
		ŧ						
		F						
	-=-=	F						
		ŧ						
		F		U33	15.50			
	-=-	Ē		504	45.05.40.00			
Stiff grey/brown slightly silty CLAY. [LONDON CLAY	×	16.00	-4.44	D34	15.95-16.00			-
FORMATION]		-						3
		ŧ						
	××	*			4= 00 4= 45			
	××	×		S B36	17.00-17.45 17.00-17.50 17.00-17.45	9.00	N=31 (3,4/6,7,9,9)	
	x	*		D37	17.00-17.45			
		-						
	××	E						<u> </u>
	××	+						
		£		U38	18.50-18.95		36 blows	
		Ė						
		<u></u>		D39	18.95-19.00			
Very stiff dark green/brown sandy SILT with	×××××	19.20	-7.64	D40	19.20-19.30			
occasional shell fragments. [LAMBETH GROUP]	$(X \times X \times X)$	F						
Borehole continued	$\times \times $	}						
Borehole continued	VVVV	<i>x</i>					1	

								Water Lever	Oboci vationo		
Hole Diameter Detail C			Ch	iseling D	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.50 8.00 22.50	2.50 7.50 9.00				07/12/11 07/12/11 12/12/11 12/12/11	4.00 4.00 19.50 19.50	10 20 10 20	3.85 3.70 19.20 19.00	3.00 3.00 9.00 9.00	

Dates:

07/12/2011-12/12/2011

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: AMEC (E&I) UK LIMITED

Checked By: P. Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. 63mm HDPE Standpipe installed to 20.50mbgl. Hole finished with gas tap

Water Level Observations

and flush cover. Pipe installed with geosock.

3. Bentonite environmental seal placed at 2.50mbgl at reduction from 250mm 5. Bentonite environmental sear placed at 2.50mbgr at reduction from 250mm to 200mm diameter drilling tools.
4. Bentonite grout seal added at 8.00mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.
5. Trip Hammer ID=MG1



## **Borehole Record**

**BH201** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 11.560mAOD Coordinates: 535623.42E

192943.24N

Sheet 3 of 3

							132	373.27IN
Description	Legend	Depth (m)	O.D. Level (m)		ple Test Depth (m)		T Remarks and Test Results  PID SPT/HV/PP (Recovery) (ppm	Installations
Very stiff dark green/brown sandy SILT with occasional shell fragments. [LAMBETH GROUP]	× × × × × × × × × × × × × × × × × × ×	×	, ,		20.00-20.39 20.00-20.50 20.00-20.39	1 9 00 (19	90) 50 (4,7/10,11,17,12 for 15mn	
Stiff medium strength dark grey sandy gravelly CLAY with occasional shell fragments. Gravel is sub-rounded fine to medium black pebbles. [LAMBETH		20.70	-9.14	D43 B44	20.70-20.80 21.00-21.50			
GROUP]		21.80	-10.24		21.50-21.95		100 blows	
Very stiff red/grey mottled sandy SILT. [LAMBETH GROUP]	× × × × × × × × × × × ×	ŧ		B47	21.95-22.00 22.00-22.50			
Borehole Complete at 22.95 m		22.50	-10.94	S D78	22.50-22.95 22.50-22.95	9.00 (12	80) N=46 (3,5/8,9,12,17)	
								-
		- -						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		<u>-</u>						
		-						
		<u>-</u>						
		-						
		-						
		Ē						
		<u>-</u>						
		E						
	1		1	l	Water Lev	rel Observ	ations	

								VValci LCVCi	Obsci valions		
Hole	Hole Diameter Detail			iseling [	etails		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.50 8.00 22.50	2.50 7.50 9.00				07/12/11 07/12/11 12/12/11 12/12/11	4.00 4.00 19.50 19.50	10 20 10 20	3.85 3.70 19.20 19.00	3.00 3.00 9.00 9.00	

Dates:

07/12/2011-12/12/2011

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: AMEC (E&I) UK LIMITED

Checked By: P. Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. 63mm HDPE Standpipe installed to 20.50mbgl. Hole finished with gas tap and flush cover. Pipe installed with geosock.
3. Bentonite environmental seal placed at 2.50mbgl at reduction from 250mm

5. Bentonite environmental sear placed at 2.50mbgr at reduction from 250mm to 200mm diameter drilling tools.
4. Bentonite grout seal added at 8.00mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.
5. Trip Hammer ID=MG1

# **GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

## **Borehole Record**

**BH202** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 11.300mAOD Coordinates: 535910.87E

192847.27N

Sheet 1 of 3

Description		Depth	O.D.	Sam	ple Test	SPT/	CPT	Remarks and		
Description	Legend	(m)	Level (m)		Depth (m)	Casing Depth (m)	Water Depth (m)	Test Results SPT/HV/PP (Recovery)	PID	Installations
MADE GROUND: MACADAM		0.25	11.05	B1	0.25-0.50					
MADE GROUND: Grey/pink very sandy, angular, coarse GRAVEL of limestone. (HARDCORE)		0.25	10.80	D2 ES1 D3	0.30-0.40 0.50-0.60 0.50-0.60					
MADE GROUND: Dense yellow/brown very sandy sub-rounded medium GRAVEL. (HARDCORE)		<u> </u>		B4 S	0.50-1.00 1.20-1.65	0.00		N=52 (3,4/4,16,12,20)		= 0.6 ° 0.3 =
		\{\frac{1}{2}}		B5	1.20-1.65					-
Soft brown/grey slightly sandy silty organic CLAY. [ALLUVIUM]	alic alic	2.00	9.30	S D6 B7	2.00-2.45 2.00-2.45 2.00-2.45	1.80	(1.90)	N=6 (5,8/2,1,1,2)		
Medium dense grey slightly silty very gravelly fine	3/16 3/16 3/16 × 4/2 3×17 × ×	2.80	8.50	B8 S	2.80-3.45 3.00-3.45	3.00		N=15 (3,3/3,3,4,5)		
to coarse SAND. Gravel is sub-rounded to angular fine to coarse of flint. [KEMPTON PARK GRAVEL]	X, X, X X, X, X, X X, X, X, X			D9	3.00-3.45	3.00		14-10 (0,0/0,0,4,0)		
	*, * * * *, * * *			ES2 S	3.80-4.00 4.00-4.45	4.00	(3.60)	N=15 (2,3/3,4,4,4)		-
	^;;	-		D10 B11	4.00-4.45 4.00-4.45					
From 5.00m loose.				S D12 B13	5.00-5.45 5.00-5.45 5.00-5.45	5.00	(3.60)	N=9 (1,2/2,3,2,2)		
Firm to stiff medium strength grey CLAY with local laminations. [LONDON CLAY FORMATION]	0. × x.^. 	5.80	5.50	U14	5.90-6.35			26 blows		-
		-		D15	6.35-6.50					
		-		S B16 D17	7.00-7.45 7.00-7.45 7.00-7.45	7.00		N=18 (3,4/5,4,4,5)		
		<u>-</u>		U18	8.00			36 blows		- - -
		Ė		D19	8.45-8.55					-
		-		S D20 B21	9.00-9.45 9.00-9.45 9.00-9.45	7.30		N=20 (2,3/4,5,5,6)		
Borehole continued		-								_ _ _

Diameter (mm)

250 200 150

08/12/2011-12/12/2011

From (m)

Chiseling Details

Time (hours)

Plant:

Dando 2000

Drilled By:

A. Elshof

Casing Depth (m)

2.00 7.50

Logged By: AMEC (E&I) UK LIMITED

Checked By: P. Lewin

Hole Diameter Detail

Depth (m)

2.00 6.50 20.50

08/12/11 08/12/11 12/12/11

Date

Water

Strike (m)

3.20 3.20 17.50

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. 63mm HDPE Standpipe installed to 20.50mbgl. Hole finished with gas tap

Water Level Observations

Standing

Level (m)

2.90 2.60 17.20

Standing

Time (mins)

10 20 20

Casing

Depth (m)

3.20 3.20

Depth

Sealed (m)

6.00 6.00

and flush cover. Pipe installed with geosock.

3. Bentonite environmental seal placed at 2.00mbgl at reduction from 250mm bettornine environmental sear placed at 2.00mbgl at reduction from 250mm to 200mm diameter drilling tools.

 Bentonite grout seal added at 6.50mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.

 Trip Hammer ID=MG2

## **GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH202** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 11.300mAOD Coordinates: 535910.87E

192847.27N

Sheet 2 of 3

December		Denth	O.D.	Sam	ple Test	SPT/CPT		emarks and		
Description	Legend	(m)	LEVE	Туре		Casing Water Depth Depth (m) (m)	Te	est Results	PID	Installation
			(m)	••	(m)	(m) (m)	SPT/H\	//PP (Recovery)	(ppm)	100
Firm to stiff high strength grey CLAY with local	<u> </u>	_ 10.00	1.30	U22	10.00		29 blov	VS		=
laminations. [LONDON CLAY FORMATION]				D23	10.45-10.55					
		_								
										-
					11 50 11 05	7.00	N-00 /	0.4/5.6.6.6\		_
				S D24	11.50-11.95 11.50-11.95	7.30	N=23 (	2,4/5,6,6,6)		=
		Ξ		B25	11.50-11.95					-
										_
										_
		=		U26	13.00		42 blov	VS		-
				D07	40.45.40.55					
				D27	13.45-13.55					_
		_								_
				S D28	14.50-14.95 14.50-14.95	7.30	N=25 (	3,5/6,5,7,7)		
				B29	14.50-14.95					
										-
										_
From 16.00mbgl rare fine and medium sand lenses/				U30	16.00-16.45		36 blov	vs		
1 10111 10.0011bgi fare line and medium sand lenses										<b>=</b>
Stiff grey/brown silty CLAY with occasional shells.	_ ^ _ ×	16.50	-5.20	D31	16.45-16.55					3
[LAMBETH GROUP]		-								
•	××	_								
	××	=								
				S	17.50-17.95	7.50 (17.20	N=21 (	3,4/5,5,5,6)		
	××_			D32 B33	17.50-17.95 17.50-17.95					
Stiff grey sandy SILT. [LAMBETH GROUP]	×××××	_17.90	-6.60							
	* × × × ×	-								
	11 V V V V V	18.60	-7.30							3.00
Stiff grey finely laminated silty CLAY. [LAMBETH	×_^_×	10.00	-7.30							3.00
GROUP]	xx	_		U34	19.00		21 blov	vs		二: * :
										] :: ]
	××									
	××									3::1
Borehole continued	x	-								
					Water Lev	el Observati	ons			
Hole Diameter Detail Chiseling Details	Date		Water		Standing	Standi	- 1	Casing		Depth
Diameter Depth Casing From To Time (mm) (m) Depth (m) (m) (m) (hours)	Date		Strike (	m)	Time (mins)	Level (	m)	Depth (m)		Sealed (m)

Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.00 6.50 20.50	2.00 7.50				08/12/11 08/12/11 12/12/11	3.20 3.20 17.50	10 20 20	2.90 2.60 17.20	3.20 3.20 -	6.00 6.00

Dates:

08/12/2011-12/12/2011

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: AMEC (E&I) UK LIMITED

Checked By: P. Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. 63mm HDPE Standpipe installed to 20.50mbgl. Hole finished with gas tap

and flush cover. Pipe installed with geosock.

3. Bentonite environmental seal placed at 2.00mbgl at reduction from 250mm 5. Bentonite environmental sear placed at 2.00mbgr at reduction from 250mm to 200mm diameter drilling tools.
4. Bentonite grout seal added at 6.50mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.
5. Trip Hammer ID=MG2



### **Borehole Record**

**BH202** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 11.300mAOD Coordinates: 535910.87E

192847 27N

Sheet 3 of 3

									1928	347.27N
Description	Logond	Depth	O.D.	Sam	ple Test	SPT		T D		
Description	Legend	(m)	Level	Туре	Depth (m)	Casing Depth	Water Depth	Test Results SPT/HV/PP (Recovery)	PID	Installations
Stiff grey finely laminated silty CLAY. [LAMBETH GROUP]	×x x x	*	(111)		20.50-20.95 20.50-20.95			N=46 (7,8/9,10,13,14)		
Borehole Complete at 20.95 m		-20.95	-9.65	S D35	20.50-20.95	7.50	(18.50	N=46 (7,8/9,10,13,14)		
	+	<u> </u>			\Motor Lo	ral Ob :	on :=/*			
Hata Bis and a Butalla Chinalina Butalla	<del></del>				Water Lev	el Obs	ervati	ons		

Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter	Depth	Casing	From	To	Time	Date			] 3		- 1 - 1
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.00 6.50 20.50	2.00 7.50				08/12/11 08/12/11 12/12/11	3.20 3.20 17.50	10 20 20	2.90 2.60 17.20	3.20 3.20 -	6.00 6.00

Dates:

08/12/2011-12/12/2011

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: AMEC (E&I) UK LIMITED

Checked By: P. Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. 63mm HDPE Standpipe in stalled to 20.50mbgl. Hole finished with gas tap

and flush cover. Pipe installed with geosock.

3. Bentonite environmental seal placed at 2.00mbgl at reduction from 250mm 5. Bentonite environmental sear placed at 2.00mbgr at reduction from 250mm to 200mm diameter drilling tools.
4. Bentonite grout seal added at 6.50mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.
5. Trip Hammer ID=MG2



### **Borehole Record**

**BH203** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 11.630mAOD Coordinates: 535866.22E

192635.63N

Sheet 1 of 3

								I	92033.03IN
Description	Legend	Depth			ple Test	SPT/	_	Remarks and Test Results	
	2090	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	SPT/HV/PP (Recovery) (F	PID Installations
MADE GROUND: Soft brown slightly sandy slightly gravelly CLAY with rootlets. Gravel is sub-angular to rounded fine to medium of mixed lithologies.		0.15	11.48 11.23	D1 B2 D3 B4 D5	0.00-0.10 0.00-0.15 0.15-0.20 0.15-0.40 0.40-0.50				
MADE GROUND: Brown gravelly SAND. Gravel is sub-angular to sub-rounded fine to coarse of brick, concrete and mixed lithologies.		0.80	10.83 10.63	B6 ES1 D7 B8	0.40-0.80 0.80-1.00 0.80-0.90 0.80-1.00				
MADE GROUND: Stiff brown sandy, gravelly CLAY. Gravel is sub-angular to sub-rounded, fine to coarse of brick, concrete and mixed lithologies.		1.50	10.13	D9 B10 S D11 D12	0.80-0.90 1.00-1.20 1.50-1.95 1.50-1.55 1.50-1.95	0.00		N=23 (1,2/9,8,4,2)	
MADE GROUND: Dark brown slightly clayey gravelly SAND. Gravel is sub-angular to sub-rounded, fine to coarse of brick, concrete and mixed lithologies.		2.30	9.33	B13 ES2 D14 S	1.50-2.20 1.70-1.80 2.30-2.40 2.50-2.95	0.00		N=4 (1,1/1,1,1,1)	-
MADE GROUND: Dark brown slightly sandy gravelly CLAY. Gravel is sub-angular to sub-rounded, fine to coarse of brick and mixed lithologies with some wood.	×	2.60	9.03	D15 B17	2.50-2.95 2.50-3.00			, , , , , , , , , , , , , , , , , , ,	-
MADE GROUND: Very soft black slightly sandy slightly gravelly CLAY with many large wood fragments and strong hydrocarbon odour. Gravel is sub-angular to sub-rounded fine to coarse of mixed lithologies with rare brick. Occasional lenses of grey/orange finely laminated clay.	× × × × × × × × × × × × × × × × × × ×	3.40	<ul><li>8.23</li><li>7.73</li></ul>	D16 S D18 B19 B20	3.40-3.50 3.50-3.95 3.50-3.95 3.50-3.80 3.90-4.30	3.00		N=23 (2,2/3,6,6,8) N=16 (2,3/3,4,4,5)	
MADE GROUND: Very soft black silty CLAY with rootlets and some brick.				B21	4.50-5.00		(,		=
Very soft brown/grey mottled slightly sandy silty CLAY. [ALLUVIUM]				С	5.50-5.95	5.50	(2.80)	N=10 (2,2/2,2,3,3)	
Grey slightly clayey slightly gravelly very silty SAND. Gravel is angular to sub-angular of shells. [KEMPTON PARK GRAVEL]		<del>                                      </del>		B22	5.50-6.00				
Medium dense grey/brown silty very sandy sub-angular to rounded GRAVEL of flint. [KEMPTON PARK GRAVEL]		المار الماريد		C B23	6.50-6.95 6.50-7.00	6.50	(4.40)	N=14 (2,3/3,3,4,4)	-
Firm to stiff medium strength grey CLAY. [LONDON CLAY FORMATION]		7.30	4.33	D24 U25	7.30-7.40 7.50-7.95			50 blows	
				D26	7.95-8.00				4
				S D28 B29	8.50-8.95 8.50-8.95 8.50-9.00	8.50	(8.30)	N=14 (3,7/3,3,4,4)	
From 9.50mbgl high strength.		-		U30	9.50-9.95			27 blows	-
Borehole continued		F			9.95-10.00				-
					Water Lev	el Obs	ervati	ons	

				Water Level Observations								
Hole	Diamete	er Detail					Water	Standing	Standing	Casing	Depth	
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)	
250 200 150	3.00 7.50 26.10	0.00 7.50 8.50				05/12/11 05/12/11 08/12/11 08/12/11	3.50 3.50 19.10 23.10	10 20 20 10	3.45 3.35 19.10 22.90	3.00 3.00 8.50 8.50		

Dates:

05/12/2011-09/12/2011

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: AMEC (E&I) UK LIMITED

Checked By: P. Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. 63mm HDPE Standpipe in stalled to 20.50mbgl. Hole finished with gas tap

and flush cover. Pipe installed with geosock.

3. Bentonite environmental seal placed at 2.50mbgl at reduction from 250mm

5. Bentonite environmental sear placed at 2.50mbgr at reduction from 250mm to 200mm diameter drilling tools.
4. Bentonite grout seal added at 7.50mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.
5. Trip Hammer ID=MG1

## **GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH203** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 11.630mAOD Coordinates: 535866.22E

192635.63N

Sheet 2 of 3

										1320	000.0014
Description	Legend	Depth (m)	O.D.		ple Test	SPT/		T4	arks and Results		
		(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	SPT/HV/PP	(Recovery)	PID (ppm)	Installations
Firm to stiff medium strength grey CLAY. [LONDON CLAY FORMATION]				S D33	10.80-11.00 11.00-11.45 11.00-11.45 11.00-11.50	8.50	()	N=23 (2,4/4			
				U35	12.50-12.95			22 blows			-
				D36	12.95-13.00						-
				S D38 B39	14.00-14.45 14.00-14.45 14.00-14.50	8.50		N=26 (3,4/	5,6,7,8)		
				U40	15.50-15.95			28 blows			
		±		D41	15.95-16.00						
Firm to stiff high strength brown/grey slightly		17.40	-5.77	S D43 B44 W61	17.00-17.45 17.00-17.45 17.00-17.50 17.00	8.50		N=28 (2,4/5	5,7,8,8)		-
sandy CLAY with rare lenses of white sand. [LONDON CLAY FORMATION]				U45	18.50-18.95			25 blows			
					18.95-19.00			20 5.0.00			<u>-</u>
Borehole continued											=
					Water Lev	el Obs	ervatio	ons			
Hall Brown Bulling Objective Bulling											

Hole	e Diamete	er Detail	Ch	niseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
_ `		-1 \ /	(111)	(111)	(Hours)	05/40/44	( )	- ( -,	( )	-1 ( )	,
250 200	3.00 7.50	0.00 7.50				05/12/11 05/12/11	3.50 3.50	10 20	3.45 3.35	3.00 3.00	
150	26.10	7.50 8.50				08/12/11	19.10	20	19.10	8.50	
100	20.10	0.00				08/12/11	23.10	10	22.90	8.50	

Dates:

05/12/2011-09/12/2011

Plant:

Dando 2000

Drilled By: A. Elshof

Logged By: AMEC (E&I) UK LIMITED

Checked By: P. Lewin

- Remarks: 1. Starter pit dug from GL to 1.20mbgl.
  2. 63mm HDPE Standpipe in stalled to 20.50mbgl. Hole finished with gas tap
  - and flush cover. Pipe installed with geosock.

    3. Bentonite environmental seal placed at 2.50mbgl at reduction from 250mm
  - 5. Bentonite environmental sear placed at 2.50mbgr at reduction from 250mm to 200mm diameter drilling tools.
    4. Bentonite grout seal added at 7.50mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.
    5. Trip Hammer ID=MG1

## **GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH203** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 11.630mAOD Coordinates: 535866.22E

192635.63N

Sheet 3 of 3

Description  Legend   Depth (m)   Legend   Depth (m)	llation
Firm to stiff high strength brown/grey slightly sandy CLAY with rare lenses of white sand. [LONDON CLAY FORMATION]  S 20.00-20.45 D48 20.00-20.50  N=28 (3,4/5,7,8,8)	
U50 21.50-21.95 52 blows	
D51 21.95-22.00	
D51 21.95-22.00	
Stiff dark grey/brown sandy CLAY with shell fragments. [LAMBETH GROUP]  Stiff dark grey/brown sandy CLAY with shell fragments. [LAMBETH GROUP]  50 (4,8/11,17,22)	
S 24.50-24.80 D56 24.50-24.80 B57 24.50-25.00	
Very stiff dark grey/green sandy, gravelly CLAY. Gravel is sub-rounded, fine to medium black package becoming herd below 26 00m // AMPETH	
pebbles. Becoming hard below 26.00m. [LAMBETH GROUP]  S 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-26.55 D60 26.10-	
Solition Continue to the 20.55 miles in the 10.55 m	
Water Level Observations	

						114(6) 2010, 0000, 144(6),0							
Hole	Diamete	r Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth		
Diameter	Depth	Casing	From	To	Time	Date					•		
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)		
250	3.00	0.00				05/12/11	3.50	10	3.45	3.00			
200	7.50	7.50				05/12/11	3.50	20	3.35	3.00			
150	26.10	8.50				08/12/11	19.10	20	19.10	8.50			
						08/12/11	23.10	10	22.90	8.50			

Dates:

05/12/2011-09/12/2011

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: AMEC (E&I) UK LIMITED

Checked By: P. Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. 63mm HDPE Standpipe in stalled to 20.50mbgl. Hole finished with gas tap

and flush cover. Pipe installed with geosock.

3. Bentonite environmental seal placed at 2.50mbgl at reduction from 250mm

5. Bentonite environmental sear placed at 2.50mbgr at reduction from 250mm to 200mm diameter drilling tools.
4. Bentonite grout seal added at 7.50mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.
5. Trip Hammer ID=MG1



### **Borehole Record**

**BH204** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 12.110mAOD Coordinates: 535775.06E

192398.46N

Sheet 1 of 2

								13	2000.7011
		D 41-	0.0	Sami	ple Test	SPT/CI	PT	Remarks and	
Description	Legend	Depth (m)	O.D. Level					Test Results	Installations
	À.	(111)	(m)	Туре		Casing W Depth De	epth	PT/HV/PP (Recovery) (pp	ID IIIStaliations
MADE GROUND: Soft brown sandy gravelly CLAY with rootlets. Gravel is sub-angular to sub-rounded fine to coarse of brick, concrete and mixed lithologies		0.60	11.51	D1 B2 ES1	(m) 0.10-0.20 0.10-0.40 0.60-0.70	(m) (	m)  31	FINIVIFF (Recovery) (μ	= 1
MADE GROUND: Brown slightly clayey gravelly SAND with occasional part bricks. Gravel is sub-angular to sub-rounded fine to medium of brick, concrete,		1.20	10.91	D3 B4 S	0.60-0.70 0.60-1.00 1.20-1.65	0.00	N	<b>√</b> =9 (2,2/2,3,2,2)	
flint and mixed lithologies with rare ceramics.  MADE GROUND: Firm dark brown/black slightly sandy		¥ *		D5 B6	1.20-1.65 1.20-1.65				
gravelly CLAY with some rootlets. Gravel is angular to sub-rounded fine to coarse of brick, concrete, mixed lithologies and some clinker and tarmac.		2.20	9.91	U7 B9	2.00-2.45 2.20-2.90		2	21 blows	=
<u> </u>		2.20	9.91						
Firm grey CLAY with occasional sub-angular, fine gravel of chalk. [POSSIBLE MADE GROUND]				D8	2.45-2.60				
Soft to firm grey CLAY. [ALLUVIUM]		2.90	9.21 8.91	B10 S D11	2.90-3.20 3.00-3.45 3.00-3.45	3.00	N	N=3 (1,-/1,-,1,1)	-
Soft, brown fibrous PEAT. [ALLUVIUM]	alto alto alto to alto alto alto alto alto to alto alto	E		B12	3.20-3.60				
	2016 2016 2016 6 2016 2016 2016 2016 2016	È		U13	4.00-4.45		4	4 blows	
Medium dense grey slightly silty very sandy GRAVEL. Gravel is angular to sub-rounded fine to coarse flint with occasional cobbles. Becoming brown below		4.40	7.71	B15 D14	4.40-5.00 4.45-4.60				
5.20m. [KEMPTON PARK GRAVEL]				S B16	5.00-5.45 5.20-6.00	5.00	N	J=16 (3,3/4,4,4,4)	
				S B17	6.00-6.45 6.00-6.45	6.00 (5	i.90) N	V=27 (3,4/5,6,7,9)	
Firm high strength grey CLAY. [LONDON CLAY FORMATION]		7.10	5.01	S W33	7.00-7.45 7.00	7.00 (6	i.50) N	N=10 (2,1/2,2,3,3)	
		-		U18	8.00-8.45		4	2 blows	-
		-		D19	8.45-8.60				
		+ - - - - - - - - - - - - - - - - - - -		S ES2 D20 B21	9.00-9.45 9.00-9.50 9.00-9.45 9.00-9.45	8.50 (7	7.00) N	N=18 (3,2/4,4,5,5)	
Borehole continued		<u> </u>							=
					Water Lev	el Observ	/atior	าร	

Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.50 7.00 14.50	0.00 7.50 14.50				06/12/11 06/12/11 08/12/11 08/12/11	5.20 5.20 11.50 11.50	10 20 10 20	5.10 5.00 10.90 10.00	5.00 5.00 9.00 9.00	14.50 14.50

Dates:

05/12/2011-08/12/2011

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: AMEC (E&I) UK LIMITED

Checked By: P. Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. 63mm HDPE Standpipe in stalled to 14.50mbgl. Hole finished with gas tap

and flush cover. Pipe installed with geosock.

3. Bentonite environmental seal placed at 2.50mbgl at reduction from 250mm

5. Bentonite environmental sear placed at 2.50mbgr at reduction from 250mm to 200mm diameter drilling tools.
4. Bentonite grout seal added at 7.00mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.
5. Rrip Hammer ID=MG2

## **GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH204** 

Project: Phase 2 - Edmonton Ecopark

Project ID: GTS-11-055

Client: AMEC (E&I) UK LIMITED

Engineer: N/A

Ground Level: 12.110mAOD Coordinates: 535775.06E

192398.46N

Sheet 2 of 2

									1020	750. <del>1</del> 01 <b>1</b>
Description	Legend	Depth (m)	O.D. Level (m)	Sam Type	ple Test Depth (m)	SPT/ Casing Depth (m)		Remarks and Test Results SPT/HV/PP (Recovery)	DID	Installations
Firm high strength grey CLAY. [LONDON CLAY FORMATION]					10.00-10.45			36 blows		<u>\</u>
Firm grey CLAY with occasional shells. [LAMBETH GROUP]  Firm grey/green sandy SILT. [LAMBETH GROUP]	* * * * * * * * * * * * * * * * * * *	11.30	0.81 0.61	S D25 B26	11.30-11.50 11.50-11.95 11.50-11.95 11.50-11.95 11.50-12.00	9.00	(11.20)	) N=49 (4,8/10,15,11,13)		
Very dense grey silty SAND with occasional shells. [LAMBETH GROUP]	×××× ×××× ×××××	12.80	-0.69	S D28	12.80-12.90 13.00-13.45 13.00-13.45	9.00	(10.00)	) N=41 (7,15/12,10,9,10)		
Firm grey silty CLAY with occasional black, rounded pebbles. [LAMBETH GROUP]		13.40	-1.29 -1.49		13.40-13.60 13.60-13.80					
Firm to stiff grey/brown mottled, slightly sandy CLAY. [LAMBETH GROUP]		14.00	-1.89	D31	14.00-14.10					
Stiff grey/blue occasionally laminated CLAY with some black organic staining. [LAMBETH GROUP]  Stiff grey/red/brown, silty, sandy CLAY. [LAMBETH	×	14.50 - - - - -14.95	-2.39 -2.84	S D32	14.50-14.95 14.50-14.95	14.50		N=41 (7,7/7,10,11,13)		
Borehole Complete at 14.95 m										

						Water Level Observations											
Hole	Diamete	er Detail	Ch	iseling D	Details		Water	Standing	Standing	Casing	Depth						
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)						
250 200 150	2.50 7.00 14.50	0.00 7.50 14.50			·	06/12/11 06/12/11 08/12/11 08/12/11	5.20 5.20 11.50 11.50	10 20 10 20	5.10 5.00 10.90 10.00	5.00 5.00 9.00 9.00	14.50 14.50						

Dates:

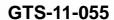
05/12/2011-08/12/2011

Plant:

Dando 2000

Drilled By: A. Elshof

Logged By: AMEC (E&I) UK LIMITED


Checked By: P. Lewin

Remarks: 1. Starter pit dug from GL to 1.20mbgl.
2. 63mm HDPE Standpipe installed to 14.50mbgl. Hole finished with gas tap

and flush cover. Pipe installed with geosock.

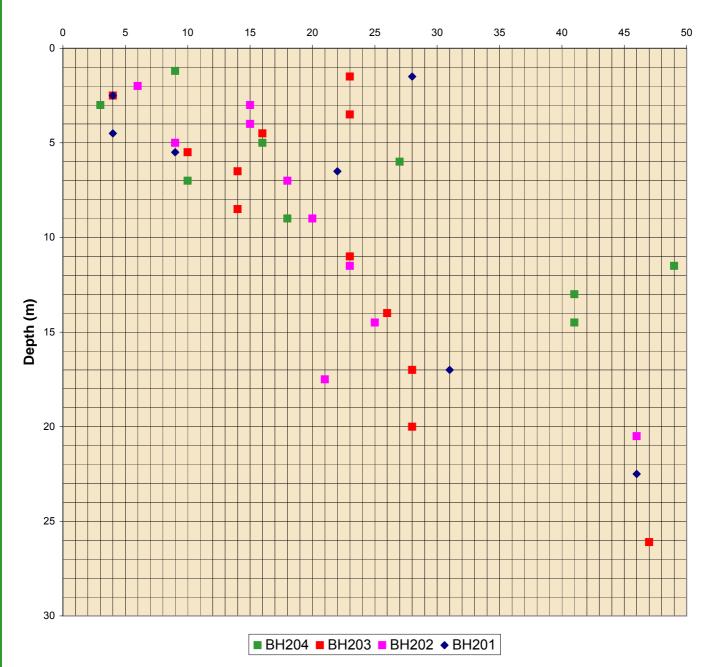
3. Bentonite environmental seal placed at 2.50mbgl at reduction from 250mm

5. Bentonite environmental sear placed at 2.50mbgr at reduction from 250mm to 200mm diameter drilling tools.
4. Bentonite grout seal added at 7.00mbgl at reduction of 200mm to 150mm diameter casing. Grout left to set for >24hrs.
5. Rrip Hammer ID=MG2

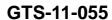


Phase 2
Edmonton Ecopark










### **SPT N value**



Title:	SPT V's Depth		
Project:	Phase 2 - Edmonton Ecopark	Project ID.	GTS-11-055
Client:	AMEC (E&I) UK LIMITED	Date Drawn	21/01/2012

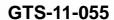











### **Summary of Instrumentation**



Site: Phase 2 - Edmonton Ecopark	Job No: GTS-11-055
Client AMEC Environment and Infrastructure UK Limited	
Engineer n/a	

Hole ID	Installation Type*	Monitoring Point ID	Top of Responze Zone (mbgl)	Bottom of Response Zone (mbgl)	Pipe Diameter (mm)	Ground Level (mAOD)	Top of Response Zone (mAOD)	Bottom of Response Zone (mAOD)	Response Zone Geology
BH201	SP	-	19.50	22.50	63	11.56	-7.94	-10.94	LMBE
BH203	SP	-	23.00	26.10	63	11.63	-11.37	-14.47	LMBE
BH202	SP	-	17.50	20.50	63	11.3	-6.2	-9.2	LMBE
BH204	SP	-	23.00	26.10	63	12.11	-10.89	-13.99	LMBE

^{*}SP=Standpipe, SPIE=Standpipe Piezometer



Phase 2
Edmonton Ecopark







PROJECT NAME

PROJECT NO:

**EDMONTON ECOPARK** Project Number: 29541 GEO / 17722

Date	12/01/2012								
Approved	J Sturges								
Page	1 of 3								

	Sample deta	Sample details				Classification Tests			Density Tes							Ch	emical	Tests		
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)	LL (%)			<425 mic (%)	Bulk (Mg/m³	Dry (Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH201	1.50	9	В	Brown slightly silty sandy GRAVEL																Particle Size Distribution Test
BH201	3.50	12	U	Firm dark brown and black slightly organic CLAY	43					1.70	1.19	35 70 140	59 65 78	34	24	5				Oedometer Consolidation Test
BH201	4.50	15	В	Grey sandy GRAVEL																Particle Size Distribution Test
BH201	6.50	18	В	Grey and brown GRAVEL																Particle Size Distribution Test
BH201	2.50	10	D	Brown, blue-grey and rare black slightly organic slightly sandy CLAY	50	95	38	57	99											
BH201	7.50	19	U	Stiff fissured grey silty CLAY with rare coarse sand and fine to medium gravel	31					2.00	1.52	75	209	105						Sample failed on 1st stage of multistage test
BH201	18.50	38	U	Stiff dark brown silty CLAY																Triaxial Permeability Test
BH201	18.95	39	D	Dark brown silty CLAY	26	71	28	43	100											
BH201	20.00	42	D	Brown silty CLAY	24	47	27	20	100											
BH201	21.50	45	U	Firm Multi coloured silty CLAY with occasional fine to medium flint gravel	27					1.98	1.57	200 400 800	98 101 133	55	40	1.5				
BH202	2.00	7	В	Dark grey sandy silty organic CLAY																Particle Size Distribution Test
BH202	5.90	14	U	Firm dark brown CLAY	33					1.98	1.49	60 120	126 127	63	63	0				Oedometer Consolidation Test. Sample failed on 2nd stage of multistage test

**SUMMARY OF GEOTECHNICAL TESTING** 

**GEOLABS**®

PROJECT NAME

**EDMONTON ECOPARK** Project Number: 29541

PROJECT NO: GEO / 17722

Date	12	/01/20	)12					
Approved	ی ل	J Sturges						
Page	2	of	3	1				

	Sample details				Classification Tests						sity Tests Undrained Triaxial Compression Tests						Chemical Tests			
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)	LL (%)	PL	PI	<425 mic (%)	Bulk (Mg/m³)	Dry	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
NO.	(111)				(70)	(70)	(70)		(70)	(IVIG/III )	(wg/iii )	_ ` ′	, ,	(Ki a)	(Ki a)	()		(9/1)	(9/1)	
BH202	8.00	18	U	Firm fissured dark grey silty CLAY	33					1.92	1.45	75 150 300	132 134 135	67	65	0.5				
BH202	10.00	22	U	Firm to stiff fissured dark grey silty CLAY	30					1.99	1.53	100	166	78						Sample failed on 1st stage of multistage test
BH202	13.00	26	U	Stiff fissured dark brown CLAY																Triaxial Permeability Test
BH202	13.45	27	D	Dark grey-brown silty CLAY	29	77	31	46	100											
BH202	16.00	30	U	Stiff dark grey silty CLAY with rare fine to medium sand lenses	28					1.94	1.52	150 300 600	253 262 269	131	122	1				
BH202	16.45	31	D	Dark grey-brown slightly fine sandy silty CLAY	25	58	24	34	100											
BH203	2.50	17	В	Very dark grey sandy silty organic CLAY																Particle Size Distribution Test
BH203	3.50	19	В	Grey brown sandy silty CLAY																Particle Size Distribution Test
BH203	7.50	25	U	Firm fissured grey silty CLAY	33					1.96	1.48	75 150 300	126 133 138	66	60	1.5				
BH203	7.95	26	D	Dark brown silty CLAY	32	76	30	46	100											
BH203	9.50	30	U	Firm to stiff dark grey CLAY	33					1.91	1.43	100 200 400	186 193 198	96	90	1				
BH203	9.95	31	D	Dark brown silty CLAY	33	83	31	52	100											

**SUMMARY OF GEOTECHNICAL TESTING** 

**GEOLABS**®

PROJECT NAME

**EDMONTON ECOPARK** Project Number: 29541

PROJECT NO: GEO / 17722

Date	12/01/2012
Approved	J Sturges
Page	3 of 3

	Sample deta	ails				Class	ificati	on Te	sts	Densi	ty Tests		Undrained	Triaxial Com	pression Tests		Ch	emical 7		
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)	LL (%)	PL (%)		<425 mic (%)	Bulk (Mg/m³)	Dry (Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Mean Shear Stress (kPa)	Apparent Cohesion (kPa)	Angle of Shearing Resistance (°)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH203	12.50	35	U	Stiff grey silty CLAY																Triaxial Permeability Test
BH203	12.95	36	D	Dark brown silty CLAY	28	76	29	47	100											
BH203	18.50	45	U	Stiff dark grey silty CLAY	29					1.95	1.51	200 400 800	231 236 241	118	113	0.5				
BH204	2.00	7	U	Firm dark grey silty CLAY with rare fine gravel	31					2.05	1.57	20 40 80	121 131 142	66	50	8				Oedometer Consolidation Test
BH204	4.40	15	В	Dark grey silty sandy GRAVEL																
BH204	5.20	16	В	Grey and brown sandy GRAVEL																
BH204	8.00	18	U	Stiff fissured grey silty CLAY	28					2.03	1.59	75 150 300	220 222 224	111	108	0.5				
BH204	8.45	19	D	Dark grey-brown silty CLAY	27	70	26	44	100											
BH204	10.00	22	U	Stiff dark grey CLAY	26					2.02	1.60	100 200	155 160	79	73	1.5				Triaxial Permeability Test. Sample failed on 2nd stage of multistage test
BH204	10.45	23	D	Dark grey-brown silty CLAY	26	69	27	42	100											
BH204	13.00	28	D	Brown clayey fine SAND with occasional fine to medium flint gravel	21	NP	NP	NP	87											Sample Non - Plastic

**SUMMARY OF GEOTECHNICAL TESTING** 

**GEOLABS**[®]

Borehole Number:

BH201

12

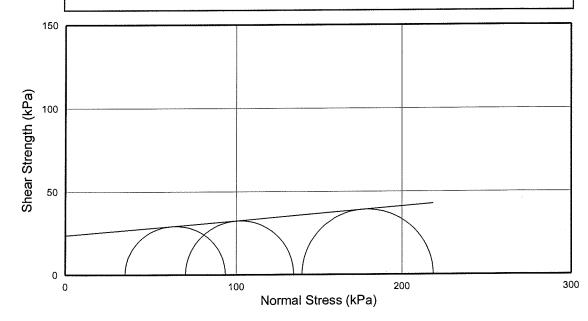
Description:

Firm dark brown and black slightly organic CLAY

Sample Number:

Depth (m):

3.50


### 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	202.1		
Diameter (mm):	104.0		
Moisture Content (%):	43		
Bulk Density (Mg/m³):	1.70		
Dry Density (Mg/m³):	1.19		
Test details	Stage 1	Stage 2	Stage 3
	0.0	0.3	0.3

Dry Density (Mg/m°):	1.19		·
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.6	0.7	1.1
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	35	70	140
Strain at failure (%):	7.9	11.4	19.8
Maximum Deviator Stress (kPa):	59	65	78
Shear Stress Cu (kPa):	29	32	39

Mode of failure:





 $c = 24 \text{ kPa} \quad \emptyset = 5^{\circ}$ 

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

**EDMONTON ECOPARK** 

**Project Number: 29541** 



GEOLABS ®

Borehole Number: Sample Number:

Depth (m):

BH201 19 7.50 Description:

Stiff fissured grey silty CLAY with rare coarse sand and fine to medium gravel

### Single Stage Specimen

Specimen details	Single Specimen	]
Specimen condition:	Undisturbed	٦
Length (mm):	201.9	_ a
Diameter (mm):	102.5	lati
Moisture Content (%):	31	Orientation and
Bulk Density (Mg/m³):	2.00	١°
Dry Density (Mg/m³):	1.52	
Test details		]
Latex membrane thickness (mm):	0.3	1
Membrane correction (kPa):	0.7	
Axial displacement rate (%/min):	2.0	
Cell pressure (kPa):	75	1
Strain at failure (%):	9.9	
Maximum Deviator Stress (kPa):	209	
Shear Stress Cu (kPa):	105	
Mode of failure:		

Sample failed on 1st stage of multistage test

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

**EDMONTON ECOPARK** 

**Project Number: 29541** 



GEOLABS ®

### **Quick Undrained Triaxial Test**

Borehole Number:

BH201

Membrane correction (kPa): Axial displacement rate (%/min):

Maximum Deviator Stress (kPa):

Description:

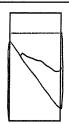
Sample Number: Depth (m):

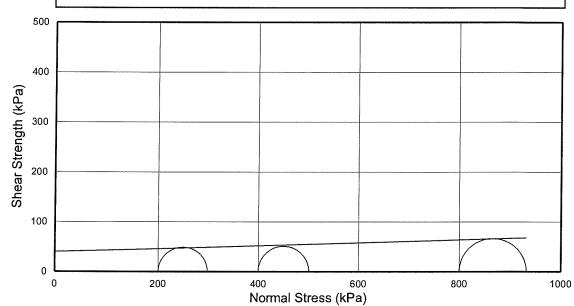
45 21.50

Firm Multi coloured silty CLAY with occasional

fine to medium flint gravel

### 3 Stage Specimen


Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.0		
Diameter (mm):	104.3		
Moisture Content (%):	27		
Bulk Density (Mg/m³):	1.98		
Dry Density (Mg/m³):	1.57		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3


	1.57		
	Stage 1	Stage 2	Stage 3
:	0.3	0.3	0.3
	0.2	0.3	0.8
	2.0	2.0	2.0
	200	400	800
	2.5	3.2	12.9
	98	101	133
1	49	51	66

Mode of failure:

Cell pressure (kPa): Strain at failure (%):

Shear Stress Cu (kPa):





c = 40 kPa $Ø = 1.5^{\circ}$ 

Checked and Approved

Initials:

JS

Date: 12/01/2012

Project Number:

Project Name:

**GEO / 17722** 

**EDMONTON ECOPARK** 

**Project Number: 29541** 



**GEOLABS** ®

Borehole Number: Sample Number:

BH202

Axial displacement rate (%/min):

Maximum Deviator Stress (kPa):

Description:

Depth (m):

14 5.90 Firm dark brown CLAY

### 2 Stage Specimen

Specimen details		Single Specimen		
	Specimen conditions:	Undisturbed		
	Length (mm):	202.1		
	Diameter (mm):	104.1		
	Moisture Content (%):	33		
	Bulk Density (Mg/m³):	1.98		
	Dry Density (Mg/m³):	1.49		
	Test details	Stage 1	Stage 2	
	Latex membrane thickness (mm):	0.3	0.3	
	Membrane correction (kPa):	0.3	0.4	***

Mode of failure:

Cell pressure (kPa):

Strain at failure (%):

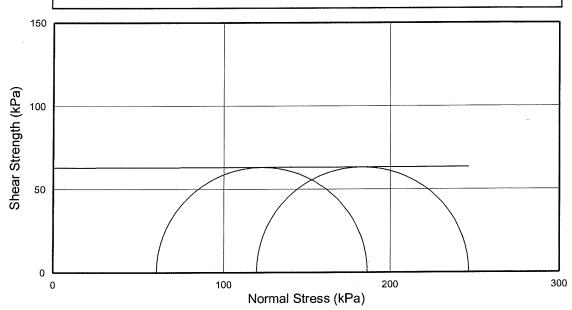
Shear Stress Cu (kPa):



2.0

60

3.5


126

2.0 120

4.7

127

63



c = 63 kPa Ø = 0°

Sample failed on 2nd stage of multistage test

Checked and Approved

Initials:

JS

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

**EDMONTON ECOPARK** 

**Project Number: 29541** 

U KAS TESTING TIPST

GEOLABS ®

Borehole Number:

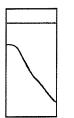
BH202

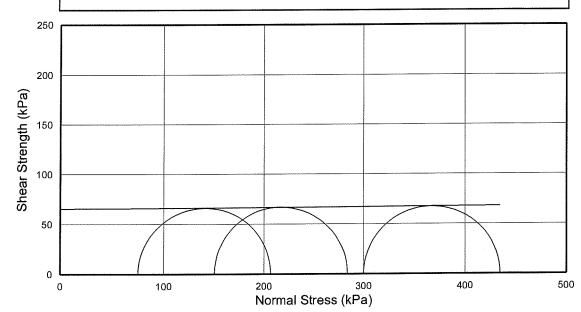
18

Description:

Firm fissured dark grey silty CLAY

Sample Number: Depth (m):


8.00


### 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	201.9		
Diameter (mm):	104.9		
Moisture Content (%):	33		
Bulk Density (Mg/m³):	1.92		
Dry Density (Mg/m³):	1.45		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3

Stage 1	Stage 2	Stage 3
0.3	0.3	0.3
0.3	0.4	0.5
2.0	2.0	2.0
75	150	300
4.2	5.4	6.7
132	134	135
66	67	67
	0.3 0.3 2.0 75 4.2 132	0.3     0.3       0.3     0.4       2.0     2.0       75     150       4.2     5.4       132     134

Mode of failure:





c = 65 kPa Ø = 0.5 °

Checked and Approved

Initials:

」ら Date: _{12/01/2012} Project Number:

Project Name:

**GEO / 17722** 

**EDMONTON ECOPARK** 

**Project Number: 29541** 



GEOLABS ®

Borehole Number:

BH202

Description:

Sample Number: Depth (m):


22 10.00 Firm to stiff fissured dark grey silty CLAY

### Single Stage Specimen

Specimen details	Single Specimen
Specimen condition:	Undisturbed
Length (mm):	183.0
Diameter (mm):	104.0
Moisture Content (%):	30
Bulk Density (Mg/m³):	1.99
Dry Density (Mg/m³):	1.53
Test details	
Latex membrane thickness (mm):	0.3
Membrane correction (kPa):	0.2
Axial displacement rate (%/min):	2.2
Cell pressure (kPa):	100
Strain at failure (%):	2.7
Maximum Deviator Stress (kPa):	166
Shear Stress Cu (kPa):	83

Orientation and position of sample

Mode of failure:



Sample failed on 1st stage of multistage test

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

**EDMONTON ECOPARK** 

Project Number: 29541



**GEOLABS** ®

Borehole Number: Sample Number:

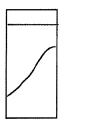
BH202

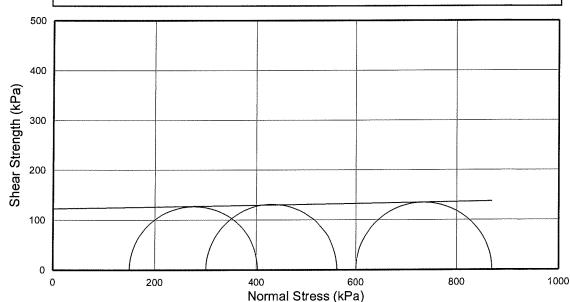
30

Description:

Stiff dark grey silty CLAY with rare fine to medium sand lenses

Depth (m):


16.00


### 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	202.2		
Diameter (mm):	105.3		
Moisture Content (%):	28		
Bulk Density (Mg/m³):	1.94		
Dry Density (Mg/m³):	1.52		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3

Dry Density (Mg/III ).	1.02		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.3	0.4	0.6
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	150	300	600
Strain at failure (%):	4.2	5.2	8.2
Maximum Deviator Stress (kPa):	253	262	269
Shear Stress Cu (kPa):	126	131	135

Mode of failure:





c = 122 kPaØ = 1°

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

**EDMONTON ECOPARK** 

**Project Number: 29541** 



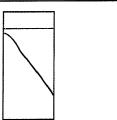
GEOLAB\$ ®

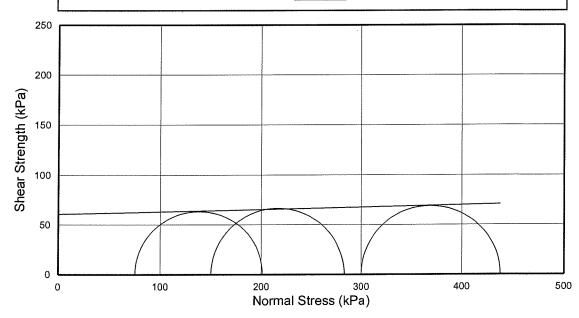
Borehole Number:

BH203

Description:

Sample Number: Depth (m):


25 7.50 Firm fissured grey silty CLAY


### 3 Stage Specimen

	Specimen details	Single Specimen		
Specimen conditions:		Undisturbed		
	Length (mm):	202.0		
	Diameter (mm):	103.5		
	Moisture Content (%):	33		
	Bulk Density (Mg/m³):	1.96		
	Dry Density (Mg/m³):	1.48		
	Test details	Stage 1	Stage 2	Stage 3

Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.3	0.4	0.6
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	75	150	300
Strain at failure (%):	4.0	5.9	9.2
Maximum Deviator Stress (kPa):	126	133	138
Shear Stress Cu (kPa):	63	66	69

Mode of failure:





c = 60 kPa Ø = 1.5 °

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

**EDMONTON ECOPARK** 

**Project Number: 29541** 



**GEOLABS** ®

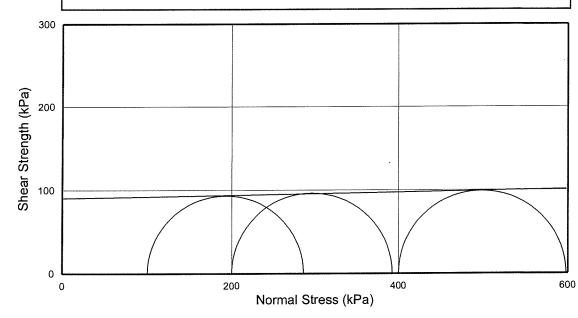
Borehole Number:

BH203

Description:

Sample Number: Depth (m):

30 9.50 Firm to stiff dark grey CLAY


### 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	202.9		
Diameter (mm):	104.3		
Moisture Content (%):	33	•	
Bulk Density (Mg/m³):	1.91		
Dry Density (Mg/m³):	1.43		
Test details	Stage 1	Stage 2	Stage 3
			0.0

Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.3	0.4	0.5
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	100	200	400
Strain at failure (%):	3.7	4.9	7.1
Maximum Deviator Stress (kPa):	186	193	198
Shear Stress Cu (kPa):	93	96	99

Mode of failure:





 $c = 90 \text{ kPa} \quad \emptyset = 1^{\circ}$ 

Checked and Approved

Initials:

JS

Date: 12/01/2012

Project Number:

Project Name:

Client: Ground Technology Services, Maple Road, Kings Lynn, Norfolk PE34 3AF

GEO / 17722

**EDMONTON ECOPARK** 

Project Number: 29541



GEOLABS ®

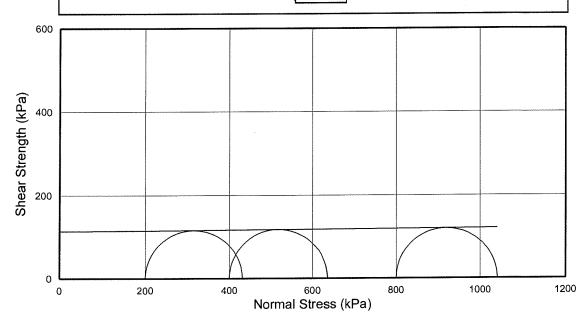
Borehole Number:

BH203

Description:

Sample Number: Depth (m):

45 18.50 Stiff dark grey silty CLAY


### 3 Stage Specimen

Specimen details	Single Specimen		
Specimen conditions:	Undisturbed		
Length (mm):	202.8		
Diameter (mm):	103.1		
Moisture Content (%):	29		
Bulk Density (Mg/m³):	1.95		
Dry Density (Mg/m³):	1.51		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3

1.01		
Stage 1	Stage 2	Stage 3
0.3	0.3	0.3
0.5	0.5	0.6
2.0	2.0	2.0
200	400	800
6.2	7.1	8.4
231	236	241
116	118	120
	Stage 1  0.3  0.5  2.0  200  6.2  231	Stage 1         Stage 2           0.3         0.3           0.5         0.5           2.0         2.0           200         400           6.2         7.1           231         236

Mode of failure:





c = 113 kPa Ø = 0.5 °

Checked and Approved

Initials:

JS Date: 12/01/2012 Project Number:

Project Name:

**GEO / 17722** 

**EDMONTON ECOPARK** 

Project Number: 29541



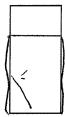
GEOLABS ®

Borehole Number:

BH204

Description:

Sample Number: Depth (m): 7 2.00 Firm dark grey silty CLAY with rare


fine gravel

### 3 Stage Specimen

Specimen details	Single Specimen			
Specimen conditions:	Undisturbed	Undisturbed		
Length (mm):	202.5			
Diameter (mm):	102.1			
Moisture Content (%):	31			
Bulk Density (Mg/m³):	2.05			
Dry Density (Mg/m³):	1.57			
Test details	Stage 1	Stage 2	Stage 3	
Latex membrane thickness (mm):	0.3	0.3	0.3	

Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3
Membrane correction (kPa):	0.0	0.8	1.1
Axial displacement rate (%/min):	2.0	2.0	2.0
Cell pressure (kPa):	20	40	80
Strain at failure (%):	0.5	13.3	19.3
Maximum Deviator Stress (kPa):	121	131	142
Shear Stress Cu (kPa):	60	66	71

Mode of failure:





c = 50 kPa Ø = 8 °

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

**EDMONTON ECOPARK** 

**Project Number: 29541** 



**GEOLABS** ®

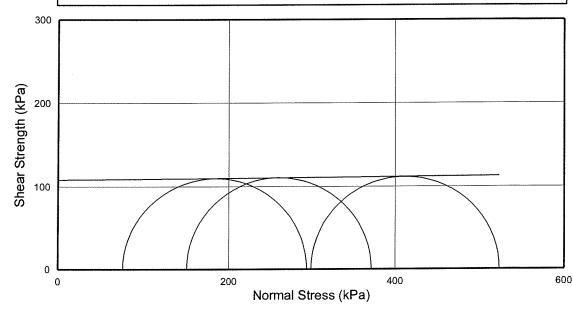
Borehole Number:

BH204

Description:

Sample Number: Depth (m):

18 8.00 Stiff fissured grey silty CLAY


### 3 Stage Specimen

Specimen details Single Specimen			
Specimen conditions:	Undisturbed		
Length (mm):	201.6		
Diameter (mm):	103.9		
Moisture Content (%):	28		
Bulk Density (Mg/m³):	2.03		
Dry Density (Mg/m³):	1.59		
Test details	Stage 1	Stage 2	Stage 3
Latex membrane thickness (mm):	0.3	0.3	0.3

Stage 1	Stage 2	Stage 3
0.3	0.3	0.3
0.6	0.6	0.7
2.0	2.0	2.0
75	150	300
7.9	8.9	10.3
220	222	224
110	111	112
	0.3 0.6 2.0 75 7.9 220	0.3     0.3       0.6     0.6       2.0     2.0       75     150       7.9     8.9       220     222

Mode of failure:





c = 108 kPa Ø = 0.5 °

Checked and Approved

Initials:

JS

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

**EDMONTON ECOPARK** 

**Project Number: 29541** 

U KAS
TESTING
1992

GEOLABS ®

Borehole Number: BH204

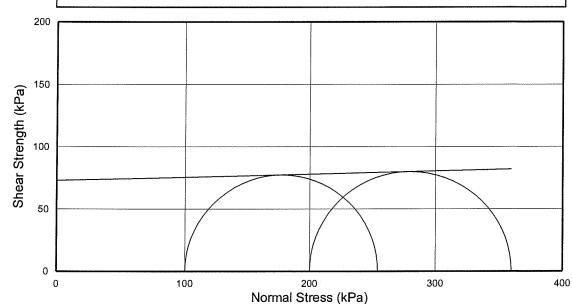
22

Description:

Stiff dark grey CLAY

Sample Number: Depth (m):

10.00


### 2 Stage Specimen

Specimen details	Single Specimen				
Specimen conditions:	Undisturbed				
Length (mm):	169.8				
Diameter (mm):	104.0				
Moisture Content (%):	26				
Bulk Density (Mg/m³):	2.02				
Dry Density (Mg/m³):	1.60				
Test details	Stage 1	Stage 2			
Latex membrane thickness (mm):	0.3	0.3		_	

Dry Density (Mg/m²):	1.00		
Test details	Stage 1	Stage 2	
Latex membrane thickness (mm):	0.3	0.3	
Membrane correction (kPa):	0.7	0.9	
Axial displacement rate (%/min):	2.4	2.4	
Cell pressure (kPa):	100	200	
Strain at failure (%):	10.6	15.3	
Maximum Deviator Stress (kPa):	155	160	
Shear Stress Cu (kPa):	77	80	

Mode of failure:





c = 73 kPa Ø = 1.5°

Sample failed on 2nd stage of multistage test

Checked and Approved

Initials:

JS

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

**EDMONTON ECOPARK** 

**Project Number: 29541** 

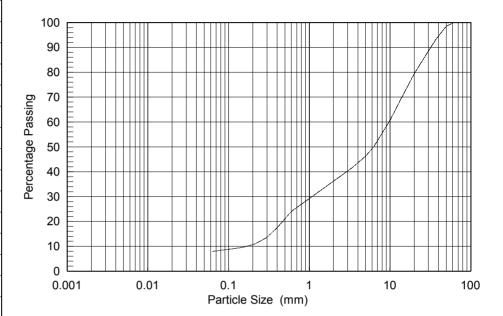


GEOLABS ®

### **Determination of Particle Size Distribution**

BH201 Borehole Number:

Sample Number: 9 1.50 Depth (m):


Description:

Brown slightly silty sandy GRAVEL

BS1377: Part 2: Clause 9.2: 1990 Wet Sieving Method

SIEVE				
Sieve	% pass			
200 mm	100			
125 mm	100			
90 mm	100			
75 mm	100			
63 mm	100			
50 mm	99			
37.5 mm	94			
28 mm	87			
20 mm	79			
14 mm	70			
10 mm	61			
6.3 mm	50			
5 mm	46			
3.35 mm	41			
2 mm	36			
1.18 mm	31			
600 µm	24			
425 µm	18			
300 µm	14			
212 µm	11			
150 µm	10			
63 µm	8			

LAY		SILT	SIL I		SILL L SAND		SAND GRA		GRAVEL			BBLES
ر	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COF		



Particle Proportions						
Cobbles	0.0	%				
Gravel	63.8	%				
Sand	28.3	%				
Silt & Clay	7.9	%				

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

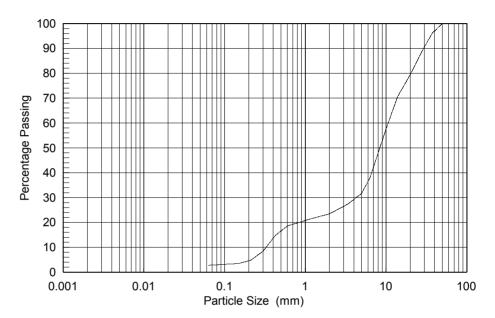




#### **Determination of Particle Size Distribution**

BH201 Borehole Number: Sample Number: 15

Description:


Grey sandy GRAVEL

Depth (m): 4.50

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE					
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	100				
37.5 mm	96				
28 mm	89				
20 mm	80				
14 mm	71				
10 mm	58				
6.3 mm	38				
5 mm	32				
3.35 mm	27				
2 mm	24				
1.18 mm	21				
600 µm	19				
425 µm	15				
300 µm	8				
212 µm	5				
150 µm	3				





Particle Proportions						
0.0	%					
76.5	%					
20.7	%					
2.8	%					
	0.0 76.5 20.7					

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

3

63 µm

Project Name:

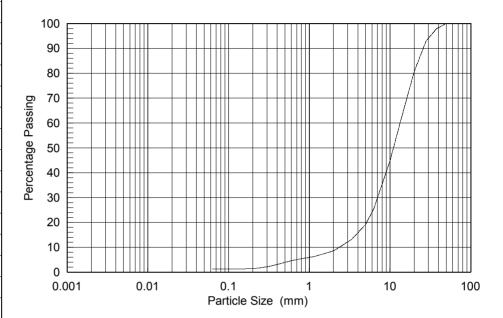
GEO / 17722





### **Determination of Particle Size Distribution**

BH201 Borehole Number: Sample Number: 18


Description:

Depth (m): 6.50 Grey and brown GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEV	/E
Sieve	% pass
200 mm	100
125 mm	100
90 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	98
28 mm	93
20 mm	81
14 mm	62
10 mm	45
6.3 mm	26
5 mm	19
3.35 mm	13
2 mm	9
1.18 mm	6
600 µm	5
425 µm	3
300 µm	2
212 µm	2
150 µm	1
63 µm	1

LAY	SILT			SAND			GRAVEL			BLES
0	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL



Particle Proportions						
0.0	%					
91.5	%					
7.3	%					
1.2	%					
	0.0 91.5 7.3					

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

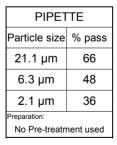
GEO / 17722





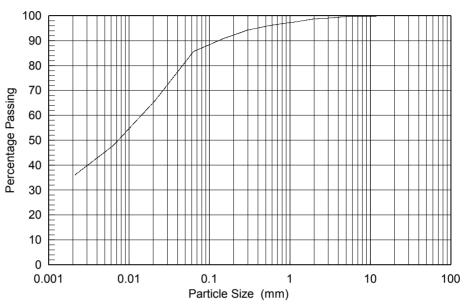
### **Determination of Particle Size Distribution**

Borehole Number: BH202


Sample Number: 7 Depth (m): 2.00 Description:

Dark grey sandy silty organic CLAY

BS1377 : Part 2 : Clause 9.2 : 1990 Wet Sieving Method BS1377: Part 2: Clause 9.4: 1990 Sedimentation by the Pipette Method


SIEVE					
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	100				
37.5 mm	100				
28 mm	100				
20 mm	100				
14 mm	100				
10 mm	100				
6.3 mm	100				
5 mm	100				
3.35 mm	99				
2 mm	99				
1.18 mm	98				
600 µm	96				
425 µm	95				
300 µm	94				
212 µm	93				
150 µm	91				
63 µm	86				

SS	
)	
)	
)	
)	
)	
)	
)	
)	
)	
)	
)	
)	
)	



Temp (°C) 20

-AY	SILT		SAND			GRAVEL			BBLES	
ō	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COE



Particle Proportions							
Cobbles 0.0 %							
Gravel	1.3	%					
Sand	13.1	%					
Silt	49.6	%					
Clay	36.0	%					

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

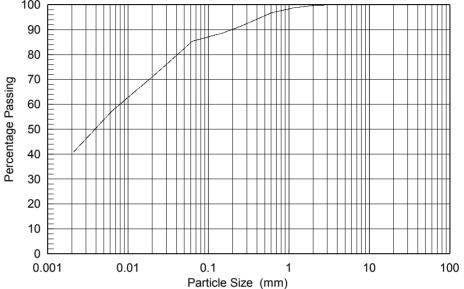
GEO / 17722





### **Determination of Particle Size Distribution**

Borehole Number: BH203 Sample Number: 17 Depth (m): 2.50


Description:

Very dark grey sandy silty organic CLAY

BS1377 : Part 2 : Clause 9.2 : 1990 Wet Sieving Method BS1377: Part 2: Clause 9.4: 1990 Sedimentation by the Pipette Method

SIEVE					
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	100				
37.5 mm	100				
28 mm	100				
20 mm	100				
14 mm	100				
10 mm	100				
6.3 mm	100				
5 mm	100				
3.35 mm	100				
2 mm	100				
1.18 mm	99				
600 µm	97				
425 µm	95				
300 µm	92				
212 µm	90				
150 µm	89				
63 µm	85				

	-AY	SILT				SAND			GRAVEL			
	l)	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COB	
•												
100												
100	Ξ											



Particle Proportions				
Cobbles	0.0	%		
Gravel	0.3	%		
Sand	14.3	%		
Silt	44.5	%		
Clay	40.9	%		

PIPETTE				
Particle size	% pass			
21.1 µm 72				
6.3 µm 57				
2.1 µm 41				
Preparation:				
No Pro treatment used				

Temp (°C) 20

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

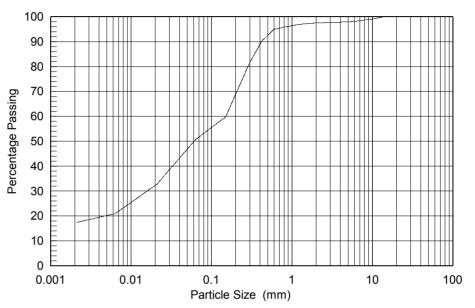
GEO / 17722





### **Determination of Particle Size Distribution**

Borehole Number: BH203 Sample Number: 19 Depth (m): 3.50


Description:

Grey brown sandy silty CLAY

BS1377 : Part 2 : Clause 9.2 : 1990 Wet Sieving Method BS1377: Part 2: Clause 9.4: 1990 Sedimentation by the Pipette Method

SIEVE				
Sieve	% pass			
200 mm	100			
125 mm	100			
90 mm	100			
75 mm	100			
63 mm	100			
50 mm	100			
37.5 mm	100			
28 mm	100			
20 mm	100			
14 mm	100			
10 mm	99			
6.3 mm	98			
5 mm	98			
3.35 mm	98			
2 mm	98			
1.18 mm	97			
600 µm	95			
425 µm	90			
300 µm	82			
212 µm	71			
150 µm	60			
63 µm	51			

<b>4</b> L	SILI			SAND		(	GRAVEL	-	BBLES
ਹ Fir	e Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	SO



Particle Proportions				
Cobbles	0.0	%		
Gravel	2.5	%		
Sand	46.9	%		
Silt	33.2	%		
Clay	17.4	%		

PIPETTE				
Particle size	% pass			
21.1 µm	33			
6.3 µm 21				
2.1 µm 17				
Preparation:				
No Pro treatment used				

Temp (°C) 20

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

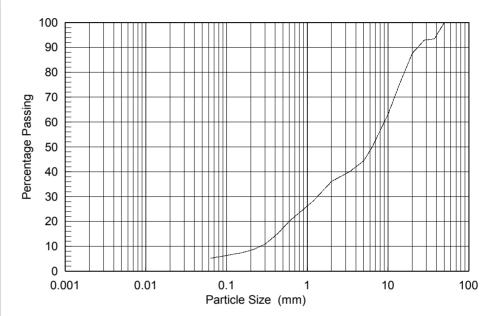




### **Determination of Particle Size Distribution**

BH204 Borehole Number: Sample Number: 15

Description:


4.40 Depth (m):

Dark grey silty sandy GRAVEL

BS1377: Part 2: Clause 9.2: 1990 Wet Sieving Method

SIEVE				
Sieve	% pass			
200 mm	100			
125 mm	100			
90 mm	100			
75 mm	100			
63 mm	100			
50 mm	100			
37.5 mm	93			
28 mm	93			
20 mm	88			
14 mm	75			
10 mm	63			
6.3 mm	50			
5 mm	44			
3.35 mm	40			
2 mm	36			
1.18 mm	28			
600 µm	20			
425 µm	15			
300 µm	11			
212 µm	9			
150 µm	7			
63 µm	5			

LAY		SILT		SAND		GRAVEL			OBBLES	
S	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COF



Particle Proportions				
Cobbles	0.0	%		
Gravel	63.9	%		
Sand	31.0	%		
Silt & Clay 5.1 %				

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722

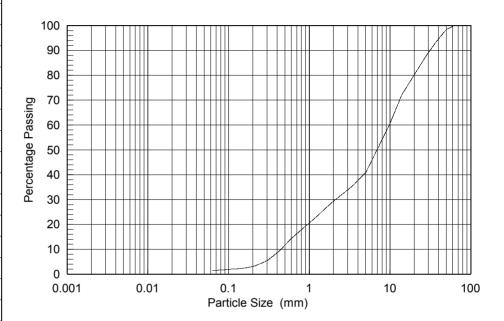




### **Determination of Particle Size Distribution**

BH204 Borehole Number: Sample Number:

Depth (m):


16 5.20 Description:

Grey and brown sandy GRAVEL

BS1377: Part 2: Clause 9.3: 1990 Dry Sieving Method

SIEVE				
Sieve	% pass			
200 mm	100			
125 mm	100			
90 mm	100			
75 mm	100			
63 mm	100			
50 mm	98			
37.5 mm	94			
28 mm	88			
20 mm	80			
14 mm	72			
10 mm	61			
6.3 mm	47			
5 mm	41			
3.35 mm 35				
2 mm	29			
1.18 mm	23			
600 µm	14			
425 µm	9			
300 µm	5			
212 µm	3			
150 µm	2			
63 µm	1			





Particle Proportions				
0.0	%			
70.6	%			
28.0	%			
1.4	%			
	0.0 70.6 28.0			

Checked and Approved

Initials:

Date: 12/01/2012

Project Number:

Project Name:

GEO / 17722





#### BS1377: Part 5: Clause 3: 1990

### Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH201
Sample Ref: 12
Depth (m): 3.50
Depth of test specimen (m): 3.56
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Soft very dark grey silty slightly organic CLAY



**Initial Conditions:** 

Moisture Content (%) 35 Particle Density (Mg/m³) 2.72 (Assumed)

Voids Ratio 1.119
Diameter (mm) 76.2 Laboratory Temperature (°C) 19.2

Height (mm) 18.7

Bulk Density (Mg/m³) 1.73 Dry Density (Mg/m³) 1.28

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	0.417	3.52	t50	1.097
25 - 50	0.650	0.996	t50	1.063
50 - 100	0.539	0.880	t50	1.008
100 - 200	0.416	0.667	t50	0.924
200 - 100	- 0.0512	1.94 (Sv)	t50	0.934
100 - 200	0.0650	3.17	t50	0.921
200 - 400	0.252	0.426	t50	0.824

Checked and Approved

12/01/2012

Initials:

Date:

Project Number:

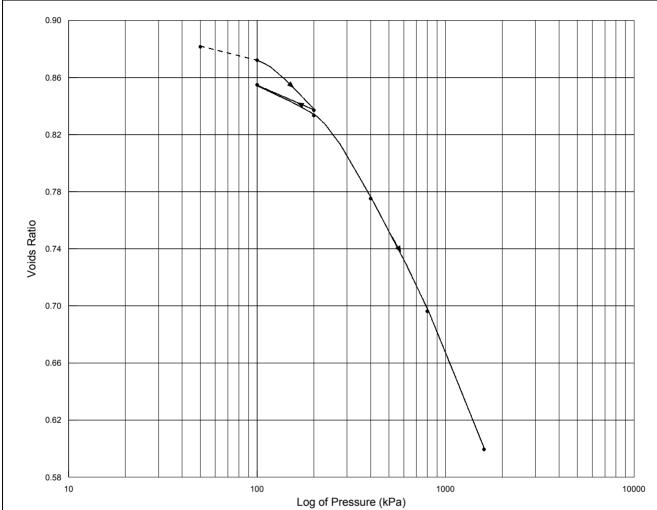
Project Name:

EDMONTON ECOPARK
Project Number: 29541

GEO / 17722






#### BS1377: Part 5: Clause 3: 1990

#### Determination of One Dimensional Consolidation Properties of Soil

Borehole No:
Sample Ref:
Depth (m):
Depth of test specimen (m):
Orientation:
Vertical
Specimen preparation:
Undisturbed

Description:

Firm grey silty CLAY



Initial Conditions:

Moisture Content (%) 33 Particle Density (Mg/m³) 2.72 (Assumed) Voids Ratio 0.885

Diameter (mm) 76.1 Laboratory Temperature (°C) 19.2

Height (mm) 18.8

Bulk Density (Mg/m³) 1.92

Dry Density (Mg/m³) 1.44

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 50	-	Specimen swelled	-	0.881
50 - 100	0.100	2.34	t50	0.872
100 - 200	0.187	0.457	t50	0.837
200 - 100	- 0.0970	0.551 (Sv)	t50	0.855
100 - 200	0.116	0.725	t50	0.833
200 - 400	0.159	0.453	t50	0.775
400 - 800	0.111	0.560	t50	0.696
800 - 1600	0.0713	0.566	t50	0.599

Checked and Approved

Initials:

 Project Number

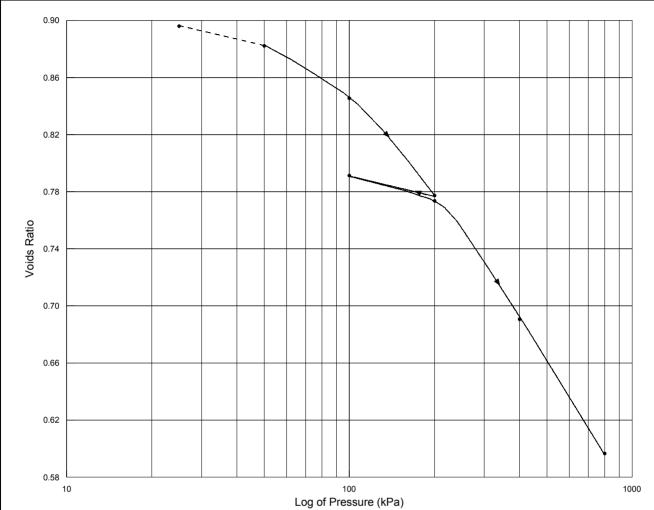
Project Name:

GEO / 17722 EDMONTON ECOPARK

Project Number: 29541






#### BS1377: Part 5: Clause 3: 1990

### Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH204 Sample Ref: Depth (m): 2.00 Depth of test specimen (m): 2.06 Orientation: Vertical Specimen preparation: Undisturbed

Description:

Firm grey silty CLAY with rare fine to medium gavel



Initial Conditions:

Dry Density (Mg/m³)

Moisture Content (%) Particle Density (Mg/m³) 2.72 (Assumed) 31 Voids Ratio 0.897

19.2

Diameter (mm) 76.1 Laboratory Temperature (°C) Height (mm) 18.8 Bulk Density (Mg/m³) 1.88

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 25	-	Specimen swelled	-	0.896
25 - 50	0.292	2.50	t50	0.882
50 - 100	0.389	0.375	t50	0.845
100 - 200	0.370	0.262	t50	0.777
200 - 100	- 0.0789	0.572 (Sv)	t50	0.791
100 - 200	0.0986	0.678	t50	0.774
200 - 400	0.234	0.234	t50	0.691
400 - 800	0.139	0.221	t50	0.597

Checked and Approved

Initials

JS Date: 12/01/2012 Project Number

Project Name:

**GEO / 17722 EDMONTON ECOPARK** 

**Project Number: 29541** 





1.43



Depot Road Newmarket CB8 OAL Tel: 01638 606070

**Ground Technology Services** Maple Road Kings Lynn

**PE34 3AF** 

**FAO Paul Lewin** 10 January 2012

Dear Paul Lewin

**Test Report Number** 

161345

Your Project Reference

**Edmonton Ecopark** 

Please find enclosed the results of analysis for the samples received 23 December 2011.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.





Director

□ Phil Hellier

Director

□ Keith Jones

Technical Manager

□ John Crawford

Quality Manager

□ Malcolm Avis

Director





Notes to accompany report:

- The sign < means 'less than'
- Tests marked 'U' hold UKAS accreditation
- Tests marked 'M' hold MCertS (and UKAS) accreditation
- Tests marked 'N' do not currently hold UKAS accreditation
- Tests marked 'S' were subcontracted to an approved laboratory
- n/e means 'not evaluated'
- i/s means 'insufficient sample'
- u/s means 'unsuitable sample'
- Comments or interpretations are beyond the scope of UKAS accreditation
- The results relate only to the items tested

Test Report

161345 Cover Sheet

Ground Technology Services Maple Road Kings Lynn

### LABORATORY TEST REPORT



Results of analysis of 10 samples received 22 December 2011

Report Date 10 January 2012

FAO Paul Lewin

PE34 3AF

#### **Edmonton Ecopark**

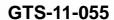
Login I	Batch No				161345						
Chemtest LIMS ID						AG84856	AG84857	AG84858	AG84859	AG84860	AG84862
Sample	e ID				BH201	BH202	BH202	BH202	BH203	BH203	BH204
Sample	e No				D7	D6	D10	D15	D26	D33	D11
Sampli	ng Date				Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided	Not Provided
Depth					1.5m	2m	4m	6.35m	7.95m	11m	3m
Matrix					SOIL						
SOP↓	Determinand↓	CAS No↓	Units↓		*						
2010	pH			М	10.0	8.6	8.9	8.0	8.1	8.2	6.7
2220	Chloride (extractable)	16887006	g l-¹	М	0.13	0.088	<0.010	0.026	0.015	0.024	0.10
	Nitrate (extractable)	14797558	g l-¹	N	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
2120	Sulfate (2:1 water soluble) as SO4	14808798	g I-¹	М	0.22	0.96	0.05	0.31	0.14	0.43	0.18
2420	Magnesium (soluble)	7439954	g l-¹	N	<0.01	<0.01	<0.01	0.02	0.01	0.03	0.01

Ground Technology Services Maple Road Kings Lynn

### LABORATORY TEST REPORT



Results of analysis of 10 samples received 22 December 2011

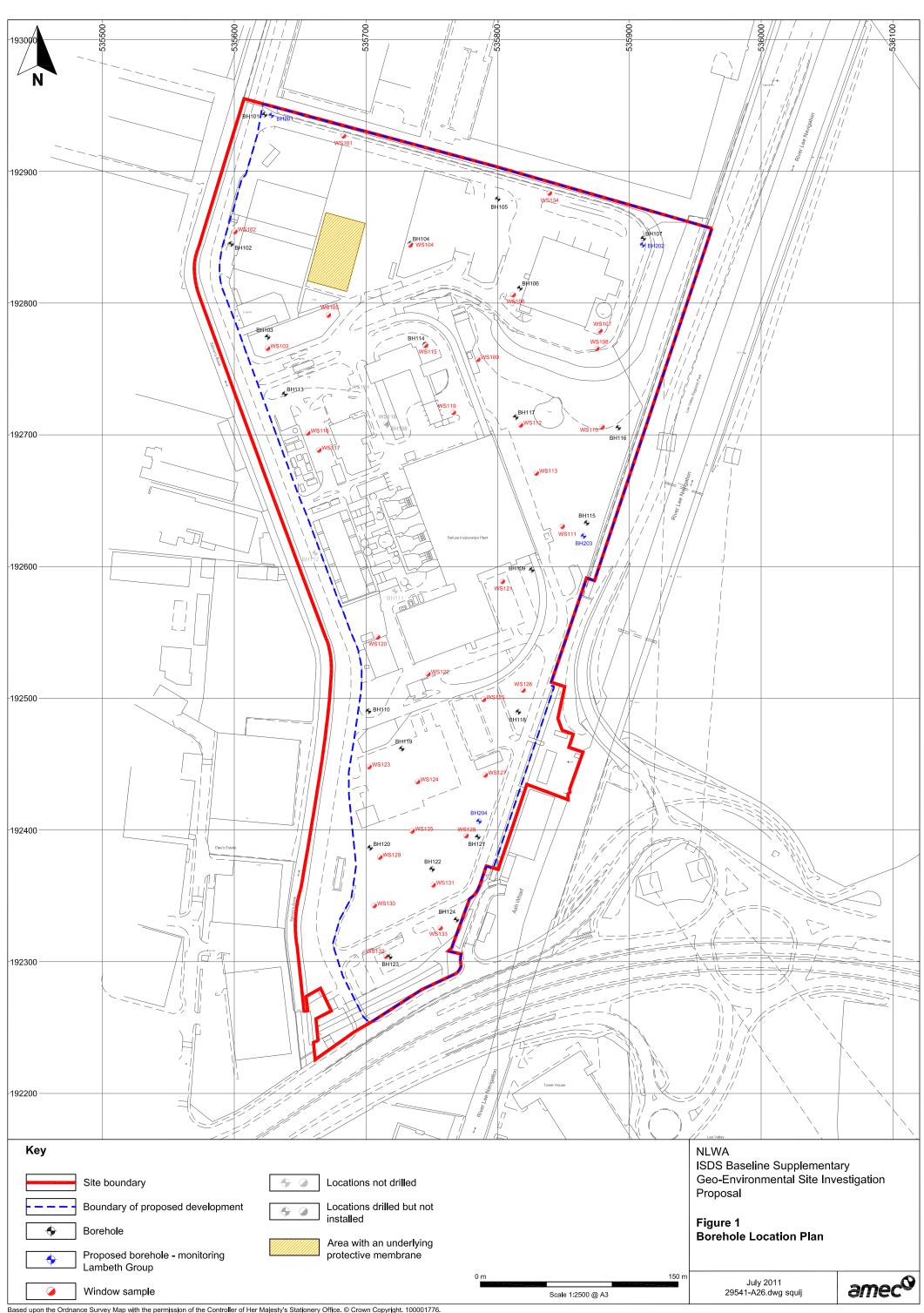

Report Date 10 January 2012

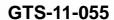
FAO Paul Lewin

PE34 3AF

**Edmonton Ecopark** 

Login I	Batch No					161345	
Chemte	est LIMS ID				AG84854	AG84861	AG84863
Sample	·ID				BH201	BH203	BH204
Sample	· No				W22	W61	W33
Sampli	ng Date				Not Provided	Not Provided	Not Provided
Depth					3.7m	17m	7m
Matrix					WATER	WATER	WATER
SOP↓	Determinand↓	CAS No↓	Units↓		*		
1010	рН	PH		U	7.7	8.9	7.7
1220	Chloride	16887006	mg l-1	U	210	36	180
	Nitrate	14797558	mg l-1	U	12	<0.50	<0.50
1415	Magnesium	7439954	mg l-1	U	13	33	14
1220	Sulfate	14808798	mg l-1	U	84	42	73





Phase 2
Edmonton Ecopark











Phase 2
Edmonton Ecopark







# **Equipe Training Limited**

# **SPT Calibration Report**

# **Hammer Energy Measurement Report**

Type of Hammer SPT
Client GTS
Test No EQU442
Test Depth (m) 7.10

Date of Test 22 January 2011

Valid until **22 January 2012** 

Hammer ID MG1

Mass of the hammer m = 63.5 kgFalling height h = 0.76 m  $E_{\text{theor}} = m \times g \times h = 473 \text{J}$ Characteristics of the instrumented rod

Diameter  $d_r = 0.052 \text{ m}$ Length of the instrumented rod 0.558 m Area  $A = 11.61 \text{ cm}^2$ Modulus  $E_a = 206843 \text{ MPa}$ 

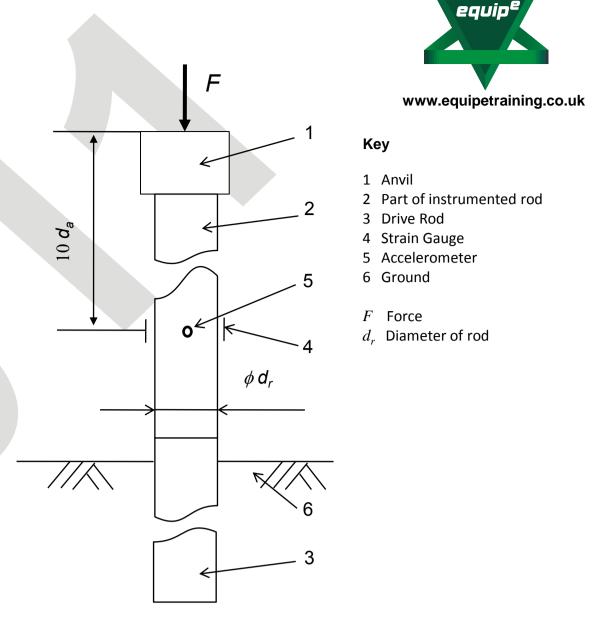
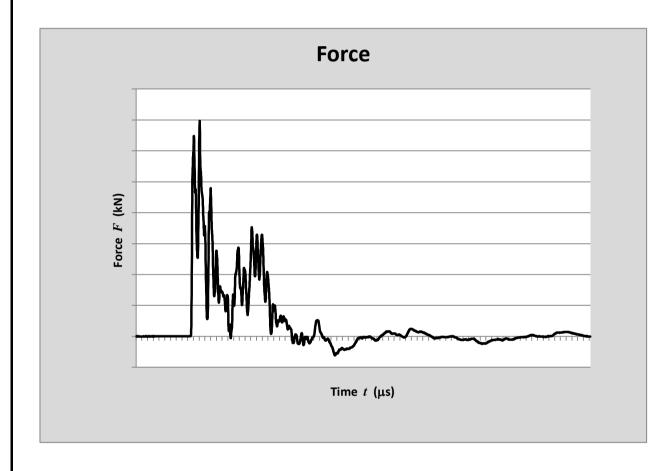
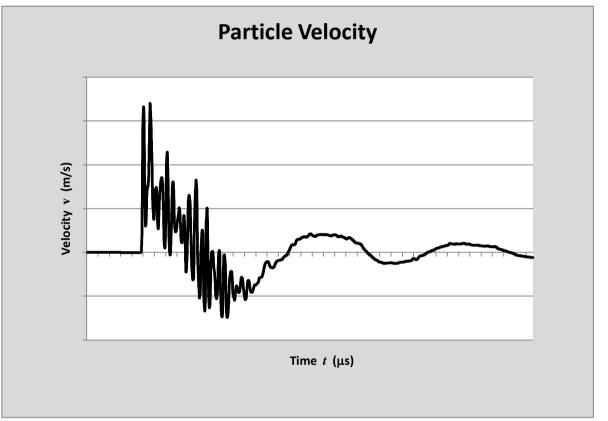
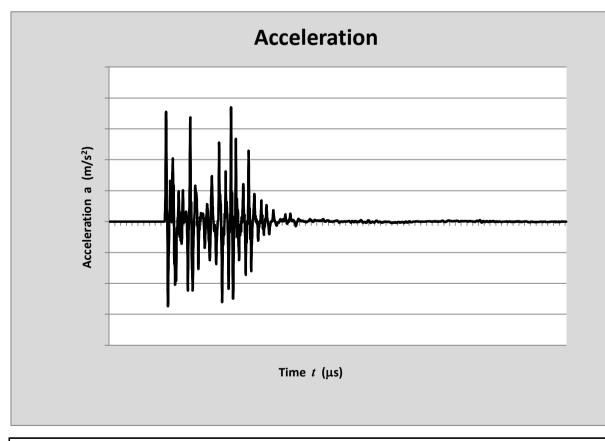
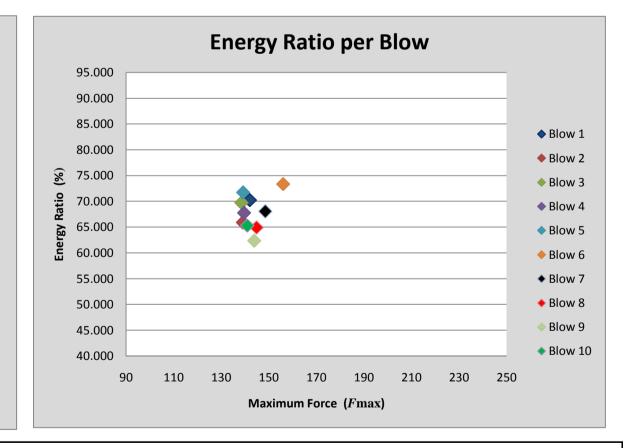







Fig. B.1 and B.2 BS EN ISO 22476-3: 2005









Observations:

1.

 $E_{\text{meas}} =$  0.320 kN-m

 $E_{\text{theor}} =$  0.473 kN-m

Energy Ratio =  $\frac{E_{\text{meas}}}{E_{\text{theor}}}$  = 67.68%

Equipe SPT Analyzer Operators: KS

Prepared by: Checked by: Date 24/01/2011

# **Equipe Training Limited**

# **SPT Calibration Report**

# **Hammer Energy Measurement Report**

Type of Hammer SPT
Client GTS
Test No EQU4

Test No EQU443
Test Depth (m) 7.10

Date of Test 22 January 2011

Valid until **22 January 2012** 

Hammer ID MG2

Mass of the hammer m = 63.5 kgFalling height h = 0.76 m  $E_{\text{theor}} = m \times g \times h = 473 \text{J}$ Characteristics of the instrumented rod

Diameter  $d_r = 0.052 \text{ m}$ Length of the instrumented rod 0.558 m Area  $A = 11.61 \text{ cm}^2$ Modulus  $E_a = 206843 \text{ MPa}$ 

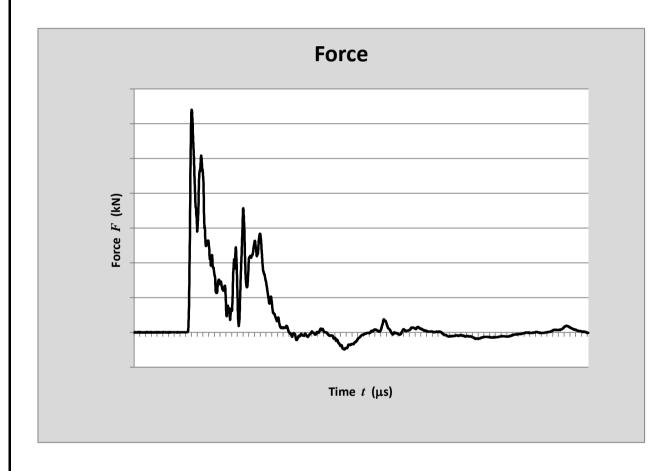
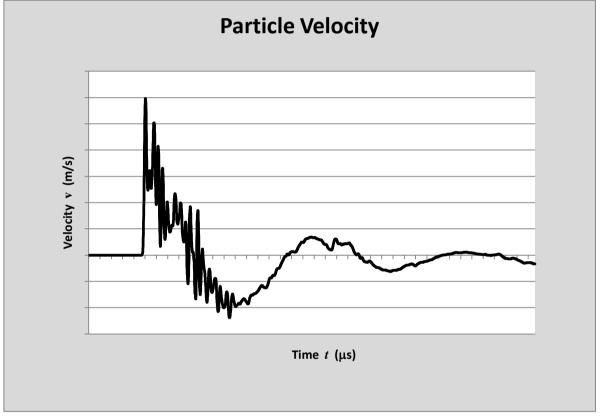
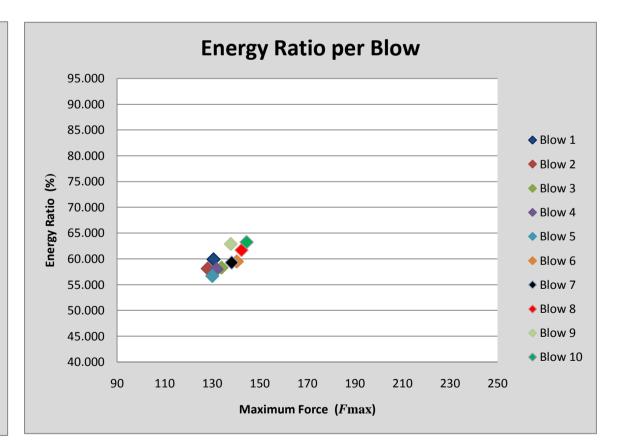






Fig. B.1 and B.2 BS EN ISO 22476-3: 2005









Observations:

1.

 $E_{\text{meas}} =$  0.282 kN-m

 $E_{\text{theor}} =$  0.473 kN-m

Energy Ratio =  $\frac{E_{\text{meas}}}{E_{\text{theor}}}$  = 59.53%

Equipe SPT Analyzer Operators: KS

Prepared by: Checked by: Date 24/01/2011

Project: Edmonton Ecopark Factual Data

Project ID: GTS-14-524

Client: Amec Foster Wheeler



#### **FACTUAL DATA**

Reference GTS-14-524

Date: March 2015

Site:
Edmonton Ecopark
Advent Way
Edmonton
London
N18 3AG

#### Client:



Amec Foster Wheeler Environment & Infrastructure UK Ltd 17 Angel Gate, City Road London, EC1V 2SH



Maple Road Kings Lynn Norfolk PE34 3AF

Tel: 01553 817657

www.groundtechnology.co.uk





#### **Edmonton Ecopark**



#### **Document Control**

Project ID: GTS-14-524

Site: Edmonton Ecopark
Client: Amec Foster Wheeler

Date: March 2015

Compiled by:
G Day BSc MSc

Geotechnical Engineer

Checked and Authorised for issue:

P Lewin BSc

Senior Geotechnical Engineer



#### **Revision Record**

Revision	Date	Description	Prepared By
0	03/02/2015	Factual Data	GWD/PL
1	26/02/2015	Updated BH Records	PL
2	18/03/2015	Geology Changes to logs	PL



# GTS-14-524 Edmonton Ecopark



#### **Contents**

Introduction	Page 1
Fieldwork	Page 1
Laboratory Testing	Page 2

### **Appendices**

Appendix A	Exploratory Hole Records
Appendix B	Geotechnical Results







#### **Section 1: Introduction**

#### 1.1 General Introduction

Ground Technology Services (GTS) were instructed by Amec Foster Wheeler to carry out a ground investigation in order to obtain information on the geotechnical and chemical condition of the underlying soils at Edmonton Ecopark, Advent Way, Edmonton, London.

The specification for the site investigation was completed by Amec Foster Wheeler and GTS were appointed as Ground Investigation Contractor for the intrusive investigation.

This brief report presents the exploratory hole records and geotechnical laboratory data for the ground investigation works completed.

#### **Section 2: Fieldwork**

#### 2.1 Scope of Works

The scope of the field work was specified by Amec Foster Wheeler and was undertaken in general accordance with Eurocode 7 Part 2², The Steering Group Specification (1993)⁶ and where there is no conflict BS 5930:1999⁷. The soil descriptions used in the exploratory hole records are in broad accordance with the relevant European Standards³⁸⁴ and Section Six of BS 5930: 1999⁷

The exploratory hole locations were set out and recorded by Amec Foster Wheeler. Full exploratory records are presented in Appendix A. The fieldwork was carried out between the 9th and 19th December 2014.

A summary of the exploratory holes is presented in Table 1 below.

Hole ID	Hole Type	Completion Depth of Hole (m)
BH401	Cable Percussive	25.00
BH402	Cable Percussive	25.00
BH403	Cable Percussive	10.60
BH404	Cable Percussive	18.45

**Table 1: Summary of Exploratory Holes** 







#### **Section 3: Laboratory Testing**

#### 3.1 Geotechnical Testing

A schedule of geotechnical laboratory testing, prepared by GTS and completed by Amec Foster Wheeler, was carried out in accordance with BS1377:1990⁸ as noted below.

With Be 1077.1000 do noted below.										
Test Type	Part	Method	No. of Tests							
Moisture Content	2	3	27							
Liquid Limit	2	4	27							
Plastic Limit and Plasticity Index	2	5	27							
Unconsolidated Undrained Triaxial	7	8	6							
Particle Size Distribution (Wet Sieve)	2	9.2	11							
Particle Size Distribution (Sedimentation)	2	9.4	7							
Determination of Permeability in Triaxial Cell	6	6	6							

**Table 2: Geotechnical Testing** 

A selection of geochemical testing was also completed, which comprised a total of 14 brownfield suites.

All geotechnical lab results are presented in Appendix B.

#### 3.2 Chemical Testing

A chemical testing regime of both soils and groundwater was undertaken by Amec Foster Wheeler and is not presented within this report.





#### **Edmonton Ecopark**



#### **Section 6: References**

- 1. British Geological Survey England and Wales, 1:50,000, (Solid & Drift Edition).
- 2. BS EN 1997-2 (2007): Eurocode 7 Geotechnical Design Part 2: Ground Investigation and testing.
- 3. BS EN ISO 14688-1: (2002):Geotechnical Investigation and Testing Identification and Classification of Soil Part 1: Identification and Description.
- 4. BS EN ISO 14688-2: (2004):Geotechnical Investigation and Testing Identification and Classification of Soil Part 2: Principles for a classification.
- 5. BS EN ISO 14688-3: (2005):Geotechnical Investigation and Testing Field Testing Part 3: Standard Penetration Test
- 6. Specification for ground Investigation, Site Investigation Steering Group (1993).
- 7. BS5930: (1999) + A2:2010 Site Investigation Code of Practice, British Standards Institution.
- 8. BS1377: (1990) British Standard methods of test for Soils for Civil Engineering purposes, Insitu tests, British Standards Institution.
- 9. BOYLE, R and WITHERINGTON, P (2006). Guidance on evaluation on development proposals on sites where methane and carbon dioxide are present, incorporating 'traffic lights'. National House Building Council (NHBC).
- 10. Wilson S. et al (2006). Assessing Risks Posed by Hazardous Ground Gases to Buildings, CIRIA Project Report No C659.
- 11. BRE 1 (2005). Concrete in Aggressive Ground. Building Research Establishment Special Digest 1.
- 12. EDMONDS, C.N. (1987). The engineering geomorphology of Karst development and the prediction of subsidence risk upon the chalk outcrop of England. PhD thesis, University of London.
- 13. NHBC (1999). National House Building Council Standards, Chapter 4.2, Building near Trees.
- 14. LORD, J.A. et al. (1994). Foundations in Chalk, CIRIA Project Report No 11.
- 15. CLEA Using Soil Guideline Values (2009). The Environment Agency.
- 16. CLEA Human Health toxicological assessment of contaminants in soil (The TOX Guidance Report). The Environment Agency (2009).
- 17. CLEA Technical notes, Toxicological Reports & Supplementary information on available Soil Guideline Values (2009). The Environment Agency.
- 18. The CLEA report (2009). The Environment Agency. Updated technical Background to the CLEA model.
- 19. Contaminated Land Report 11 (CLR11) (2009). The Environment Agency. Model Procedures for the Management of Land Contamination.
- 20. CLEA Software Version 1.06 (2009) and Software Handbook.
- 21. BS10175: (2011) Investigation of Potentially Contaminated Sites Code of Practice





#### **Edmonton Ecopark**



#### **Section 6: References**

- 22. RD20 (1999). The Environment Agency. Methodology for the Derivation of Remedial Targets for Soil and Groundwater to Protect Water Resources.
- 23. USEPA (1994). Technical Background Document for Soil Screening Guidance.
- 24. Water Supply (Water Quality) Regulations (2000).
- 25. EQS (2008). UK Technical Advisory Group on the Water Framework Directive (WFD). Proposals for Environmental Quality Standards (EQS) for Annex VIII substances.
- 26. EQS (2004). Department for Environment, Food and Rural Affairs (DEFRA) and The Environment Agency. Environmental Quality Standards.
- 27. Interim Advise Notice 73/06. Design Guidance for Road Pavement Foundations (2006)
- 28. The LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd Edn), 2009
- 29. BS7430: (1998) Code of Practice for Earthing, British Standards Institution.
- 30. Butcher A.P et al (1996) Dynamic Probing and its uses in clay soils. Advances in site investigation practices.
- 31. Cearns, P.J and McKenzie, A (1988) Application of dynamic cone penetrometer test in East Anglia, Thomas Telford, London



GTS-14-524
Edmondton Ecopark
Advent Way
Edmonton

Appendix A

Exploratory Hole Records

Ground Technology Services

#### **Borehole Record**

**BH401** 

Project: Edmonton Ecopark 2nd Phase

Project ID: GTS-14-524

Client: Amec Foster Wheeler

Engineer: Joanne Gavigan / Ben Smith

Ground Level: -

Coordinates: 535850.08E

192455.09N

Sheet 1 of 3

									1924	55.09IN
Description	Legend	Depth	O.D.	Sam	ple Test	SPT/	CPT	Remarks ar		
Description	Legena	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	Test Result SPT/HV/PP (Recovery	FID	Installations
MADE GROUND: Fine GRAVEL and moss.	/XXXXX	0.02		B1	0.00-0.30					-
MADE GROUND: Brownish grey silty fine to coarse SAND and GRAVEL. Gravel is angular fine to coarse flint, brick and concrete.		0.40		B2 B3	0.40-0.60 0.60-0.80					
MADE GROUND: Dark grey and brownish grey slightly gravelly slightly sandy SILT. Gravel is angular to subangular fine to coarse flint, brick and concrete. Some plant debris.		1.40		S D5	1.50-1.95 1.50-1.95	0.00		N=3 (1,0,1,0,1,1)		-
MADE GROUND: Stiff very low strength brown and grey slightly sandy slightly gravelly CLAY. Gravel is angular to subangular fine to medium flint and brick.	× × - × - × - × - × - × - × - × - ×	2.00		B6 B7 S	1.50-2.00 2.00-2.30 2.50-2.95	2.50		N=4 (2,2,1,1,1,1)		
Firm greyish brown and brownish grey CLAY, with some fine roots. (ALLUVIUM)		2.60		D8 B9	2.50-2.95 2.50-3.00	2.30		10-4 (2,2,1,1,1,1)		
Very soft brown silty sandy CLAY, with some fine roots. (ALLUVIUM)				S D10 B11	3.50-3.95 3.50-3.95 3.50-4.00	3.50	(3.50)	N=11 (1,2,2,2,3,4)	-	
Loose becoming medium dense grey clayey silty sandy GRAVEL. Gravel is angular to subangular fine to medium flint. Some peat fragments. Becoming sand and gravel.  (KEMPTON PARK GRAVEL FORMATION)		4.50		S D12 B13	4.50-4.95 4.50-4.95 4.50-5.00	4.50	(4.10)	N=11 (1,2,1,2,3,5)		-
Medium dense grey clayey silty gravelly SAND. Gravel is angular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)		5.80		S D14 B15	5.50-5.95 5.50-5.95 5.50-6.00	5.50	(3.80)	N=19 (2,3,3,4,6,6)		-
Grey and brown slightly gravelly CLAY. Gravel is subrounded fine to medium flint. \((KEMPTON PARK GRAVEL FORMATION)\)		6.00		B16 B17	5.50-5.80 5.80-6.00					-
Loose grey fine to coarse SAND and GRAVEL. Gravel is angular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)		6.80		S D18 B19 B20	6.50-6.95 6.50-6.95 6.50-6.80 6.80-7.00	6.50	(4.10)	N=9 (2,3,1,2,3,3)		
Stiff grey CLAY. (LONDON CLAY FORMATION)		7.80		S D21 B22	7.50-7.95 7.50-7.95 7.50-8.00	7.50		N=14 (1,2,2,3,4,5)		
Stiff to very stiff locally closely fissured and or thinly laminated grey silty CLAY. Occasional subrounded fine flint gravel and white sandy lenses.	xxx	8.50		UT23	8.50-9.95			40 blows		-
(LAMBETH GROUP UNDIFFERENTIATED)  Stiff to very stiff high strength locally closely fissured and or thinly laminated grey silty CLAY.	×x	×-		D24	8.95-9.00					-
(LAMBETH GROUP UNDIFFERENTIATED)	xx	×		S D25 B26	9.50-9.95 9.50-9.95 9.50-10.00	9.50		N=17 (1,2,3,3,5,6)		
Borehole continued	×	×			Water Lev	el Ohe	ervati	ons		-
	+				VVAICI LEV	<u> </u>	oi vati	0110		

Hole Diameter Detail		Chiseling Details				Water	Standing	Standing	Casing	Depth		
	Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
	150 250 200	25.00 2.50 8.50	25.00 2.50 7.50				10/12/14 10/12/14 10/12/14 10/12/14	3.30 3.30 3.30 3.30	5 10 15 20	3.30 3.30 3.30 3.30	3.30 3.30 3.30 3.30	7.50 7.50 7.50 7.50

Dates:

09/12/2014-19/12/2014

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: J. Tomalin

Checked By: P. Lewin

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl. 2. Environmental seals installed from 2.40m to 0.40mbgl and 7.80m to

5.80mbgl.
 Exploratory hole backfilled with cement / bentonite grout.
 Geological interpretation completed by Amec Foster Wheeler.

#### **Borehole Record**

**BH401** 

Project: Edmonton Ecopark 2nd Phase

Project ID: GTS-14-524

Client: Amec Foster Wheeler

Engineer: Joanne Gavigan / Ben Smith

Ground Level: -

Coordinates: 535850.08E

192455.09N

Sheet 2 of 3

									1924	55.09N
Description	Legend	Depth (m)	Level			SPT/ Casing Depth (m)		Remarks and Test Results	FID	Installations
Stiff to very stiff high strength locally closely fissured and or thinly laminated grey silty CLAY. (LAMBETH GROUP UNDIFFERENTIATED)	xx		(m)		(m)	(m)	<u>(ṁ)</u>		(ppm)	
Very stiff very high strength thinly laminated grey and brown silty CLAY. (LAMBETH GROUP UNDIFFERENTIATED)	× × × × × × × × × × × × × × × × × × ×	11.00			11.00-11.45			40 blows		
Dark brown organic SILT. Organic fibrous black and brown matrix with coal. ( AMEC description ) (LAMBETH GROUP UNDIFFERENTIATED)	× × × × × × × × × × × × × × × × × × ×	F		D29 B30	12.50-12.95 12.50-12.95 12.50-13.00 13.20-13.40	9.00		N=23 (3,4,4,5,6,8)		<u></u>
Very stiff high strength greyish brown slightly silty CLAY. (LAMBETH GROUP UNDIFFERENTIATED)	× × × × × × × × × × × × × × × × × × ×	11011011			14.00-14.45 14.45-14.50			60 blows		
	x _ x _ x _ x _ x _ x _ x _ x _ x _ x _	4.14.14.14.14.14.14.14		D34	15.50-15.95 15.50-15.95 15.50-16.00	9.00	(15.40	) N=23 (3,4,5,5,6,7)		
	x - x - x - x - x - x - x - x - x - x -				17.00-17.45 17.45-17.50			70 blows		
Very stiff thinly laminated greenish grey and	××	17.80		B38	17.80-18.10					
brownish grey slightly silty CLAY. (LAMBETH GROUP UNDIFFERENTIATED)	<u>×</u> ×	18.10		B39	18.10-18.30					=
Very high strength greenish grey gravelly sandy clayey SILT. (LAMBETH GROUP UNDIFFERENTIATED)		18.70			18.50-18.89 18.50-18.89 18.70-19.00	15.00	(18.10	) 50/240mm (4,7,9,12,20	0,9)	
Dense grey silty fine SAND, with sandy clay bands. (LAMBETH GROUP UNDIFFERENTIATED)	X X X X X X X X X X X X X X X X X X X			B42	19.30-19.50					=
Borehole continued	××××	19.60		B43	19.60-19.80					
	71-25-5									

								Water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details	_	Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
150 250 200	25.00 2.50 8.50	25.00 2.50 7.50			·	10/12/14 10/12/14 10/12/14 10/12/14	3.30 3.30 3.30 3.30	5 10 15 20	3.30 3.30 3.30 3.30	3.30 3.30 3.30 3.30	7.50 7.50 7.50 7.50

Dates:

09/12/2014-19/12/2014

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: J. Tomalin

Checked By: P. Lewin

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl. 2. Environmental seals installed from 2.40m to 0.40mbgl and 7.80m to

5.80mbgl.
 Exploratory hole backfilled with cement / bentonite grout.
 Geological interpretation completed by Amec Foster Wheeler.

#### **Borehole Record**

**BH401** 

Project: Edmonton Ecopark 2nd Phase

Project ID: GTS-14-524

Client: Amec Foster Wheeler

Engineer: Joanne Gavigan / Ben Smith

Ground Level: -

Coordinates: 535850.08E

192455.09N

Sheet 3 of 3

									.02	. 100.0011
Description	Legend	Denth	O.D.	Sam	ple Test	SPT	/CPT		arks and	
Description	Legend	(m)	LEVE	Туре	Depth	Casing	Water	Test	Results (Recovery) (ppr	Installations
			(m)	,	(m)	(m)	(m)	SPT/HV/PP	(Recovery) (ppr	n)
Greenish grey and brownish grey slightly sandy SILT, with occasional shell fragments and fine flint gravel. (LAMBETH GROUP UNDIFFERENTIATED)	* * * * * * * * * * * * * * * * * * * * * *	يتا المتاكية المتاهدة		S D44 B45	20.00-20.39 20.00-20.39 20.00-20.50	20.00	(12.00	) 51/235mm	(7,12,13,11,20,7	
Very stiff light bluish grey and reddish brown slightly silty CLAY, locally slightly gravelly, some sandy silt and sandy clay bands. (LAMBETH GROUP UNDIFFERENTIATED)	×	21.50		S D46 B47	21.50-21.95 21.50-21.95 21.50-22.00	21.00	(12.20	) N=32 (3,5,7	7,7,8,10)	
Very stiff light greenish grey and brown slightly sandy CLAY.	××-	22.40		B48	22.40-22.60					
(LAMBETH GROUP UNDIFFERENTIATED)	x × x	22.80		D49	22.80-22.90		/00 F0		/= 10 10 10 00\	
Dense to very dense light grey clayey silty gravelly SAND. Some sandy clay bands. (LAMBETH GROUP UNDIFFERENTIATED)	X			S D50 B51	23.00-23.30 23.00-23.30 23.00-23.50	23.00	(22.50	) 68/150mm	(5,10,18,18,32)	
Borehole Complete at 25.00 m	× × × × × × × × × × × × × × × × × × ×	25.00		S D52 B53	24.50-24.95 24.50-24.95 24.50-25.00	24.50	(12.50	N=40 (3,6,1	11,13,8,8)	
					Water Lev	el Obs	ervat	ions		
	1					J. J.J.	. J. 7ul			

150 250	25.00 2.50	25.00 2.50			0/12/14 0/12/14	3. 3.	
200	8.50	7.50		1	0/12/14 0/12/14	3. 3.	30
				_			

Chiseling Details

Time (hours)

Dates:

Diameter Depth (mm) (m)

09/12/2014-19/12/2014

From (m)

Plant:

Dando 2000

Casing Depth (m)

Drilled By: A. Elshof Logged By: J. Tomalin

Hole Diameter Detail

Checked By: P. Lewin

Date

Standing

Time (mins)

5 10 15

Water

Strike (m)

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl. 2. Environmental seals installed from 2.40m to 0.40mbgl and 7.80m to 5.80mbgl.

Standing

Level (m)

3.30 3.30 3.30

Casing

Depth (m)

3.30 3.30 3.30 3.30

Depth

Sealed (m)

7.50 7.50 7.50 7.50

- 3. Exploratory hole backfilled with cement / bentonite grout.
- 4. Geological interpretation completed by Amec Foster Wheeler.

#### **Borehole Record**

**BH402** 

Project: Edmonton Ecopark 2nd Phase

Project ID: GTS-14-524

Client: Amec Foster Wheeler

Engineer: Joanne Gavigan / Ben Smith

Ground Level: -

Coordinates: 535845.11E

192432.46N

Sheet 1 of 3

									192432.46IN
Description	Legend	Depth	O.D.	· .	ple Test	SPT/		Remarks and Test Results	
		(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Depth (m)		FID (ppm) Installations
MADE GROUND: GRAVEL.	/XXXX	0.02		B1	0.00-0.30		` '		-31-3
MADE GROUND: Grey slightly silty fine to coarse SAND and GRAVEL. Gravel is angular to subangular fine to coarse brick and concrete.		0.60		B2 B3 B4	0.50-0.60 0.65-0.80 0.90-1.20				
MADE GROUND: Firm dark brown sandy gravelly CLAY. Gravel is angular fine to coarse flint, brick and concrete. Rare shell and plant debris.		0.90		В4 S	1.50-1.95	0.00		N=2 (1,0,1,0,0,1)	-
MADE GROUND: Light brownish grey silty fine to coarse SAND and GRAVEL. Gravel is angular fine to coarse concrete.	-x- :	2.00		D5 B6 B7	1.50-2.15 1.50-2.00 2.00-2.30				
MADE GROUND: Firm brownish brown slightly gravelly silty CLAY, with occasional shell fragments. Gravel is angular fine to coarse flint and concrete.	ta atlia atlia atlia atlia atli	2.50		S D8 B9	2.50-2.95 2.50-2.95 2.50-2.90	2.50		N=3 (1,0,1,0,1,1)	
Soft greenish grey silty CLAY, with some black organic specks and an organic odour. (ALLUVIUM)		2.90		B10 S	2.90-3.10 3.50-3.95	3.50	(3.40)	N=10 (2,2,2,3,2,3)	
Firm to stiff greyish brown pseudo-fibrous PEAT. (ALLUVIUM)		E		D11 B12	3.50-3.95 3.50-4.00	0.00	(0.40)	10 (2,2,2,0,2,0)	
Soft light brownish grey slightly sandy CLAY. (ALLUVIUM)		1		s	4.50-4.95	4.50	(4.00)	N=19 (2,3,4,4,5,6)	
Medium dense brownish slightly silty very sand gravel, becoming sandy GRAVEL. Gravel is angular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)				D13 B14	4.50-4.95 4.50-5.00				
Soft brownish grey gravelly CLAY. Gravel is subangular to rounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)		5.70		S D15 B16 B17	5.50-5.95 5.50-5.95 5.50-6.00 5.70-5.90	5.50	(4.00)	N=12 (1,1,2,2,3,5)	
Medium dense grey very sandy GRAVEL. Gravel is angular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)		6.80		S D18 B19	6.50-6.95 6.50-6.95 6.50-7.00	6.50	(3.60)	N=10 (1,2,2,2,3,3)	
Firm brownish grey gravelly CLAY. Gravel is angular to subrounded fine to coarse flint. (LONDON CLAY FORMATION)		7.50		B20 UT21	7.00-7.20 7.50-7.95			30 blows	
Very stiff high strength thinly laminated brownish grey silty CLAY. (LAMBETH GROUP UNDIFFERENTIATED)	xx	7.80		D22	7.95-8.00				-
Very stiff high strength brownish grey silty CLAY with traces of fine and medium gravel and fine to coarse sand. (LAMBETH GROUP UNDIFFERENTIATED)	× – × – × – × – × – × – × – × – × – × –	×		S D23 B24	8.50-8.95 8.50-8.95 8.50-9.00	8.00		N=18 (1,2,4,4,4,6)	
Borehole continued	<u>x</u> x	×		UT25	9.50-9.95			25 blows	
Borenole continued	×	2			9.95-10.00	ol Ob :	am:-!		-
	1				Water Lev	el Obs	ervati	ons	

Hole	Diamete	er Detail	Ch	niseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter	Depth	Casing	From	To	Time	Date	Strike (m)	Time (mins)	5	Depth (m)	Sealed (m)
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Strike (III)	Time (mins)	Level (m)	Depth (m)	Sealed (III)
250	2.50	2.50				09/12/14	2.90	5	2.90	2.50	
200	8.50	7.50				09/12/14	2.90	10	2.90	2.50	
150	25.00	25.00				09/12/14	2.90	15	2.90	2.50	
						09/12/14	2.90	20	2.90	2.50	

Dates:

08/12/2014-12/12/2014

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: J. Tomalin

Checked By: P. Lewin

- Remarks: 1. Inspection pit dug from ground level to 1.20mbgl.
  2. Environmental seal installed from 2.50m to 0.50mbgl and from 7.80m to
  - 5.80mbgl.3. Groundwater monitoring well installed with 50mm HDPE standpipe screened from 2.80m to 6.80mbgl.

  - Groundwater dipped at 3.50mbgl on 18/12/2014.
     Backfilled with cement/bentonite grout from 6.80m to 25.00mbgl.
     Geological interpretation completed by Amec Foster Wheeler.

#### **Borehole Record**

**BH402** 

Project: Edmonton Ecopark 2nd Phase

Project ID: GTS-14-524

Client: Amec Foster Wheeler

Engineer: Joanne Gavigan / Ben Smith

Ground Level: -

Coordinates: 535845.11E

192432.46N

Sheet 2 of 3

										1924	32.46N
Description	Legend	Depth	O.D.	Sam	ple Test	SPT/			rks and		
Description	Legena	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth	SPT/HV/PP	Results	FID (ppm)	Installations
Very stiff high strength brownish grey silty CLAY with traces of fine and medium gravel and fine to coarse sand.  (LAMBETH GROUP UNDIFFERENTIATED)	x		()			(111)	(111)	<u> </u>	(((((((((((((((((((((((((((((((((((((((	(22)	
Stiff greenish grey and grey sandy CLAY. Some white sandy lenses, rare gypsum crystals and possible shell fragments. \((LAMBETH GROUP UNDIFFERENTIATED)\)		11.40		S D28	11.00-11.10 11.10-11.55 11.10-11.60	9.00		N=18 (2,4,4,	4,5,5)		<b>▼</b>
Very stiff brownish grey and greyish brown silty CLAY. (LAMBETH GROUP UNDIFFERENTIATED)  Very stiff very high strength greyish brown CLAY,	xx	12.40		UT30	12.50-12.95			50 blows			-
with some sifty fine sand bands. (LAMBETH GROUP UNDIFFERENTIATED)				D31	12.95-13.00						
				S D32 B33	14.00-14.45 14.00-14.45 14.00-14.50	9.00		N=19 (2,3,4,	4,5,6)		
Very stiff locally closely fissured and or thinly laminated brownish grey silty CLAY, with some sandy silt bands, locally bioturbated. (LAMBETH GROUP UNDIFFERENTIATED)	x	15.20		UT35	15.20-15.40 15.50-15.95 15.95-16.00			60 blows			
Very stiff greenish grey and brown silty fine SAND, with some sandy silt and sandy clay bands.	× × × × × × × × × × × × × × × × × × ×	17.40		B38 B39	17.00-17.45 17.00-17.45 17.00-17.50 17.50-17.60 17.80-18.00	15.00		N=26 (2,5,5,	5,7,9)		-
(LAMBETH GROUP UNDIFFÉRENTIATED)  Very stiff closely fissured greyish brown CLAY/SILT, with some sandy silt and silty fine sand bands. (LAMBETH GROUP UNDIFFERENTIATED)		18.70		S D41 B42	18.50-18.89 18.50-18.89 18.50-19.00	15.00	(16.00)	) 50/235mm (4	1,8,9,13,19	,9)	-
Very stiff thinly laminated brown with a little green sandy CLAY, with occasional shell fragments. (LAMBETH GROUP UNDIFFERENTIATED)		19.60			19.60-19.80						
Borehole continued		‡			Water Law	al Obs	- m 1.				=
					Water Lev	ei Obse	ervation	ons			

								TTUTOI EUTOI	O DOOI VALIONO		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter	Depth	Casing	From	To	Time	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
(mm)	(m)	Depth (m)	(m)	(m)	(hours)		Othito (III)	Time (mino)	LOVOI (III)	Dopar (III)	Coaloa (III)
250	2.50	2.50				09/12/14	2.90	5	2.90	2.50	
200	8.50	7.50				09/12/14	2.90	10	2.90	2.50	
150	25.00	25.00				09/12/14	2.90	15	2.90	2.50	
						09/12/14	2.90	20	2.90	2.50	

Dates:

08/12/2014-12/12/2014

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: J. Tomalin

Checked By: P. Lewin

- Remarks: 1. Inspection pit dug from ground level to 1.20mbgl.
  2. Environmental seal installed from 2.50m to 0.50mbgl and from 7.80m to
  - 5.80mbgl.3. Groundwater monitoring well installed with 50mm HDPE standpipe screened from 2.80m to 6.80mbgl.

  - Groundwater dipped at 3.50mbgl on 18/12/2014.
     Backfilled with cement/bentonite grout from 6.80m to 25.00mbgl.
     Geological interpretation completed by Amec Foster Wheeler.



#### **Borehole Record**

**BH402** 

Project: Edmonton Ecopark 2nd Phase

Project ID: GTS-14-524

Client: Amec Foster Wheeler

Engineer: Joanne Gavigan / Ben Smith

Ground Level: -

Coordinates: 535845.11E

192432.46N

Sheet 3 of 3

										1327	JZ. <del>T</del> UIN
Description	Legend	Depth (m)	O.D. Level (m)		ple Test	SPT/ Casing Depth			rks and Results		Installations
Dense brownish grey clayey silty gravelly fine SAND, with occasional shell fragments. Gravel is rounded fine to coarse flint. Some sandy clay bands and pockets of green sand. (LAMBETH GROUP UNDIFFERENTIATED)	× × × × × × × × × × × × × × × ×	20.40	(111)		(m) 20.00-20.43 20.00-20.43 20.40-20.70	20.00	(m) (11.20	50/280mm (	5,8,8,12,15,	15)	
Brown and grey silty slightly gravelly fine SAND. Gravel is subrounded fine flint. (LAMBETH GROUP UNDIFFERENTIATED)  Very stiff light grey slightly sandy CLAY.	× × × × × × × × × × × × × × × × × × ×	21.70		D46	21.50-21.95 21.50-21.95 21.70-22.00	21.50	(10.80	) N=42 (5,7,10	0,10,9,13)		
(LAMBETH GROUP UNDIFFERENTIATED)  Dense light grey clayey silty fine SAND. (LAMBETH GROUP UNDIFFERENTIATED)	— → - × × × × × × ×	22.10		B48	22.10-22.50						
				S D50	22.80-23.00 23.00-23.41 23.00-23.41 23.00-23.50	23.00	(17.50	) 50/260mm (i	6,13,16,12, <i>1</i>	14,8)	
Borehole Complete at 25.00 m	X	25.00		D52	24.50-24.87 24.50-25.00	24.50	(17.10	) 50/220mm (!	5,8,8,18,24)	)	
		- - - - - - - - - -									111111111111111111111111111111111111111
		- - - - - - - - -									1
		- - - - - - - - -									
		- - - - - - - - -									
		- - - -			Water Lev	el Obse	ervati	ons			-

Diamete	er Detail	Chi	iseling D	Details		Water	Standing	Standing	Casing	Depth
Depth	Casing	From	To	Time	Date		5			
(m)	Depth (m)	(m)	(m)	(hours)		Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
2 50	2 50				09/12/14	2 90	5	2 90	2.50	
							10			
_0.00	_0.00									
	Depth	(m) Depth (m) 2.50 2.50 8.50 7.50	Depth (m) Casing (pepth (m) Depth (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	Depth   Casing   From   To   (m)   Depth (m)   (m)   (m)   (m)	Depth   Casing (m)   Depth (m)   From (m)   To (hours)	Depth   Casing (m)   Depth (m)   From (m)   To (hours)	Depth (m)   Casing (pepth (m)   From (m)   To (hours)   Date   Strike (m)	Depth   Casing (m)   Depth (m)   Casing (m)   To (m)   Time (nours)	Depth   Casing (m)   Depth (m)   Casing (m)   To (m)   Time (hours)   Date   Strike (m)   Time (mins)   Level (m)	Depth   Casing (m)   Depth (m)   From (m)   To (m)   Time (hours)   Date   Standing   Standing   Casing (m)   Depth (m)   Depth (m)   Depth (m)

Dates:

08/12/2014-12/12/2014

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: J. Tomalin

Checked By: P. Lewin

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl.
2. Environmental seal installed from 2.50m to 0.50mbgl and from 7.80m to

5.80mbgl.3. Groundwater monitoring well installed with 50mm HDPE standpipe screened from 2.80m to 6.80mbgl.

Groundwater dipped at 3.50mbgl on 18/12/2014.
 Backfilled with cement/bentonite grout from 6.80m to 25.00mbgl.
 Geological interpretation completed by Amec Foster Wheeler.

# **GROUND TECHNOLOGY**

#### **Borehole Record**

**BH403** 

Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

Project: Edmonton Ecopark 2nd Phase

Project ID: GTS-14-524

Client: Amec Foster Wheeler

Engineer: Joanne Gavigan / Ben Smith

Ground Level: -

Coordinates: 535794.32E

192587.13N

Sheet 1 of 2

								l I	92307.13IN
Description	Legend	Depth	O.D.	Sam	ple Test	SPT/	CPT	Remarks and	
υσοσιβιίοι	Legena	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	Test Results SPT/HV/PP (Recovery) (	FID Installations
MADE GROUND: Brick Cobbles		0.08		B1 B2	0.05-0.15 0.25-0.40				10000
MADE GROUND: Orangish brown silty fine to coarse SAND and GRAVEL. Gravel is angular fine to coarse flint, brick and concrete.		0.50		B3 B4	0.50-0.70				
MADE GROUND: Yellowish brown fine to coarse SAND and GRAVEL, with occasional wood fragments. Gravel is angular to subangular fine to coarse flint and concrete.		1.50		B5 S	1.50-1.60 1.60-2.05	0.00		N=17 (2,1,6,7,3,1)	
MADE GROUND: Yellowish brown slightly silty very gravelly fine to coarse SAND. Gravel is angular fine to coarse flint and brick.		2.10		D6 B7 B8	1.60-2.05 1.60-2.00 2.10-2.30				
MADE GROUND: Medium dense brown sandy GRAVEL, with frequent cobbles. Gravel is angular fine to coarse concrete.		<del>\\\\\</del>		S B10 D9	2.50-2.95 2.50-3.00 2.50-2.95	0.00		N=4 (1,1,1,1,1,1)	-
MADE GROUND: Brownish grey silty gravelly fine to coarse SAND. Gravel is angular fine to medium flint and brick.		****		S D11	3.50-3.78 3.50-3.78	2.50		49/132mm - Abandoned	
MADE GROUND: Firm brownish grey sandy slightly gravelly CLAY. Gravel is angular fine to medium flint and brick.		4.20		B12 B13	3.50-3.80 3.80-4.20				
MADE GROUND: Firm dark grey and brownish grey sandy slightly gravelly CLAY, with frequent cobbles. Gravel is angular fine to coarse flint, brick and concrete.		4.80		S D14 B15 B17	4.50-4.95 4.50-4.95 4.50-5.00 4.80-5.00	4.50	(4.40)	N=3 (1,0,1,0,1,1)	-
MADE GROUND: Light grey weak concrete.	*****	<b>}</b>		_					=
MADE GROUND: Brownish grey clayey fine to coarse SAND and GRAVEL. Gravel is angular fine to coarse brick and concrete.		6.00		S D16 B18	5.50-5.95 5.50-5.95 5.50-6.00	5.50	(5.40)	N=5 (4,3,2,1,1,1)	-
MADE GROUND: Soft dark grey and grey sandy slightly gravelly CLAY, with occasional shell fragments. Gravel is angular to subrounded fine to medium flint with rare brick. Moderate organic odour.		XXXXX		S D19 B20 B21	6.50-6.95 6.50-6.95 6.50-7.00 6.50-7.00	6.50	(6.00)	N=7 (7,4,2,1,2,2)	
MADE GROUND: Grey silty very sandy GRAVEL. Gravel is angular fine to coarse flint and concrete.		7.50		S	7.50-7.95	7.50	(7.50)	N=4 (1,1,1,1,1,1)	
MADE GROUND: Firm brownish grey silty gravelly CLAY. Gravel is angular fine to coarse brick and concrete.		7.50 7.50		D22 B23	7.50-7.95 7.50-8.00	7.50	(7.50)	(1,1,1,1,1)	-
Stiff thinly laminated brownish grey slightly silty CLAY, with some fine sandy lenses. (LAMBETH GROUP UNDIFFERENTIATED)	*****	8.60		S D24 B25	8.50-8.95 8.50-8.95 8.60-9.00	8.50		N=16 (1,1,3,4,4,5)	-
	× × ×			UT26	9.50-9.95			50 blows	
Borehole continued	-8	-		D27	9.95-10.00				
<u> </u>					Water Lev	el Obs	ervati	ons	

Hole	Diamete	er Detail	Ch	iseling D	etails		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250	10.60	10.60	3.80	4.20	0120	12/12/14 12/12/14 12/12/14 12/12/14	3.80 3.80 3.80 3.80	5 10 15 20	3.80 3.80 3.80 3.80	3.50 3.50 3.50 3.50	7.50 7.50 7.50 7.50

Dates:

12/12/2014-15/12/2014

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: J. Tomalin

Checked By: P. Lewin

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl.
2. Exploratory hole terminated at 10.60mbgl.
3. Exploratory hole backfilled with grout and surface finished with bricks upon completion.
4. Geological interpretation completed by Amec Foster Wheeler.

#### **Borehole Record**

**BH403** 

Project: Edmonton Ecopark 2nd Phase

Project ID: GTS-14-524

Client: Amec Foster Wheeler

Engineer: Joanne Gavigan / Ben Smith

Ground Level: -

Coordinates: 535794.32E

192587.13N

Sheet 2 of 2

								192307.1310			
Description	Legend	Depth (m)	O.D. Level	Samp Type	Die Test Depth (m)	SPT/C Casing W Depth D (m)	Remark Test Re	esults		Installations	
Stiff thinly laminated brownish grey slightly silty CLAY, with some fine sandy lenses. (LAMBETH GROUP UNDIFFERENTIATED)  Borehole Complete at 10.60 m	xx:	10.60			Vater Lev						

250

12/12/2014-15/12/2014

From (m)

3.80

Chiseling Details

Time (hours)

0120

To (m)

4.20

Dates: Plant:

Dando 2000

Drilled By:

Diameter Depth (mm) (m)

A. Elshof

Casing Depth (m)

10.60

Logged By: J. Tomalin

Hole Diameter Detail

10.60

Checked By: P. Lewin

12/12/14 12/12/14 12/12/14

Date

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl.

2. Exploratory hole terminated at 10.60mbgl.

Standing

Time (mins)

5 10 15

20

Water

3.80 3.80 3.80 3.80

Strike (m)

3. Exploratory hole backfilled with grout and surface finished with bricks upon completion.

Standing

Level (m)

3.80 3.80 3.80 3.80

Casing

Depth (m)

3.50 3.50 3.50 3.50

Depth

Sealed (m)

7.50 7.50 7.50 7.50

4. Geological interpretation completed by Amec Foster Wheeler.

#### **Borehole Record**

**BH404** 

Project: Edmonton Ecopark 2nd Phase

Project ID: GTS-14-524

Client: Amec Foster Wheeler

Engineer: Joanne Gavigan / Ben Smith

Ground Level: -

Coordinates: 535762.18E

192693 05N

Sheet 1 of 2

					192	2693.05N				
		Depth	O.D.	Sam	ple Test	SPT/CP	T Remarks and			
Description	Legend	(m)	Level	Туре		Casing Wa Depth Dep (m) (m	ter oth Test Results	Installations		
MADE GROUND: Reinforced Concrete	XXXX	_	(m)		(m)	(m) (n	SPT/HV/PP (Recovery) (ppr	n)		
		0.25		B1 B2	0.25-0.40 0.40-0.60			4.6		
MADE GROUND: Sandy GRAVEL. Gravel is angular fine to coarse concrete.	$\otimes \otimes \otimes$	0.40		B3	0.60-0.80					
MADE GROUND: Orangish brown slightly silty very gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint and concrete.		1.00		B4	1.00-1.20			-		
MADE GROUND: Brown silty very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint and brick.		1.80		S D5 B6	1.50-1.95 1.50-1.95 1.50-2.00	0.00	N=7 (3,5,3,2,1,1)	= = = = = = = = = = = = = = = = = = = =		
MADE GROUND: Brownish grey clayey very gravelly fine to coarse SAND, with occasional cobbles. Gravel is angular fine to coarse flint and brick. Rare pottery and glass.		XXXXX		S D7 B8	2.50-2.95 2.50-2.95 2.50-3.00	2.00	N=4 (1,0,1,1,1,1)	-		
MADE GROUND: Soft thinly laminated brownish grey and greyish brown gravelly CLAY, with occasional cobbles. Gravel is angular fine to coarse flint, brick and concrete. Rare pottery, glass and metal.		<del>Yww.w.k.</del>		S B10 D9	3.50-3.95 3.50-4.00 3.50-3.95	3.00	N=3 (1,0,1,0,1,1)			
		<del>YYYYYY</del>		S D11 B12	4.50-4.95 4.50-4.95 4.50-5.00	4.00	N=5 (1,1,1,1,1,2)	-		
		HANNAN		S D13 B14 B16	5.50-5.95 5.50-5.95 5.50-6.00 5.90-6.10	5.00	N=11 (1,1,1,2,4,4)			
Firm brownish grey silty CLAY, with some sandy silt bands. (LAMBETH GROUP UNDIFFERENTIATED)	Xx	6.50		S D15 B17	6.50-6.95 6.50-6.95 6.50-7.00	6.50 (6.4	N=4 (1,1,1,1,1,1)			
	xx			S D18 B19	7.50-7.95 7.50-7.95 7.50-8.00	7.50 (7.5	30) N=7 (1,1,1,1,2,3)	-		
Stiff to very stiff locally thinly laminated brownish grey silty CLAY, with rare flint gravel, locally bioturbated, some thin sandy silt bands. (LAMBETH GROUP UNDIFFERENTIATED)	X	8.00		S D1 B2	8.00-8.45 8.00-8.45 8.00-8.50	8.00 (3.6	60) N=13 (1,2,3,3,3,4)			
	XX XX XX			S D3 B4	9.00-9.45 9.00-9.45 9.00-9.50	9.00 (3.4	40) N=18 (2,2,3,5,5,5)	-		
Borehole continued	xx	×								
	Water Level Observations									

						Trator Estar Spectrations							
H	Hole Diamet	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth		
Diame (mm		Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)		
15 25		12.00 8.00				16/12/14 16/12/14 16/12/14 16/12/14	6.00 6.00 6.00 6.00	5 10 15 20	5.95 5.90 5.90 5.85	6.00 6.00 6.00 6.00	8.00 8.00 8.00 8.00		

Dates:

15/12/2014-18/12/2014

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: J. Tomalin

Checked By: P. Lewin

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl.
2. Environmental seal installed from 7.50m to 5.50mbgl.
3. Exploratory hole backfilled with grout and surface reinstated with hardstanding on completion.
4. Geological interpretation completed by Amec Foster Wheeler.

#### **Borehole Record**

**BH404** 

Project: Edmonton Ecopark 2nd Phase

Project ID: GTS-14-524

Client: Amec Foster Wheeler

Engineer: Joanne Gavigan / Ben Smith

Ground Level: -

Coordinates: 535762.18E

192693.05N

Sheet 2 of 2

										1926	93.05N
Deservation	_	Legend	Denth	O.D.	Sam	ple Test	SPT/CP		marks and		
Descriptio	n	Legena	(m)	L FE A CI		Depth	Casing Wat Depth Dep (m) (m	_{er} Te	st Results	FID	Installations
Ctiff to your stiff locally thinly I	aminated	>		(m)	UT5	(m) 10.00-10.45	(m) (m	30 blow	/PP (Recovery)	(ppm)	
Stiff to very stiff locally thinly I brownish grey silty CLAY, wit locally bioturbated, some thir (LAMBETH GROUP UNDIFF	h rare flint gravel, n sandy silt bands.	x x x				10.45-10.50		00 5/0 1/	S		
		x _ x _ x _ x _ x _ x _ x _ x _ x _ x _			S D7 B8	11.50-11.95 11.50-11.95 11.50-12.00	11.00	N=20 (2	2,3,4,4,6,6)		
		××			UT9	13.00-13.45		40 blow	s		- - -
		xxx			D10	13.45-13.50					
		x x x				14.50-14.95 14.50-14.95 14.50-15.00	12.00	N=22 (2	2,3,4,5,6,7)		
Name of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the seco		xxx	16.40			16.00-16.45 16.45-16.50		45 blow	s		
Very stiff greenish grey and g gravelly CLAY, with occasion Gravel is rounded fine flint. (LAMBETH GROUP UNDIFF	al shell fragments.	× × × ×	17.00			17.00-17.20					- - -
Brownish grey gravelly very s SAND, with occasional shell f rounded fine flint. (LAMBETH GROUP UNDIFF	ragments. Gravel is	×. ×. ×. ×. ×. ×. ×. ×. ×. ×. ×. ×. ×. ×	17.40 17.80 18.00		S D16	17.50-17.95 17.50-17.95	12.00 (10.	50) N=25 (5	i,5,5,5,7,8)		
Greenish grey silty CLAY, wit fragments. Some sandy silt a bands. (LAMBETH GROUP UNDIFF	nd silty fine sand		18.45								
Green and blue silty fine SAN (LAMBETH GROUP UNDIFF	ID. ERENTIATED)		E								
Firm to stiff green and blue C (LAMBETH GROUP UNDIFF Borehole Complete at 18.45	ERENTIATED)										
						Water Lev	el Observa	itions			
Hole Diameter Detail	Chiseling Details	Date		Water		Standing	Stan	ding	Casing		Depth

Hole I	Diamete	er Detail	Ch	iseling [	Details	_	Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hours)	Date	Date Strike (m)		Level (m)	Depth (m)	Sealed (m)
150 250	18.45 8.00	12.00 8.00				16/12/14 16/12/14 16/12/14 16/12/14	6.00 6.00 6.00 6.00	5 10 15 20	5.95 5.90 5.90 5.85	6.00 6.00 6.00 6.00	8.00 8.00 8.00 8.00

Dates:

15/12/2014-18/12/2014

Plant:

Dando 2000

Drilled By:

A. Elshof

Logged By: J. Tomalin

Checked By: P. Lewin

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl.
2. Environmental seal installed from 7.50m to 5.50mbgl.

Exploratory hole backfilled with grout and surface reinstated with hardstanding on completion.
 Geological interpretation completed by Amec Foster Wheeler.



GTS-14-524
Edmondton Ecopark
Advent Way
Edmonton

Appendix B

Geotechnical Lab Results

Ground Technology Services





### **Contract Number: 25599**

Client's Reference: GTS-14-524 Report Date: 26-01-2015

**Client Ground Technology Services** 

Maple Road Kings Lynn Norfolk PE34 3AF

Contract Title: Edmonton Eco Park 2nd Phase

For the attention of: Mail

Date Received: 12-01-2015

Date Commenced: 12-01-2015

Date Completed: 26-01-2015

Test Description	Qty
<b>Moisture Content</b> 1377 : 1990 Part 2 : 3.2 - * UKAS	27
4 Point Liquid & Plastic Limit (LL/PL) 1377: 1990 Part 2: 4.3 & 5.3 - * UKAS	27
PSD Wet Sieve method 1377 : 1990 Part 2 : 9.2 - * UKAS	11
PSD: Sedimentation by pipette carried out with Wet Sieve 1377 : 1990 Part 2 : 9.4 - * UKAS	7
Quick Undrained Triaxial Compression test - single specimen at one confining pressure (100mm or 38mm diameter)  1377: 1990 Part 7: 8 - * UKAS	6
Determination of Permeability in a triaxial cell BS1377 Part 6 :1990 Clause 6 - * UKAS	6
Extra Over Item (4 Days Over)	30

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

#### **Approved Signatories:**

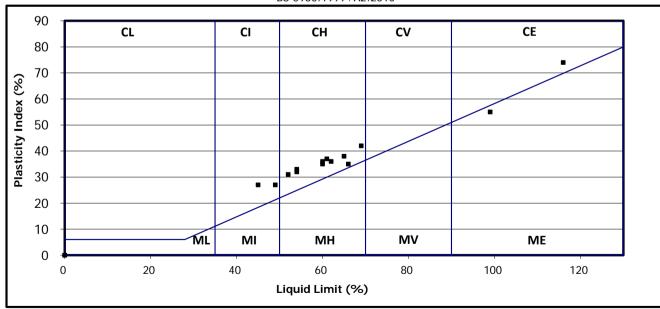
Alex Wynn (Associate Director) - Benjamin Sharp (Contracts Manager) - D V Edwards (Managing Director) Emma Williams (Office Manager) - Paul Evans (Quality/Technical Manager)

Test Report: Method of the Determination of the plastic limit and plasticity index

BS 1377: Part 2: 1990 Method 5

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase


Contract Number: 25599-120115

Hole/			Moisture	Liquid	Plastic	Plasticity	%	
Sample	Sample	Depth	Content	Limit	Limit	Index	Passing	Remarks
Number	Туре	m	%	%	%	%	.425mm	
			CI. 3.2	CI. 4.3/4.4	CI. 5.	CI. 6.		
BH401/7	В	2.00 - 2.30	73	99	44	55	100	ME Extremely High Plasticity
BH401/20	В	6.80 - 7.00	35	66	31	35	100	CH High Plasticity
BH401A/24	D	8.95 - 9.00	23	52	21	31	100	CH High Plasticity
BH401A/28	D	11.45 - 11.50	24	54	22	32	100	CH High Plasticity
BH401A/33	D	14.45 - 14.50	30	65	27	38	100	CH High Plasticity
BH401A/37	D	17.45 - 17.50	25	60	24	36	100	CH High Plasticity
BH401A/41	В	18.70 - 19.00	36	62	26	36	75	CH High Plasticity
BH401A/46	D	21.50 - 21.95	21	49	22	27	100	CI Intermediate Plasticity
BH402/5	D	1.50 - 2.15	85	116	42	74	100	CE Extremely High Plasticity
BH402/17	В	5.70 - 5.90	25	54	21	33	74	CH High Plasticity
BH402/18	D	6.50 - 6.95	2.7		NP		5	
BH402/22	D	7.95 - 8.00	28	60	25	35	100	CH High Plasticity
BH402A/26	D	9.95 - 10.00	29	69	27	42	100	CH High Plasticity
BH402A/36	D	15.95 - 16.00	25	61	24	37	100	CH High Plasticity
BH402A/47	В	21.70 - 22.00	19	45	18	27	90	CI Intermediate Plasticity

Symbols: NP: Non Plastic #: Liquid Limit and Plastic Limit Wet Sieved

#### PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

BS 5930:1999+A2:2010





For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Jonathan Tatam (Office/Quality Assistant)

Date: 22.1.15



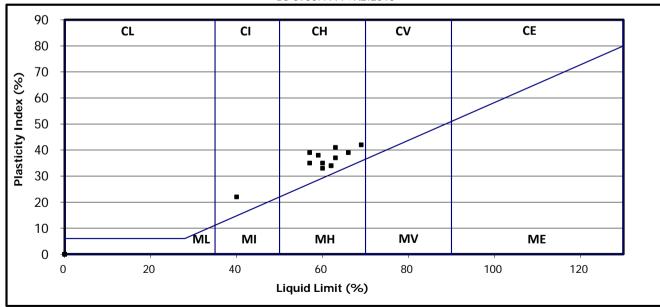


Test Report: Method of the Determination of the plastic limit and plasticity index

BS 1377: Part 2: 1990 Method 5

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase


Contract Number: 25599-120115

Hole/			Moisture	Liquid	Plastic	Plasticity	%	
Sample	Sample	Depth	Content	Limit	Limit	Index	Passing	Remarks
Number	Туре	m	%	%	%	%	.425mm	
			CI. 3.2	CI. 4.3/4.4	CI. 5.	CI. 6.		
BH403/22	D	7.50 - 7.95	39	60	25	35	88	CH High Plasticity
BH403/23	В	7.50 - 8.00	39	62	28	34	82	CH High Plasticity
BH403/25	В	8.60 - 9.00	31	57	18	39	100	CH High Plasticity
BH403/27	D	9.95 - 10.00	23	40	18	22	100	CI Intermediate Plasticity
BH404/16	В	5.90 - 6.10	52	60	27	33	75	CH High Plasticity
BH404/19	В	7.50 - 8.00	33	62	28	34	88	CH High Plasticity
BH404A/2	В	8.00 - 8.50	36	63	22	41	93	CH High Plasticity
BH404A/4	В	9.00 - 9.50	27	57	22	35	100	CH High Plasticity
BH404A/8	В	11.50 - 12.00	29	66	27	39	100	CH High Plasticity
BH404A/10	D	13.45 - 13.50	27	69	27	42	100	CH High Plasticity
BH404A/12	В	14.50 - 15.00	25	59	21	38	100	CH High Plasticity
BH404A/14	D	16.45 - 16.50	26	63	26	37	100	CH High Plasticity

Symbols: NP: Non Plastic #: Liquid Limit and Plastic Limit Wet Sieved

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

BS 5930:1999+A2:2010





For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Jonathan Tatam (Office/Quality Assistant)

Date: 22.1.15





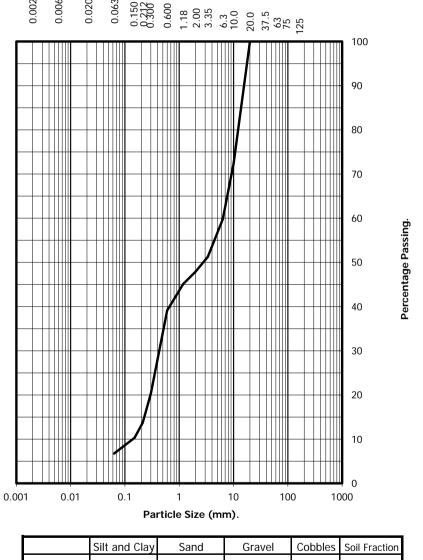
Test Report: Particle Size Distribution Test

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115


Hole Number: BH401
Sample Number: 10
Depth from (m): 3.50
Depth to (m): 3.95

Description: Brown silty clayey sandy GRAVEL (fine-medium)

Sample Type: D

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	100
20	100
10	72
6.3	60
3.35	51
2.00	48
1.18	45
0.60	39
0.300	20
0.212	14
0.150	10
0.063	7

Particle	Percentage					
Diameter	Passing					
0.02	#					
0.006	#					
0.002	#					



Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
7	41	52	0	Total Percentage

#### Remarks:

#- not determined



For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)

Matan

Date: 22.1.15



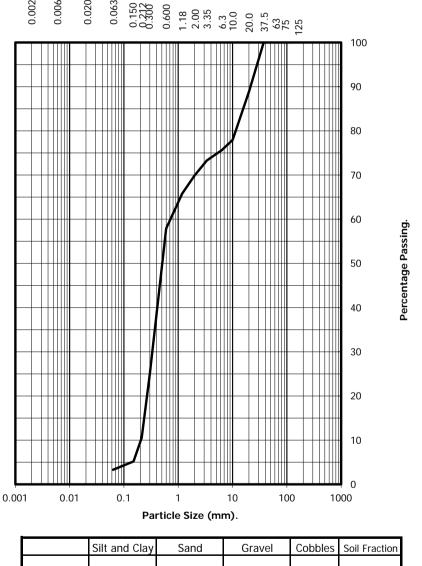
**Particle Size Distribution Test Test Report:** 

> BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Client ref: GTS-14-524

Location: **Edmonton Eco Park 2nd Phase** 

**Contract Number:** 25599-120115


**Hole Number: BH401** 14 Sample Number: Depth from (m): 5.50 5.95 Depth to (m):

**Description:** Brown silty clayey gravelly (fine-coarse) SAND

Sample Type: D

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	100
20	89
10	78
6.3	76
3.35	73
2.00	70
1.18	66
0.60	58
0.300	25
0.212	10
0.150	5
0.063	3

Particle Diameter	Percentage Passing
0.02	#
0.006	#
0.002	#



Total 3 67 30 0 Percentage

#### Remarks:

#- not determined



For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)

Date: 22.1.15



**Particle Size Distribution Test Test Report:** 

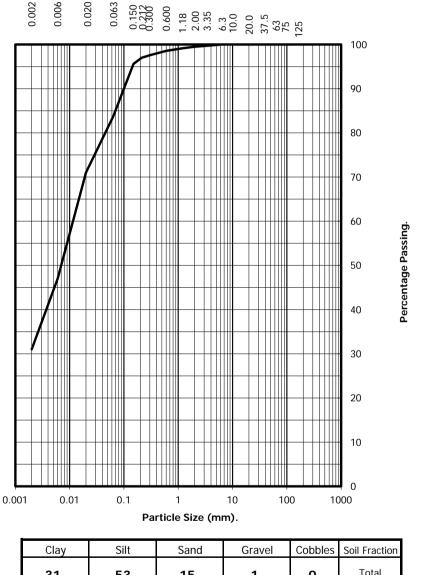
BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: GTS-14-524

**Edmonton Eco Park 2nd Phase** Location:

**Contract Number:** 25599-120115


**Hole Number: BH401A** 39 Sample Number: Depth from (m): 18.10 Depth to (m): 18.30

Brown gravelly (fine) sandy clayey SILT **Description:** 

Sample Type: В

BS Test	Percentage	
Sieve	Passing	
125	100	
75	100	
63	100	
37.5	100	
20	100	
10	100	
6.3	100	
3.35	100	
2.00	99	
1.18	99	
0.60	99	
0.300	98	
0.212	97	
0.150	96	
0.063	84	

Particle Diameter	Percentage Passing
0.02	71
0.006	47
0.002	31



Total 31 53 15 1 0 Percentage

#### Remarks:

CI 9.4.8 - Sample has not been pretreated



For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)



BS 1377 Part 2:1990.

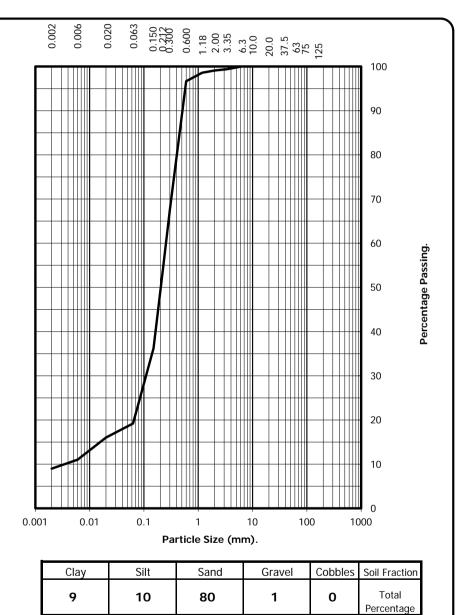
Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115

Hole Number: BH401A


Sample Number:52Depth from (m):24.50Depth to (m):24.95

Description: Brown gravelly (fine) clayey silty SAND

Sample Type: D

BS Test	Percentage	
Sieve	Passing	
125	100	
75	100	
63	100	
37.5	100	
20	100	
10	100	
6.3	100	
3.35	99	
2.00	99	
1.18	99	
0.60	97	
0.300	68	
0.212	52	
0.150	36	
0.063	19	

Particle	Percentage
Diameter	Passing
0.02	16
0.006	11
0.002	9



#### Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL

**GEO SITE & TESTING SERVICES LTD** 

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)

Matan

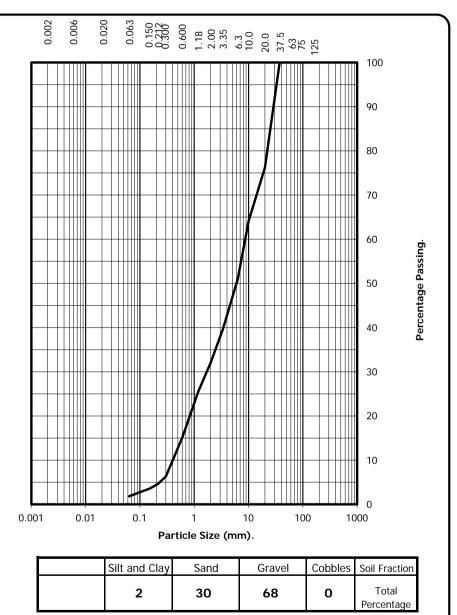


BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115


Hole Number: BH402
Sample Number: 11
Depth from (m): 3.50
Depth to (m): 3.95

Description: Brown silty clayey sandy GRAVEL (fine-coarse)

Sample Type: D

BS Test	Percentage	
Sieve	Passing	
125	100	
75	100	
63	100	
37.5	100	
20	76	
10	64	
6.3	51	
3.35	40	
2.00	32	
1.18	25	
0.60	15	
0.300	6	
0.212	5	
0.150	4	
0.063	2	

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#



#### Remarks:

#- not determined



For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)

Matan

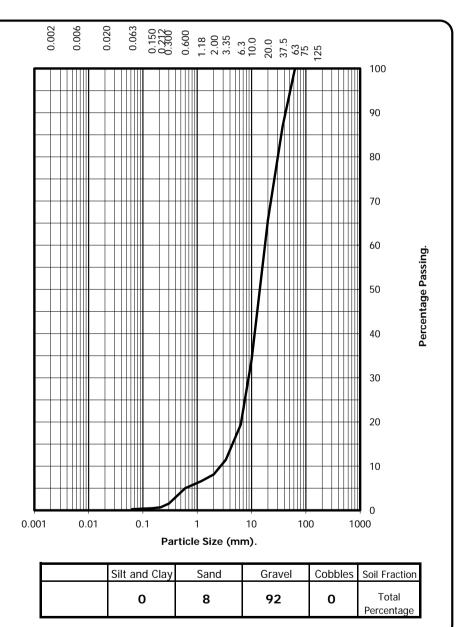


BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115


Hole Number: BH402
Sample Number: 16
Depth from (m): 5.50
Depth to (m): 6.00

Description: Brown sandy GRAVEL (fine-coarse)

Sample Type: B

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	87
20	66
10	34
6.3	19
3.35	11
2.00	8
1.18	7
0.60	5
0.300	2
0.212	1
0.150	0
0.063	0

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#



#### Remarks:

#- not determined



For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)

Matan



BS 1377 Part 2:1990.

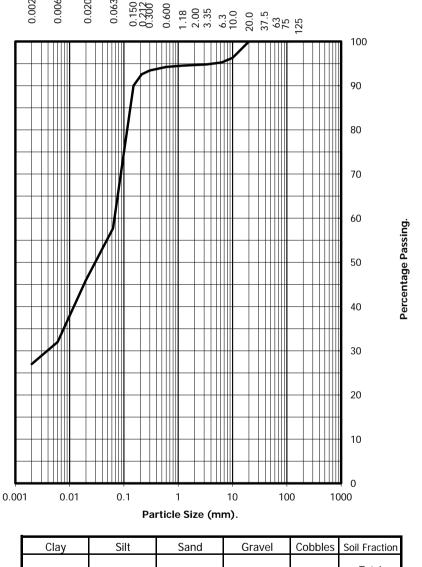
Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115

Hole Number: BH402A


Sample Number:40Depth from (m):17.80Depth to (m):18.00

Description: Brown gravelly (fine-medium) clayey silty SAND

Sample Type: B

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	100
20	100
10	96
6.3	95
3.35	95
2.00	95
1.18	95
0.60	94
0.300	93
0.212	93
0.150	90
0.063	58

Particle	Percentage
Diameter	Passing
0.02	46
0.006	32
0.002	27



Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
27	31	37	5	0	Total Percentage

#### Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L

GEO SITE & TESTING SERVICES LTD

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)

Matan



**Particle Size Distribution Test Test Report:** 

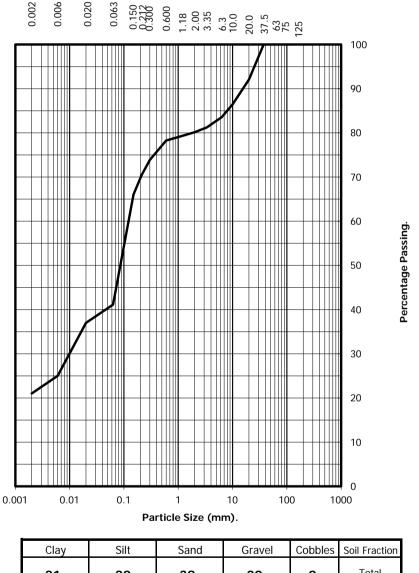
BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: GTS-14-524

Location: **Edmonton Eco Park 2nd Phase** 

**Contract Number:** 25599-120115


**Hole Number: BH402A** 44 Sample Number: Depth from (m): 20.00 Depth to (m): 20.43

Brown gravelly (fine-coarse) silty clayey SAND **Description:** 

Sample Type: D

BS Test	Percentage	
Sieve	Passing	
125	100	
75	100	
63	100	
37.5	100	
20	92	
10	86	
6.3	84	
3.35	81	
2.00	80	
1.18	79	
0.60	78	
0.300	74	
0.212	70	
0.150	66	
0.063	41	

Particle	Percentage			
Diameter	Passing			
0.02	37			
0.006	25			
0.002	21			



Total 21 20 39 20 0 Percentage

#### Remarks:

CI 9.4.8 - Sample has not been pretreated



For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)



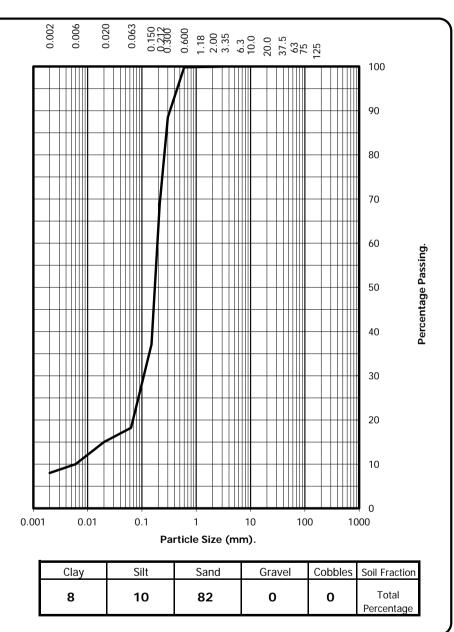
BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115


Hole Number: BH402A Sample Number: 48
Depth from (m): 22.10

Depth to (m): 22.50
Description: Brown clayey silty SAND

Sample Type: B

BS Test	Percentage		
Sieve	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	100		
10	100		
6.3	100		
3.35	100		
2.00	100		
1.18	100		
0.60	100		
0.300	89		
0.212	69		
0.150	37		
0.063	18		

Particle	Percentage				
Diameter	Passing				
0.02	15				
0.006	10				
0.002	8				



#### Remarks:

CI 9.4.8 - Sample has not been pretreated



For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)

Matan



BS 1377 Part 2:1990.

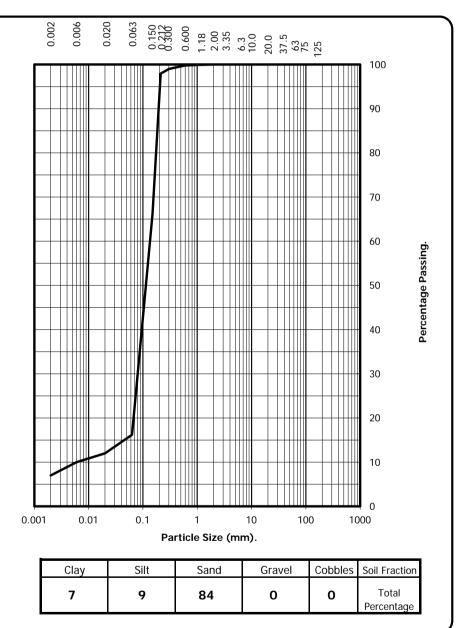
Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115

Hole Number: BH402A


Sample Number:52Depth from (m):24.50Depth to (m):24.87

Description: Brown clayey silty SAND

Sample Type: D

BS Test	Percentage		
Sieve	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	100		
10	100		
6.3	100		
3.35	100		
2.00	100		
1.18	100		
0.60	100		
0.300	99		
0.212	98		
0.150	66		
0.063	16		

Particle Diameter	Percentage Passing				
0.02	12				
0.006	10				
0.002	7				



#### Remarks:

Cl 9.4.8 - Sample has not been pretreated



For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)

Matan



BS 1377 Part 2:1990.

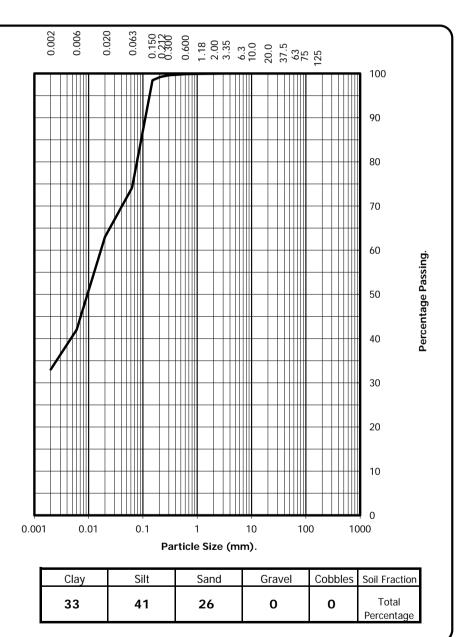
Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115

Hole Number: BH404A


Sample Number: 15
Depth from (m): 17.00
Depth to (m): 17.20

Description: Brown sandy clayey SILT

Sample Type: B

BS Test	Percentage		
Sieve	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	100		
10	100		
6.3	100		
3.35	100		
2.00	100		
1.18	100		
0.60	100		
0.300	100		
0.212	99		
0.150	98		
0.063	74		

Particle	Percentage			
Diameter	Passing			
0.02	63			
0.006	42			
0.002	33			



#### Remarks:

Cl 9.4.8 - Sample has not been pretreated



For and behalf of GEO Site & Testing Services Ltd

Authorised By: Jonathan Tatam (Office/Quality Assistant)

Matan



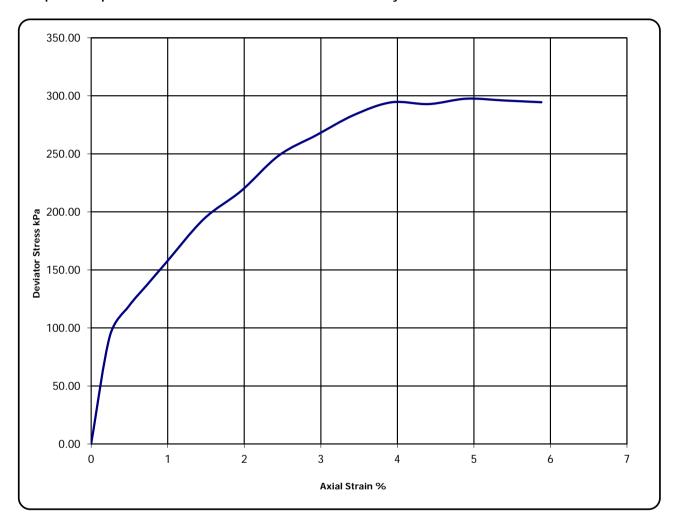
BS 1377: Part7: Clause 8: 1990 Single Stage Test

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115


Hole Number BH401A

Sample Number: 23

Depth (m): 8.50 - 8.95

Sample Type: UT

Sample Description: Firm brown silty CLAY



Diamete	er (mm):	(mm): 104 Height (mm):		204	Test:	UT 104 mm Single Stage.			
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
Α	28	1.91	1.50	100	297	149	4.9	Compound	Latex Membrane used 0.2 mm thickness



Checked By: Jonathan Tatam (Office/Quality Assistant) Approved By: Paul Evans (Quality Manager)





BS 1377: Part7: Clause 8: 1990 Single Stage Test

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: **Edmonton Eco Park 2nd Phase** 

**Contract Number:** 25599-120115

**Hole Number** BH401A Sample Number: 23

Depth (m): 8.50 8.95

Sample Type: UT





Post Test Specimen

Specimen Split

Diamete	er (mm):	104	Height	(mm):	204	Test:	UT 1		UT 104 mm Single Stage.	
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks	
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min	
Α	28	1.91	1.50	100	297	149	4.9	Compound	Latex Membrane used 0.2 mm thickness	



Checked By: Jonathan Tatam (Office/Quality Assistant)



2000 AC

Approved By:

**Undrained Shear Strength in Triaxial Compression** Test Report:

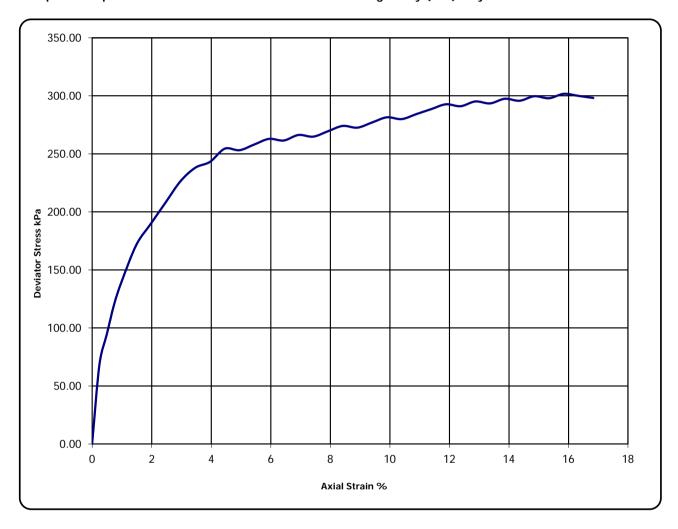
BS 1377: Part7: Clause 8: 1990 Single Stage Test

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: **Edmonton Eco Park 2nd Phase** 

**Contract Number:** 25599-120115


**Hole Number** BH401A

Sample Number: 27

Depth (m): 11.00 11.45

Sample Type: UT

Sample Description: Firm brown gravelly (fine) silty CLAY



Diamete	er (mm):	103 Height (mm):		202	Test:		mm Single Stage.		
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
A	24	2.06	1.66	100	302	151	15.8	Compound	Latex Membrane used 0.2 mm thickness



Jonathan Tatam (Office/Quality Assistant)

Approved By: Paul Evans (Quality Manager)



BS 1377: Part7: Clause 8: 1990 Single Stage Test

11.45

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: **Edmonton Eco Park 2nd Phase** 

**Contract Number:** 25599-120115

**Hole Number** BH401A

Sample Number: Depth (m): 11.00

Sample Type: UT





Post Test Specimen

Specimen Split

Diamete	er (mm):	103	Height	(mm):	202	Test:		UT 103	mm Single Stage.
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
Α	24	2.06	1.66	100	302	151	15.8	Compound	Latex Membrane used 0.2 mm thickness



Checked By: Jonathan Tatam (Office/Quality Assistant)





2000 AC

**Undrained Shear Strength in Triaxial Compression** Test Report:

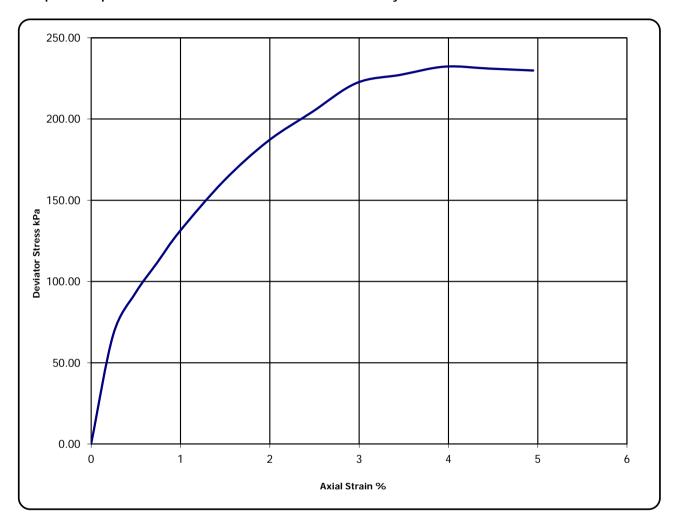
BS 1377: Part7: Clause 8: 1990 Single Stage Test

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: **Edmonton Eco Park 2nd Phase** 

**Contract Number:** 25599-120115


**Hole Number** BH401A

Sample Number: 32

Depth (m): 14.00 14.45

Sample Type: UT

Sample Description: Firm brown silty CLAY



Diamete	er (mm): 104 Height (mm):		202	Test:	UT 104 mm Single Stage.				
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
Α	28	1.94	1.51	150	232	116	4.0	Compound	Latex Membrane used 0.2 mm thickness



Checked By:

Jonathan Tatam (Office/Quality Assistant)

Approved By: Paul Evans (Quality Manager)





BS 1377: Part7: Clause 8: 1990 Single Stage Test

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115

Hole Number BH401A

Sample Number: 32

Depth (m): 14.00 - 14.45

Sample Type : UT





Post Test Specimen

Specimen Split

Diamete	er (mm):	104	Height	(mm):	202	Test:		UT 104	mm Single Stage.
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
Α	28	1.94	1.51	150	232	116	4.0	Compound	Latex Membrane used 0.2 mm thickness



Checked By:
Jonathan Tatam (Office/Quality Assistant)

Paul Evans (Quality Manager)



DP ROB

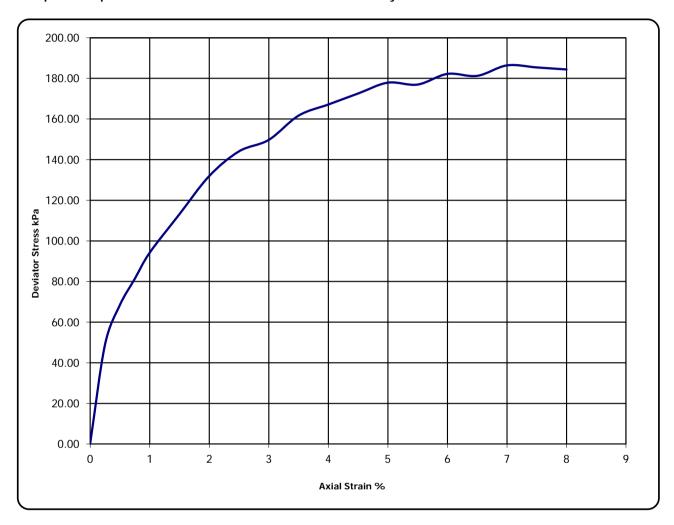
Approved By:

BS 1377: Part7: Clause 8: 1990 Single Stage Test

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase


Contract Number: 25599-120115

Hole Number BH402 Sample Number: 21

Depth (m): 7.50 - 7.95

Sample Type: UT

Sample Description: Stiff brown silty CLAY



Diamete	er (mm):	103	Height	(mm):	200	Test:		UT 103	mm Single Stage.
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
Α	31	1.98	1.52	80	186	93	7.0	Compound	Latex Membrane used 0.2 mm thickness



Jonathan Tatam (Office/Quality Assistant)

Approved By: Paul Evans (Quality Manager)





BS 1377: Part7: Clause 8: 1990 Single Stage Test

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115

Hole Number BH402 Sample Number: 21

Depth (m): 7.50 - 7.95

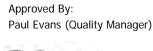
Sample Type: UT





Post Test Specimen

Specimen Split


Diamete	er (mm):	103	Height	(mm):	200	Test:		UT 103	mm Single Stage.
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
Α	31	1.98	1.52	80	186	93	7.0	Compound	Latex Membrane used 0.2 mm thickness



Checked By:

Ionathan Tatam (Office/Quality Assistant)

Jonathan Tatam (Office/Quality Assistant)





DP GIONS

**Undrained Shear Strength in Triaxial Compression** Test Report:

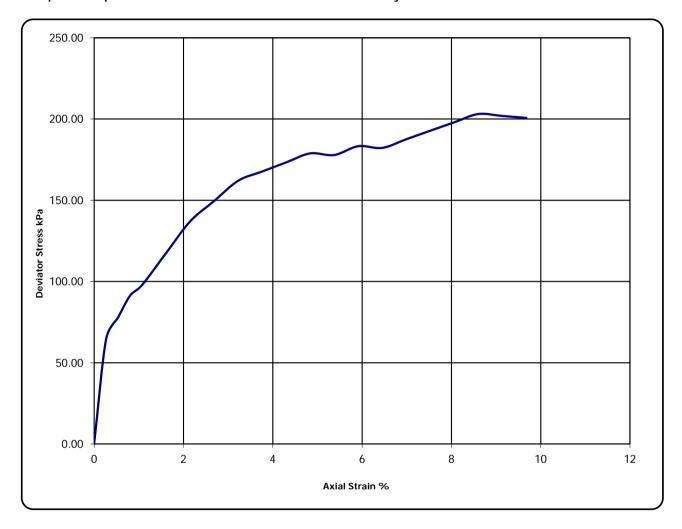
BS 1377: Part7: Clause 8: 1990 Single Stage Test

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: **Edmonton Eco Park 2nd Phase** 

**Contract Number:** 25599-120115


**Hole Number** BH402A

Sample Number: 25

Depth (m): 9.50 9.95

Sample Type: UT

Sample Description: Stiff brown silty CLAY



Diamete	er (mm):	101	Height	(mm):	186	Test:		UT 101	mm Single Stage.
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
Α	30	1.79	1.38	100	203	102	8.6	Compound	Latex Membrane used 0.2 mm thickness



Checked By:

Jonathan Tatam (Office/Quality Assistant)

Approved By: Paul Evans (Quality Manager)





BS 1377: Part7: Clause 8: 1990 Single Stage Test

9.95

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115

Hole Number BH402A Sample Number: 25

Sample Number: 25
Depth (m): 9.50

Sample Type: UT





Post Test Specimen

Specimen Split

Diamete	er (mm):	101	Height	(mm):	186	Test:		UT 101	mm Single Stage.
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
Α	30	1.79	1.38	100	203	102	8.6	Compound	Latex Membrane used 0.2 mm thickness



Checked By:
Jonathan Tatam (Office/Quality Assistant)

16 how

Approved By: Paul Evans (Quality Manager)



DP GONS

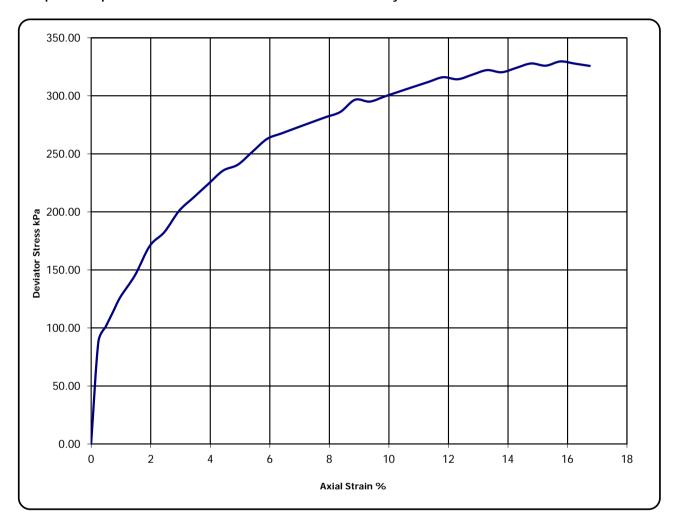
BS 1377: Part7: Clause 8: 1990 Single Stage Test

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115


Hole Number BH402A

Sample Number: 30

Depth (m): 12.50 - 12.95

Sample Type: UT

Sample Description: Firm brown silty CLAY



Diamete	er (mm):	103	Height	(mm):	203	Test:		UT 103	mm Single Stage.
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
Α	24	1.99	1.61	130	330	165	15.8	Compound	Latex Membrane used 0.2 mm thickness



Checked By: Jonathan Tatam (Office/Quality Assistant)

Approved By: tant) Paul Evans (Quality Manager)





BS 1377: Part7: Clause 8: 1990 Single Stage Test

without measurement of Pore Pressure

Client ref: GTS-14-524

Location: Edmonton Eco Park 2nd Phase

Contract Number: 25599-120115

Hole Number BH402A Sample Number: 30

Depth (m): 12.50 - 12.95

Sample Type: UT





Post Test Specimen

Specimen Split

Diamete	er (mm):	103	Height	(mm):	203	Test:		UT 103	mm Single Stage.
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	Rate of strain = 2 %/min
Α	24	1.99	1.61	130	330	165	15.8	Compound	Latex Membrane used 0.2 mm thickness



Checked By:
Jonathan Tatam (Office/Quality Assistant)

atam D





DP GIONS

BS 1377 : Part 6 : 1990 Clause 6

**Specimen Details** 

Borehole	BH401A
Sample No.	36
Depth m	17
Date	26/01/2015
Disturbed / Undisturbed	Undisturbed

#### **Description of Specimen**

Dark greyish brown sl silty stiff CLAY

**Initial Specimen Conditions** 

Height	mm	105.00
Diameter	mm	103.00
Area	mm ²	8332.29
Volume	cm ³	874.89
Mass	g	1716.40
Dry Mass	g	1387.80
Density	Mg/m ³	1.96
Dry Density	Mg/m ³	1.59
Moisture Content	%	23.7
Voids Ratio		0.671
Specific Gravity	kN/m³	2.65
(assume	ed/measured)	assumed

**Final Specimen Conditions** 

Moisture Content	%	24.79
Density	Mg/m ³	2.11
Dry Density	Mg/m ³	1.69

**Test Setup** 

1001 00144	
Date started	13/01/2015
Date Finished	24/01/2015
Top Drain Used	у
Base Drain Used	у
Pressure System Number	PPerm 8
Cell Number	CPerm 8

2P Glons

**Checked and Approved By** 

26/01/15 Date

> **Client Ref** GTS-14-524 **Contract No**

> > 25599



**Edmonton Eco Park 2nd Phase** 

BS 1377 : Part 6 : 1990 Clause 6

#### **Specimen Details**

Borehole		BH401A
Sample No.		36
Depth	m	17
Date		26/01/2015

#### Saturation

Cell Pressure Incr.	kPa	50.00
Back Pressure Incr.	kPa	50.00
Differential Pressure	kPa	0.00
Final Cell Pressure	kPa	200.00
Final Pore Pressure	kPa	199.40
Final B Value		1.00

#### Consolidation

Effective Pressure	kPa	50.00
Cell Pressure	kPa	200.00
Back Pressure	kPa	150.00
Excess Pore Pressure	kPa	49.40
Pore Pressure at End	kPa	151.80
Consolidated Volume	$cm^3$	822.59
Consolidated Height	mm	102.91
Consolidated Area	$\text{mm}^2$	8000.23
Vol. Compressibility	$m^2/MN$	3.5081
Consolidation Coef.	m²/yr.	1.2559
Final Voids Ratio		0.571

Permeability

Cell Pressure	kPa	200.00
Effective Cell Pressure	kPa	50.00
Back Pressure Diff.	kPa	20.00
Mean Rate of Flow	ml/min	0.00082
Average Temperature	'C	20

Vertical Permeability Im/s	8.6 x 10-11
----------------------------	-------------

2 P Gions

**Checked and Approved By** 

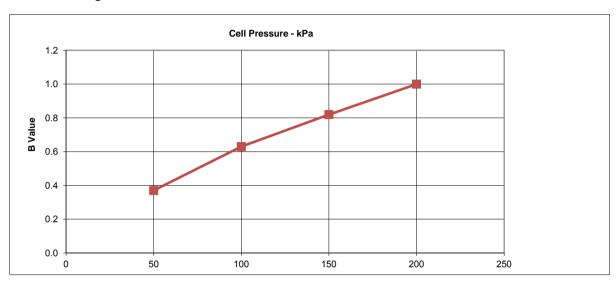
26/01/15 Date

Edmonton Eco Park 2nd Phase

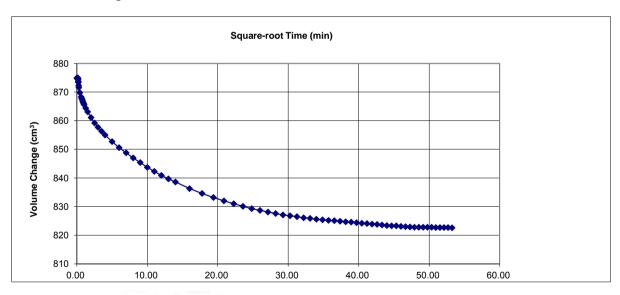
Client Ref GTS-14-524 Contract No

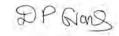


25599


(G/S) / L

BS 1377 : Part 6 : 1990 Clause 6


#### **Specimen Details**

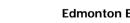

Borehole		BH401A
Sample No.		36
Depth	m	17
Date		26/01/2015

#### **Saturation Stage**



#### **Consolidation Stage**



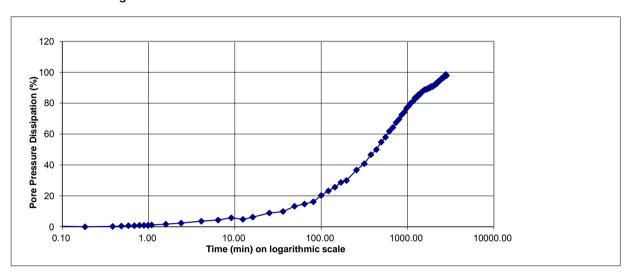



**Checked and Approved By** 

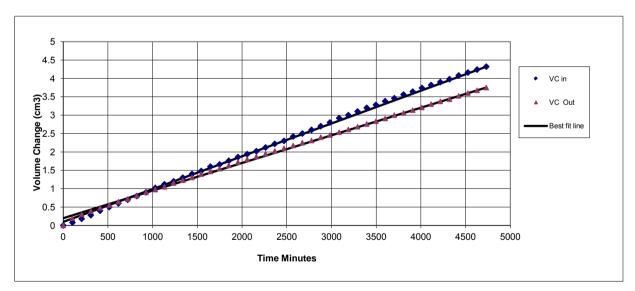
26/01/15 Date

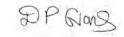
Client Ref GTS-14-524 Contract No






BS 1377 : Part 6 : 1990 Clause 6


#### **Specimen Details**


Borehole		BH401A
Sample No.		36
Depth	m	17
Date		26/01/2015

#### **Consolidation Stage**



#### **Permeability Stage**





**Checked and Approved By** 

26/01/15 Date

Client Ref GTS-14-524 Contract No





**Edmonton Eco Park 2nd Phase** 

BS 1377 : Part 6 : 1990 Clause 6

**Specimen Details** 

Borehole	BH402A
Sample No.	35
Depth m	15.5
Date	26/01/2015
Disturbed / Undisturbed	Undisturbed

#### **Description of Specimen**

Dark greyish brown sI silty stiff CLAY

**Initial Specimen Conditions** 

Height	mm	105.00
Diameter	mm	103.00
Area	mm ²	8332.29
Volume	cm³	874.89
Mass	g	1703.60
Dry Mass	g	1364.90
Density	Mg/m ³	1.95
Dry Density	Mg/m ³	1.56
Moisture Content	%	24.8
Voids Ratio		0.699
Specific Gravity	kN/m³	2.65
(assume	d/measured)	assumed

**Final Specimen Conditions** 

Moisture Content	%	24.82
Density	Mg/m ³	2.09
Dry Density	Mg/m ³	1.67

**Test Setup** 

. 001 00145	
Date started	13/01/2015
Date Finished	24/01/2015
Top Drain Used	у
Base Drain Used	у
Pressure System Number	Р9
Cell Number	C9

DP GronS Checked and Approved By

26/01/15 Date

GS714

**Edmonton Eco Park 2nd Phase** 

Client Ref GTS-14-524 Contract No



BS 1377 : Part 6 : 1990 Clause 6

#### **Specimen Details**

Borehole		BH402A
Sample No.		35
Depth	m	15.5
Date		26/01/2015

#### Saturation

Cell Pressure Incr.	kPa	50.00
Back Pressure Incr.	kPa	48.00
Differential Pressure	kPa	2.00
Final Cell Pressure	kPa	300.00
Final Pore Pressure	kPa	289.00
Final B Value		0.96

#### Consolidation

OULISOHAULION		
Effective Pressure	kPa	50.00
Cell Pressure	kPa	300.00
Back Pressure	kPa	250.00
Excess Pore Pressure	kPa	50.00
Pore Pressure at End	kPa	250.00
Consolidated Volume	$cm^3$	815.89
Consolidated Height	mm	102.64
Consolidated Area	$mm^2$	7957.69
Vol. Compressibility	$m^2/MN$	2.5181
Consolidation Coef.	m²/yr.	1.3487
Final Voids Ratio	-	0.584

Permeability

Cell Pressure	kPa	300.00
Effective Cell Pressure	kPa	50.00
Back Pressure Diff.	kPa	20.00
Mean Rate of Flow	ml/min	0.00058
Average Temperature	'C	20

Vertical Permeability I m/s	6.06 x 10-11
-----------------------------	--------------

DP Gions

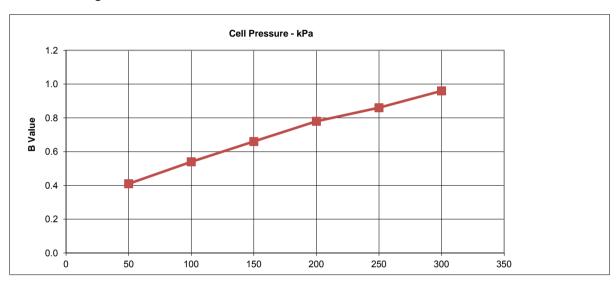
**Checked and Approved By** 

26/01/15 Date

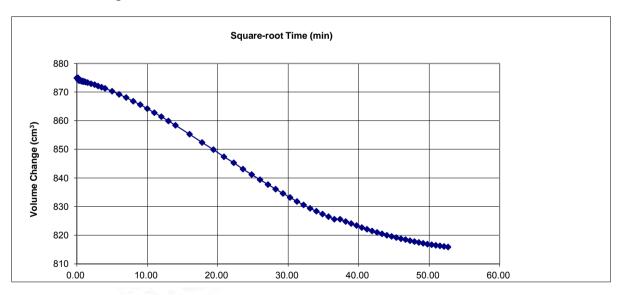
Client Ref GTS-14-524 Contract No

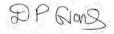





**Edmonton Eco Park 2nd Phase** 

BS 1377 : Part 6 : 1990 Clause 6


#### Specimen Details


Borehole		BH402A
Sample No.		35
Depth	m	15.5
Date		26/01/2015

#### Saturation Stage



#### **Consolidation Stage**



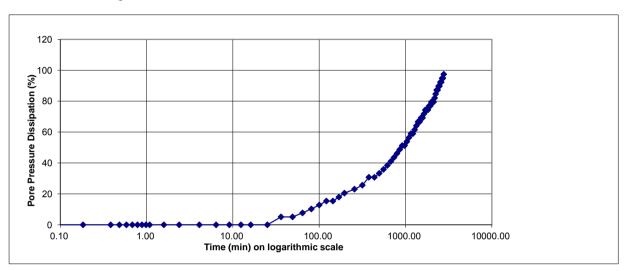


**Checked and Approved By** 

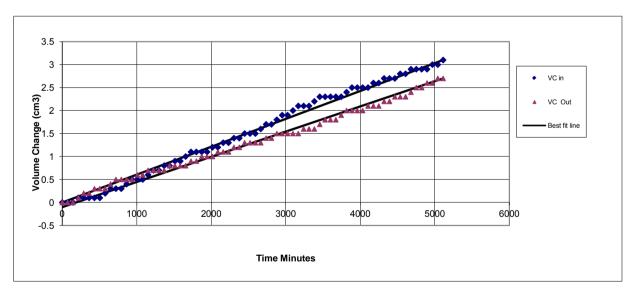
26/01/15 Date

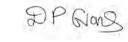
Client Ref
GTS-14-524
Contract No




**Edmonton Eco Park 2nd Phase** 

BS 1377 : Part 6 : 1990 Clause 6


#### Specimen Details


Borehole		BH402A
Sample No.		35
Depth	m	15.5
Date		26/01/2015

#### **Consolidation Stage**



#### **Permeability Stage**





**Checked and Approved By** 

26/01/15 Date

Client Ref GTS-14-524 Contract No





**Edmonton Eco Park 2nd Phase** 

BS 1377 : Part 6 : 1990 Clause 6

**Specimen Details** 

Borehole		BH403
Sample No.		26
Depth Date	m	9.5
Date		26/01/2015
Disturbed / Undisturbed		Undisturbed

#### **Description of Specimen**

Dark greyish brown sl silty stiff CLAY

**Initial Specimen Conditions** 

Height	mm	105.00
Diameter	mm	103.00
Area	$mm^2$	8332.29
Volume	cm ³	874.89
Mass	g	1785.10
Dry Mass	g	1444.20
Density	Mg/m³	2.04
Dry Density	Mg/m ³	1.65
Moisture Content	%	23.6
Voids Ratio		0.605
Specific Gravity	kN/m³	2.65
(assumed/measured)		assumed

**Final Specimen Conditions** 

Moisture Content	%	24.62
Density	Mg/m ³	2.27
Dry Density	Mg/m ³	1.82

**Test Setup** 

1 Oot Ootup	
Date started	13/01/2015
Date Finished	24/01/2015
Top Drain Used	у
Base Drain Used	у
Pressure System Number	PPerm 10
Cell Number	CPerm 10

2P Gions

26/01/15 Date

**Checked and Approved By** 

**Edmonton Eco Park 2nd Phase** 

**Client Ref** GTS-14-524 **Contract No** 



BS 1377 : Part 6 : 1990 Clause 6

#### **Specimen Details**

Borehole		BH403
Sample No.		26
Depth	m	9.5
Date		26/01/2015

#### Saturation

Cell Pressure Incr.	kPa	50.00
Back Pressure Incr.	kPa	47.50
Differential Pressure	kPa	2.50
Final Cell Pressure	kPa	150.00
Final Pore Pressure	kPa	247.10
Final B Value		0.95

#### Consolidation

Effective Pressure	kPa	50.00
Cell Pressure	kPa	250.00
Back Pressure	kPa	200.00
Excess Pore Pressure	kPa	50.00
Pore Pressure at End	kPa	200.00
Consolidated Volume	$cm^3$	792.89
Consolidated Height	mm	101.72
Consolidated Area	$\text{mm}^2$	7811.65
Vol. Compressibility	$m^2/MN$	1.9494
Consolidation Coef.	m²/yr.	1.8745
Final Voids Ratio		0.455

#### Permeability

Cell Pressure	kPa	250.00
Effective Cell Pressure	kPa	50.00
Back Pressure Diff.	kPa	20.00
Mean Rate of Flow	ml/min	0.00080
Average Temperature	'C	20

Vertical Permeability   m/s	8.52 x 10-11
-----------------------------	--------------



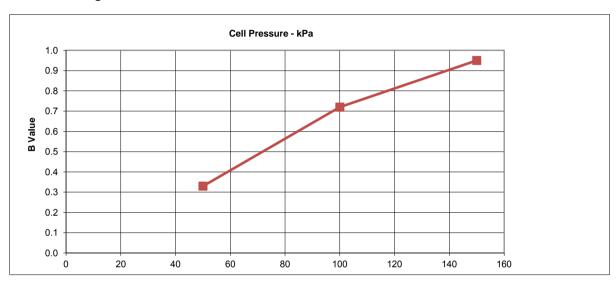
**Checked and Approved By** 

26/01/15 Date

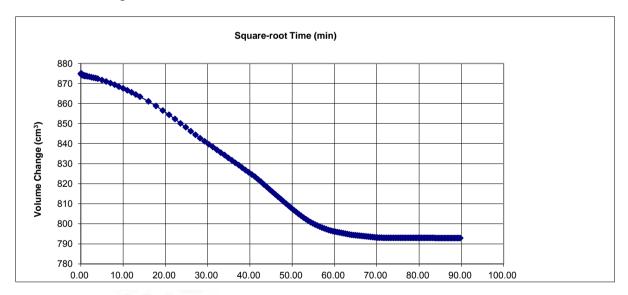
GSTL 650 Sife & Tooling Services Umilian

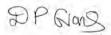
Edmonton Eco Park 2nd Phase (

Client Ref GTS-14-524 Contract No




BS 1377 : Part 6 : 1990 Clause 6


#### **Specimen Details**


Borehole		BH403
Sample No.		26
Depth	m	9.5
Date		26/01/2015

#### **Saturation Stage**



#### **Consolidation Stage**





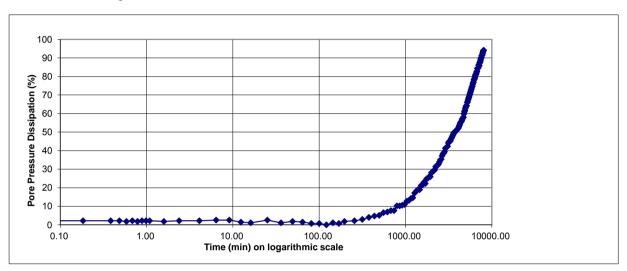
**Checked and Approved By** 

26/01/15 Date

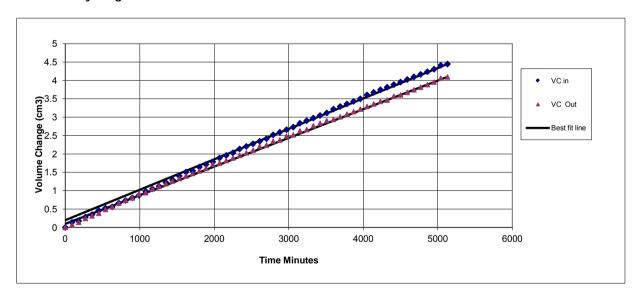


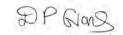
**Edmonton Eco Park 2nd Phase** 

Client Ref GTS-14-524 Contract No 25599




BS 1377 : Part 6 : 1990 Clause 6


#### Specimen Details


Borehole		BH403
Sample No.		26
Depth	m	9.5
Date		26/01/2015

#### **Consolidation Stage**



#### **Permeability Stage**





**Checked and Approved By** 

26/01/15 Date

GS7/1 epo sina a Verling services Umilina

Edmonton Eco Park 2nd Phase

Client Ref GTS-14-524 Contract No 25599



BS 1377 : Part 6 : 1990 Clause 6

**Specimen Details** 

Borehole		BH404A
Sample No.		5
Depth n	n	10
Date		26/01/2015
Disturbed / Undisturbed		Undisturbed

#### **Description of Specimen**

Dark greyish brown sI silty stiff CLAY

**Initial Specimen Conditions** 

Height	mm	105.00
Diameter	mm	103.00
Area	mm ²	8332.29
Volume	cm ³	874.89
Mass	g	1771.40
Dry Mass	g	1438.40
Density	Mg/m³	2.02
Dry Density	Mg/m ³	1.64
Moisture Content	%	23.2
Voids Ratio		0.612
Specific Gravity	kN/m³	2.65
(assumed/measured)		assumed

**Final Specimen Conditions** 

Moisture Content	%	24.39
Density	Mg/m ³	2.07
Dry Density	Mg/m ³	1.66

**Test Setup** 

1 Oot Ootup	
Date started	13/01/2015
Date Finished	24/01/2015
Top Drain Used	у
Base Drain Used	у
Pressure System Number	PPerm 10
Cell Number	CPerm 10

**Checked and Approved By** 

DP GIONS

26/01/15 Date

GSTL 650 Site & Verling Services United

**Edmonton Eco Park 2nd Phase** 

Client Ref GTS-14-524 Contract No



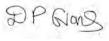
BS 1377 : Part 6 : 1990 Clause 6

#### **Specimen Details**

Borehole		BH404A
Sample No.		5
Depth	m	10
Date		26/01/2015

#### Saturation

Cell Pressure Incr.	kPa	35.00
Back Pressure Incr.	kPa	35.00
Differential Pressure	kPa	0.00
Final Cell Pressure	kPa	185.00
Final Pore Pressure	kPa	179.30
Final B Value		1.00


#### Consolidation

OUISUIGUIOII		
Effective Pressure	kPa	35.00
Cell Pressure	kPa	185.00
Back Pressure	kPa	150.00
Excess Pore Pressure	kPa	29.30
Pore Pressure at End	kPa	150.00
Consolidated Volume	$cm^3$	863.99
Consolidated Height	mm	104.56
Consolidated Area	$\text{mm}^2$	8263.08
Vol. Compressibility	$m^2/MN$	4.4264
Consolidation Coef.	m²/yr.	0.4252
Final Voids Ratio		0.592

Permeability

Cell Pressure	kPa	185.00
Effective Cell Pressure	kPa	35.00
Back Pressure Diff.	kPa	10.00
Mean Rate of Flow	ml/min	0.00071
Average Temperature	'C	20

Vertical Permeability   m/s	1.45 x 10-10
-----------------------------	--------------



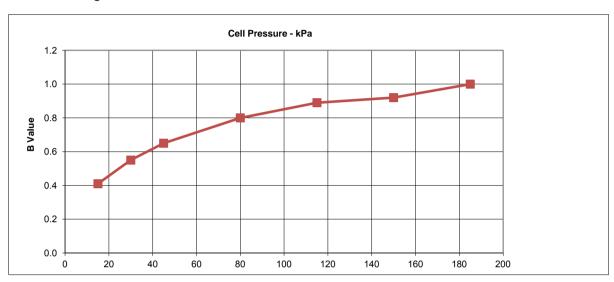
**Checked and Approved By** 

26/01/15 Date

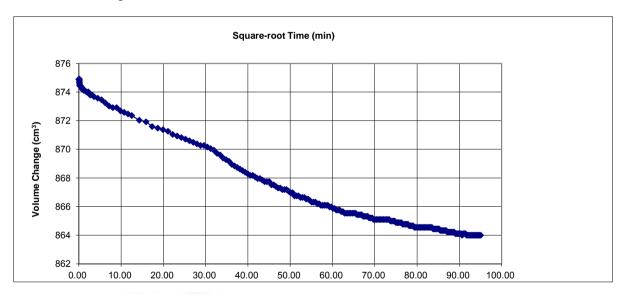
GSTL 689 Site a Tecling Services United

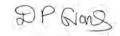
**Edmonton Eco Park 2nd Phase** 

Client Ref GTS-14-524 Contract No 25599




BS 1377 : Part 6 : 1990 Clause 6


#### **Specimen Details**


Borehole		BH404A
Sample No.		5
Depth	m	10
Date		26/01/2015

#### **Saturation Stage**



#### **Consolidation Stage**





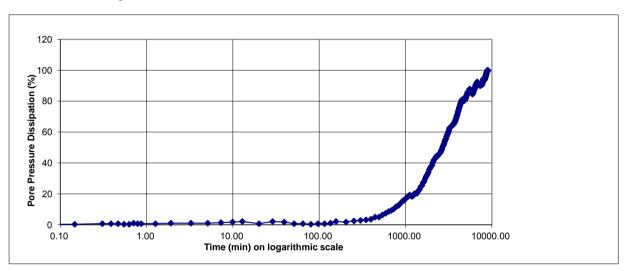
**Checked and Approved By** 

26/01/15 Date

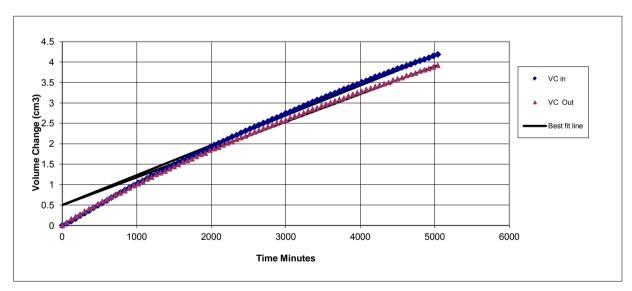


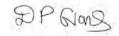
**Edmonton Eco Park 2nd Phase** 

Client Ref GTS-14-524 Contract No 25599




BS 1377 : Part 6 : 1990 Clause 6


#### **Specimen Details**


Borehole		BH404A
Sample No.		5
Depth	m	10
Date		26/01/2015

### **Consolidation Stage**



#### **Permeability Stage**





**Checked and Approved By** 

26/01/15 Date

GSTL 690 Site & Tooling Services Limited

Edmonton Eco Park 2nd Phase



BS 1377 : Part 6 : 1990 Clause 6

**Specimen Details** 

Borehole		BH404A
Sample No.		9
Depth Date	m	13
Date		26/01/2015
Disturbed / Undisturbed		Undisturbed

### **Description of Specimen**

Dark greyish brown sI stiff CLAY

**Initial Specimen Conditions** 

Height	mm	105.00
Diameter	mm	103.00
Area	mm ²	8332.29
Volume	cm ³	874.89
Mass	g	1673.10
Dry Mass	g	1294.20
Density	Mg/m³	1.91
Dry Density	Mg/m³	1.48
Moisture Content	%	29.3
Voids Ratio		0.791
Specific Gravity	kN/m³	2.65
(assume	ed/measured)	assumed

**Final Specimen Conditions** 

Moisture Content	%	30.47
Density	Mg/m ³	2.00
Dry Density	Mg/m ³	1.54

**Test Setup** 

1001 00141	
Date started	13/01/2015
Date Finished	24/01/2015
Top Drain Used	у
Base Drain Used	у
Pressure System Number	PPerm 12
Cell Number	CPerm 12

SP Glons

Checked and Approved By

26/01/15 Date

Edmonton Eco Park 2nd Phase

Client Ref GTS-14-524 Contract No





GS SITE A TOO SING SERVICES LIMITED

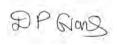
BS 1377 : Part 6 : 1990 Clause 6

#### **Specimen Details**

Borehole		BH404A
Sample No.		9
Depth	m	13
Date		26/01/2015

#### Saturation

Cell Pressure Incr.	kPa	100.00
Back Pressure Incr.	kPa	98.00
Differential Pressure	kPa	2.00
Final Cell Pressure	kPa	500.00
Final Pore Pressure	kPa	451.90
Final B Value		0.98


#### Consolidation

Oorisonaation		
Effective Pressure	kPa	100.00
Cell Pressure	kPa	500.00
Back Pressure	kPa	400.00
Excess Pore Pressure	kPa	95.00
Pore Pressure at End	kPa	400.00
Consolidated Volume	$cm^3$	848.19
Consolidated Height	mm	103.93
Consolidated Area	$mm^2$	8162.77
Vol. Compressibility	$m^2/MN$	3.9250
Consolidation Coef.	m²/yr.	0.3212
Final Voids Ratio		0.737

Permeability

<u> </u>		
Cell Pressure	kPa	500.00
Effective Cell Pressure	kPa	100.00
Back Pressure Diff.	kPa	20.00
Mean Rate of Flow	ml/min	0.00082
Average Temperature	'C	20

Vertical Permeability   m/s	8.49 x 10-11
-----------------------------	--------------

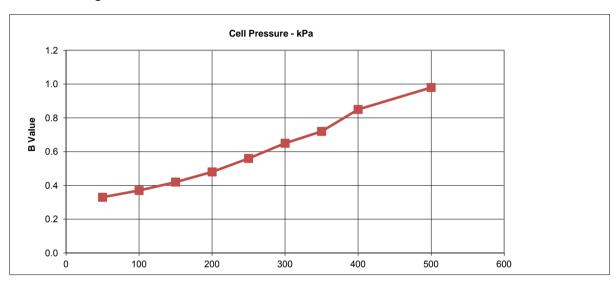


**Checked and Approved By** 

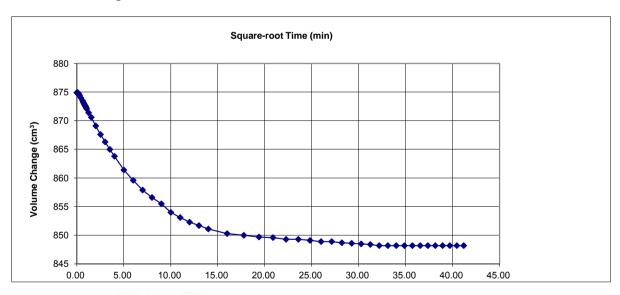
26/01/15 Date

GEO Site & Tooling Services Limited

**Edmonton Eco Park 2nd Phase** 




BS 1377 : Part 6 : 1990 Clause 6


#### Specimen Details


Borehole		BH404A
Sample No.		9
Depth	m	13
Date		26/01/2015

#### **Saturation Stage**



#### **Consolidation Stage**

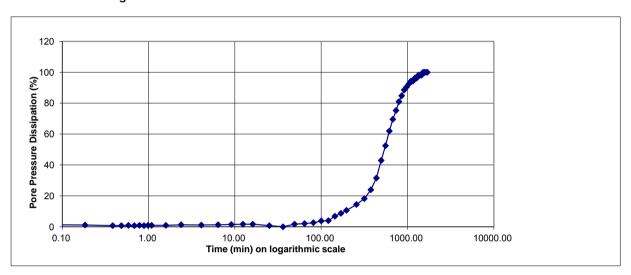




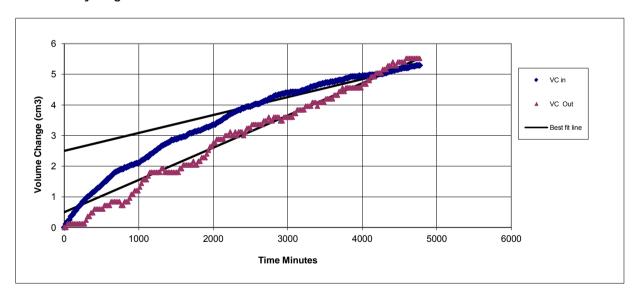
26/01/15 Date

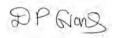
37// E

**Edmonton Eco Park 2nd Phase** 




BS 1377 : Part 6 : 1990 Clause 6


#### **Specimen Details**


Borehole		BH404A
Sample No.		9
Depth	m	13
Date		26/01/2015

### **Consolidation Stage**



#### **Permeability Stage**





**Checked and Approved By** 

26/01/15 Date

GSTL 600 Site & Teeling Services Limited

**Edmonton Eco Park 2nd Phase** 



BS 1377 : Part 6 : 1990 Clause 6

**Specimen Details** 

Borehole		BH404A
Sample No.		13
Depth n Date	n	16
Date		26/01/2015
Disturbed / Undisturbed		Undisturbed

### **Description of Specimen**

Dark greyish brown sI stiff CLAY

**Initial Specimen Conditions** 

Height	mm	105.00
Diameter	mm	103.00
Area	mm ²	8332.29
Volume	cm ³	874.89
Mass	g	1729.10
Dry Mass	g	1375.20
Density	Mg/m ³	1.98
Dry Density	Mg/m ³	1.57
Moisture Content	%	25.7
Voids Ratio		0.686
Specific Gravity	kN/m³	2.65
(assume	ed/measured)	assumed

**Final Specimen Conditions** 

Moisture Content	%	27.13
Density	Mg/m ³	2.03
Dry Density	Mg/m ³	1.59

**Test Setup** 

. 001 <b>001up</b>	
Date started	13/01/2015
Date Finished	24/01/2015
Top Drain Used	у
Base Drain Used	у
Pressure System Number	PPerm 6
Cell Number	CPerm 6

DP Grons **Checked and Approved By** 

26/01/15 Date

**Edmonton Eco Park 2nd Phase** 

**Client Ref** GTS-14-524

**Contract No** 



BS 1377 : Part 6 : 1990 Clause 6

#### Specimen Details

Borehole		BH404A
Sample No.		13
Depth	m	16
Date		26/01/2015

#### Saturation

Cell Pressure Incr.	kPa	50.00
Back Pressure Incr. kPa		50.00
Differential Pressure	kPa	0.00
Final Cell Pressure	kPa	300.00
Final Pore Pressure	kPa	274.00
Final B Value		1.00

#### Consolidation

OUTSUITABLE		
Effective Pressure	kPa	50.00
Cell Pressure	kPa	300.00
Back Pressure	kPa	250.00
Excess Pore Pressure	kPa	24.00
Pore Pressure at End	kPa	252.00
Consolidated Volume	$cm^3$	862.89
Consolidated Height	mm	104.52
Consolidated Area	$mm^2$	8256.10
Vol. Compressibility	$m^2/MN$	0.7850
Consolidation Coef.	m²/yr.	0.6235
Final Voids Ratio		0.663

#### Permeability

<u> </u>		
Cell Pressure	kPa	300.00
Effective Cell Pressure	kPa	50.00
Back Pressure Diff.	kPa	20.00
Mean Rate of Flow	ml/min	0.00096
Average Temperature	'C	20

Vertical Permeability   m/s	9.87 x 10-11
-----------------------------	--------------

DP Grons

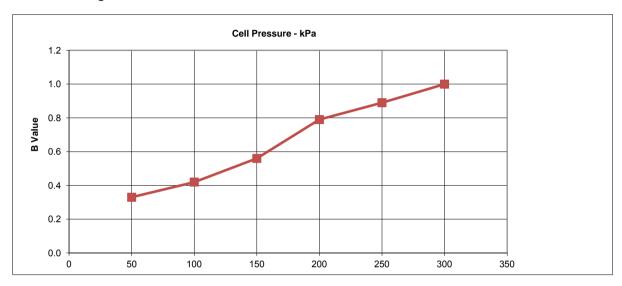
**Checked and Approved By** 

26/01/15 Date

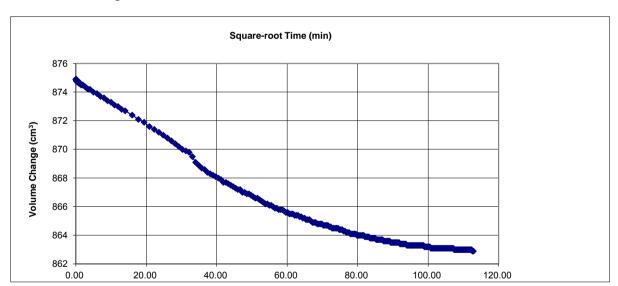
Client Ref GTS-14-524 Contract No

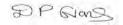
U KAS
TESTING




**Edmonton Eco Park 2nd Phase** 

BS 1377 : Part 6 : 1990 Clause 6


#### **Specimen Details**


Borehole		BH404A
Sample No.		13
Depth	m	16
Date		26/01/2015

#### **Saturation Stage**



#### **Consolidation Stage**





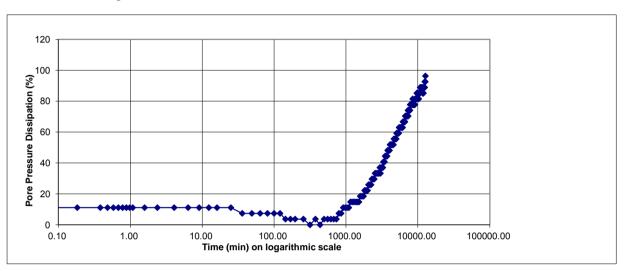
**Checked and Approved By** 

26/01/15 Date

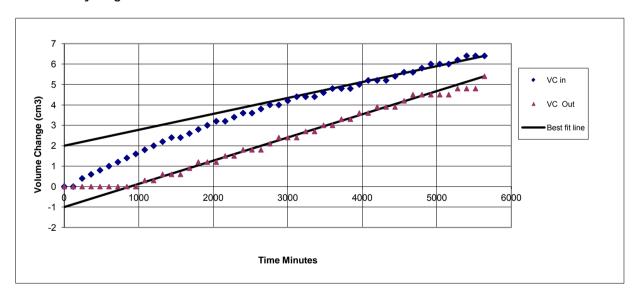
GSTL 650 Site & Tooling Services United

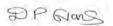
**Edmonton Eco Park 2nd Phase** 

Client Ref GTS-14-524 Contract No




BS 1377 : Part 6 : 1990 Clause 6


#### **Specimen Details**


Borehole		BH404A
Sample No.		13
Depth	m	16
Date		26/01/2015

### **Consolidation Stage**



#### **Permeability Stage**





**Checked and Approved By** 

26/01/15 Date

Client Ref
GTS-14-524
Contract No



**Edmonton Eco Park 2nd Phase** 



**Depot Road** Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.co.uk

# **Final Report**

15-00437 Issue-1 **Report Number:** 

**Initial Date of Issue:** 15-Jan-15

Client: **Ground Technology Services** 

**Client Address:** Maple Road

> King's Lynn Norfolk **PE34 3AF**

Contact(s): Paul Lewin

Project: GTS-14-524 - Edmonton Ecopark Phase 2

**Quotation No.: Date Received:** 12-Jan-15

Order No.: GTS 3504 12-Jan-15 **Date Instructed:** 

No. of Samples: **Results Due:** 16-Jan-15 14

**Turnaround:** 

5 (Weekdays)

**Date Approved:** 15-Jan-15

Approved By:

**Details:** Keith Jones, Technical Manager



## **Results Summary - Soil**

### Project: GTS-14-524 - Edmonton Ecopark Phase 2

Client: Ground Technology Services	C	hemte	st Jol	No.:	15-00437	15-00437	15-00437	15-00437	15-00437	15-00437	15-00437	15-00437	15-00437	15-00437	15-00437	15-00437	15-00437	15-00437
Quotation No.:	Chemtest Sample ID.:		87973	87974	87975	87976	87977	87978	87979	87980	87981	87982	87983	87984	87985	87986		
Order No.: GTS 3504	(	Client S	Sample	Ref.:	BH401	BH401	BH401A	BH401A	BH402	BH402	BH402A	BH403	BH403	BH403	BH404	BH404	BH404A	BH404A
	(	Client	Sampl	le ID.:	5	20	34	47	6	20	33	8	21	25	7	16	5	12
		Si	ample	Type:	SOIL													
	Top Depth (m):		1.5	6.8	15.5	21.5	1.5	7	14	2.1	6.5	8.6	2.5	5.9	10	14.5		
		Bottor	n Dep	th(m):	1.95	7	16	22	2	7.2	14.5	2.3	7	9	2.95	6.1	10.45	15
	Date Sampled:																	
Determinand	Accred.	SOP	Units	LOD														
Moisture	N	2030	%	0.02	35	20	18	17	34	12	21	17	18	21	19	20	18	18
Stones	N	2030	%	0.02	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
pH	U	2010			8.0	8.3	8.2	9.4	7.6	8.4	8.6	7.8	10.6	8.6	8.3	9.3	8.5	8.2
Magnesium (Water Soluble)	N	2120	g/l	0.01	< 0.010	< 0.010	0.063	0.015	0.014	< 0.010	0.023	0.010	< 0.010	0.020	0.041	< 0.010	0.020	0.052
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.01	0.027	0.18	0.83	0.22	0.48	0.12	0.34	0.44	0.64	0.50	0.70	0.71	0.35	0.80
Chloride (Extractable)	U	2220	g/l	0.01	0.012	0.029	0.076	0.023	0.033	0.015	0.028	0.062	0.16	0.030	0.070	0.11	0.036	0.063
Nitrate (Extractable)	N	2220	g/l	0.01	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010



#### Report Information

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 60 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <a href="mailto:customerservices@chemtest.co.uk">customerservices@chemtest.co.uk</a>

	GROUND TECHNOLOGY
<b>U</b> I	Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH301** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 11.747mAOD Coordinates: 535589.78E

192810.73N

Sheet 1 of 3

Description  Legend Depth (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level											1020	10.7014
MADE GROUND: Tarmac  MADE GROUND: Forwarish grey sandy GRAVEL. Gravel Is subangular to subrounded fine to medium flint and tarmac.  MADE GROUND: Orangish brown sandy GRAVEL. Gravel Is subangular to subrounded fine to medium flint and tarmac.  MADE GROUND: Orangish brown sandy GRAVEL. Gravel Is subangular to subangular fine to medium flint and tarmac.  MADE GROUND: Orangish brown sandy GRAVEL. Gravel Is subangular to subangular fine to medium flint and tarmac.  MADE GROUND: Dark brownish black slightly sandy GRAVEL. Gravel Is angular to subangular fine to medium flint and tarmac.  MADE GROUND: Firm orangish brown mottled black CLAY. with rare angular fine gravel sized ed brick fragments.  Soft brown mottled gravel Is fine to medium flint.  Soft brown mottled gravel Is fine to medium flint.  Soft brown mottled gravel Is fine to medium. From 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m and 1.50m	Description	Legend							Toot			
MADE GROUND: Brownish grey sandy GRAVEL. Gravel is subangular to subrounded fine to medium fint and Itamac.  MADE GROUND: Dark brownish black slightly sandy GRAVEL. Gravel is angular to subangular fine to medium fine the medium fint and Itamac.  MADE GROUND: Dark brownish black slightly sandy GRAVEL. Gravel is angular to subangular fine to medium fine to medium fine the medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine to medium fine.  Soft brown mottled grey CLAY. (ALLUVIUM)  Very soft dark grey mottled brown CLAY. (ALLUVIUM)  Very soft dark grey mottled brown CLAY. (ALLUVIUM)  Medium dense brownish grey slightly sandy GRAVEL. Gravel is angular to subangular fine to medium, rarely coarse fills. Sand is fine to coarse. (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular for subangular fine to medium fine to medium fine to medium fine to medium fine to coarse. (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium fine to coarse gravel sightly sity clay.  Very stiff medium to high strength locally thinly laminated brownish grey slightly sity slightly micaceous CLAY. with rare bioturbation. (LONDON CLAY FORMATION)	2000, p. 100		(m)		Туре		Casing Depth (m)	Water Depth (m)			PID	Installations
MADE GROUND: Orangish brown sandy GRAVEL Gravel Is angular to subrounded fine to medium finit and tarmac.  MADE GROUND: Orangish brown sandy GRAVEL Gravel Is angular to subangular fine to medium finit and tarmac.  MADE GROUND: Dark brownish black slightly sandy GRAVEL Gravel Is angular to subangular fine to medium finit and tarmac.  MADE GROUND: Dark brownish black slightly sandy GRAVEL Gravel Is angular to subangular fine to medium finit and tarmac.  MADE GROUND: Dark brownish black slightly sandy GRAVEL Gravel Is angular to subangular fine to medium finit.  MADE GROUND: Firm orangish brown mottled black CLAY, with rare angular fine gravel sized red brick fragments.  Between Gravel Is angular to subangular fine to medium finit.  Soft brown mottled grey CLAY.  (ALLUVIUM)  Medium dense brownish grey slightly sandy GRAVEL Gravel is angular to subangular fine to medium, rarely coarse finit. Sand is fine to coarse.  (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL Gravel is subangular to subrounded fine to medium finit.  (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL Gravel is subangular to subrounded fine to medium finit.  The medium finit is grey slightly silty CLAY.  (LONDON CLAY FORMATION)  Very stiff medium to high strength locally thinly lammated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation.  (LONDON CLAY FORMATION)	MADE GROUND: Tarmac		0.20	11.55	D4	0.20.0.25						- 3 -
MADE GROUND: Dark brown sandy GRAVEL. Gravel is angular to subangular fine to medium flint and larmac.  MADE GROUND: Dark brownish black slightly sandy GRAVEL. Gravel is angular to subangular fine to medium flint, sale, charcol and concrete with rare angular coarse concrete fragments.  MADE GROUND: Firm arranghab brown motted black CLAY, with rare angular for subangular fine to medium flint.  Soft brown mottled grey CLAY.  (ALLUVIUM)  Medium dense provinish grey slightly sandy GRAVEL. Gravel is angular to subangular fine to medium. Firm a rangular for subangular fine to medium flint.  Medium dense brownish grey slightly sandy GRAVEL. Gravel is angular to subangular fine to medium. Firm a rangular for subangular fine to medium. Firm a rangular fine to medium flint.  Medium dense brownish grey slightly sandy GRAVEL. Gravel is subangular fine to coarse (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint.  8. 8 50.00.00			0.50	11.25								8 8
MADE GROUND. Dark brownish black slightly sandy GRAVEL. Gravel is angular to subangular fine to medium filint and larmac.  MADE GROUND: Dark brownish black slightly sandy GRAVEL. Gravel is angular to subangular fine to medium red brick, sliet., charcoal and a concrete with raise angular contract with raise angular contract with raise angular contract with raise angular fine gravel size dred brick fragments.  MADE GROUND: Firm orangish brown mottled black CLAY, with rare angular fine gravel sized red brick fragments.  Between 1.50m and 1.60mbgl becoming black. From 1.60mbgl gravel is fine to medium filint.  Soft brown mottled grey CLAY. (ALLUVIUM)  Very soft dark grey mottled brown CLAY. (ALLUVIUM)  Very soft dark grey mottled brown CLAY. (ALLUVIUM)  Medium dense brownish grey slightly sandy GRAVEL. Gravel is angular to subangular fine to medium, rarely coarse filint. Sand is fine to coarse. (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium filint. (KEMPTON PARK GRAVEL FORMATION)  A 2.50  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium filint. (KEMPTON PARK GRAVEL FORMATION)  A 2.50  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium filint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium filint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium filint.  Medium dense greyish brown fine to coarse SAND and GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium filint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium filint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular fine to medium filint.  Medium dense brownish grey sl												=
MADE GROUND: Dark prowings in gray and to subangular fine to medium red brick, slate, charcoal and concrete with rare angular froat grayed is angular to subangular fine to medium red brick, slate, charcoal and concrete with rare angular fine gravel sized red brick fragments.  MADE GROUND: Firm orangish brown mottled black. CLAY, with rare angular fine gravel sized red brick fragments.  Between 1.50m and 1.60mbgl becoming black. From 1.60mbgl gravel is fine to medium flint.  Soft brown mottled grey CLAY. (ALLUVIUM)  Very soft dark grey mottled brown CLAY. (ALLUVIUM)  Medium dense brownish grey slightly sandy GRAVEL. Gravel is angular to subangular fine to medium, rarely coarse fint. Sand is fine to coarse (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)  Firm dark bluish grey slightly silty CLAY. (LONDON CLAY FORMATION)  Very sliff medium to high strength locally thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bloturbation. (LONDON CLAY FORMATION)	is angular to subangular fine to medium flint and		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.0.00	D5 B6	1.00-1.20 1.00-1.50						
MADE GROUND: Firm orangish brown mottled black CLAY, with rare angular fine gravel sized red brick fragments.  Between 1.50m and 1.60mbgl becoming black. From 1.60mbgl gravel is fine to medium flint.  Soft brown mottled grey CLAY. (ALLUVIUM)  Very soft dark grey mottled brown CLAY. (ALLUVIUM)  Wedium dense brownish grey slightly sandy GRAVEL. Gravel is angular to subangular fine to medium, rarely coarse flint. Sand is fine to coarse. (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)  To a subangular to subrounded fine to medium flint.  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)  To a subangular to subrounded fine to medium flint.  Soft brown mottled grey CLAY.  To a subangular to subrounded fine to medium.  To a subangular to subrounded fine to medium flint.  Soft brown mottled grey CLAY.  To a subangular to subrounded fine to medium.  To a subangular to subangular to subrounded fine to medium.  To a subangular to subangular to subrounded fine to medium.  To a subangular to subangular to subrounded fine to medium.  To a subangular to subangular to subrounded fine to medium.  To a subangular to subangular to subrounded fine to	GRAVEL. Gravel is angular to subangular fine to medium red brick, slate, charcoal and concrete with		2.20	9.55	B10	2.20-2.60						-
Soft brown mottled grey CLAY.  (ALLUVIUM)  Very soft dark grey mottled brown CLAY.  (ALLUVIUM)  Medium dense brownish grey slightly sandy GRAVEL. Gravel is subangular fine to coarse. (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium filmt. (KEMPTON PARK GRAVEL FORMATION)  Firm dark bluish grey slightly silty CLAY.  (LONDON CLAY FORMATION)  A.00  7.75  S. 4.004 45 D14 A.00-445 D14 A.00-445 B15 A.50-550 B17 A.00-7.00 B18 B17 B18 B18 B18 B18 B18 B18 B18 B18 B18 B18	CLAY, with rare angular fine gravel sized red brick fragments.				50	2.20 2.20						
Very soft dark grey mottled brown CLAY. (ALLUVIUM)  Medium dense brownish grey slightly sandy GRAVEL. Gravel is angular to subangular fine to medium, rarely coarse film. Sand is fine to coarse. (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium film. (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium film. (KEMPTON PARK GRAVEL FORMATION)  Firm dark bluish grey slightly silty CLAY. (LONDON CLAY FORMATION)  Very stiff medium to high strength locally thinly laminated brownish grey slightly silty slightly mincaeous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)			3.20	8.55								=
Medium dense brownish grey slightly sandy GRAVEL. Gravel is angular to subangular fine to medium, rarely coarse flint. Sand is fine to coarse. (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)  Firm dark bluish grey slightly silty CLAY. (LONDON CLAY FORMATION)  Very stiff medium to high strength locally thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bloturbation. (LONDON CLAY FORMATION)  D14 4.00-4.45  B15 4.50-5.50  B17 6.00-7.00  S 7.00-7.45  D18 7.00-7.45  D19 7.50-7.60  B20 7.60-8.95  D21 8.50-8.95  D22 8.50-9.95  T7.70 N=13 (2.2.3.3.3.4)					D13	3.70-3.80						=
Gravel is angular to subangular fine to medium, rarely coarse flint. Sand is fine to coarse. (KEMPTON PARK GRAVEL FORMATION)  Medium dense greyish brown fine to coarse SAND and GRAVEL Gravel is subangular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)  Firm dark bluish grey slightly silty CLAY. (LONDON CLAY FORMATION)  Very stiff medium to high strength locally thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)  N=13 (2,2,3,3,3,4)  Results in the following formula in the coarse SAND and GRAVEL Gravel is subangular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)  N=13 (2,2,3,3,3,4)  N=13 (2,2,3,3,3,4)  N=13 (2,2,3,3,3,4)			4.00	7.75			4.00		N=30 (2,6,7	7,7,8,8)		
Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)  Firm dark bluish grey slightly silty CLAY. (LONDON CLAY FORMATION)  Very stiff medium to high strength locally thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)  D16 5.50-5.95  B17 6.00-7.00  S 7.00-7.45 D18 7.00-7.45 D19 7.50-7.60 B20 7.60-8.50  S 8.50-8.95 B22 8.50-9.00  TO N=13 (2,2,3,3,3,4)  N=13 (2,2,3,3,3,4)	Gravel is angular to subangular fine to medium, rarely coarse flint. Sand is fine to coarse.				B15	4.50-5.50						
Medium dense greyish brown fine to coarse SAND and GRAVEL. Gravel is subangular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)  Firm dark bluish grey slightly silty CLAY. (LONDON CLAY FORMATION)  Very stiff medium to high strength locally thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)  A 2 5 5 7.00-7.45 7.00 (3.20) N=13 (2.3.2.3.4.4)  S 7.50 4.25 D19 7.50-7.60 B20 7.60-8.50  S 8.50-8.95 D21 8.50-8.95 B22 8.50-9.00  S 8.50-8.95 B22 8.50-9.00  S 8.50-8.95 B22 8.50-9.00							5.50	(3.20)	N=17 (2,4,4	4,4,4,5)		-
Firm dark bluish grey slightly silty CLAY. (LONDON CLAY FORMATION)  Very stiff medium to high strength locally thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)  Total 7.50  4.25  D18 7.00-7.45  D19 7.50-7.60  B20 7.60-8.50  S 8.50-8.95 B22 8.50-9.00  Part of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the p	GRAVEL. Gravel is subangular to subrounded fine to medium flint.		6.00	5.75	B17	6.00-7.00						1
Firm dark bluish grey slightly silty CLAY. (LONDON CLAY FORMATION)  S. 8.50-8.95 D21 8.50-8.95 B22 8.50-9.00  Very stiff medium to high strength locally thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)							7.00	(3.20)	N=13 (2,3,2	2,3,4,4)		-
Very stiff medium to high strength locally thinly laminated brownish grey slightly slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)		×	7.50	4.25								
Very stiff medium to high strength locally thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)			0.05	2.00	D21	8.50-8.95	7.70		N=13 (2,2,3	3,3,3,4)		
Borehole continued	laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation.	× - × - ×	_ δ.95 - - - - - - - -	∠.80								
	Borehole continued		F									

								Water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling D	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.60 8.50 20.95	2.20 7.70 9.00				30/05/14 05/06/14	4.20 19.30	20 20	3.10 14.00	4.00 9.00	7.70

Dates:

04/06/2014-05/06/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.20m and 19.30mbgl, rising to 3.10m and 9.00mbgl

after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH301** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 11.747mAOD Coordinates: 535589.78E

192810.73N

Sheet 2 of 3

Description									1	92810.73N
Very stiff high strength locally thinly laminated brownish grey slightly slightly micaceous CLAY, with rare bloturbation.  (LONDON CLAY FORMATION)  Very stiff high strength totally thinly laminated brownish grey slightly slightly micaceous CLAY, with rare bloturbation.  (LONDON CLAY FORMATION)  Very stiff high strength totally thinly laminated brownish grey slightly silly slightly micaceous CLAY, with rare bloturbation.  (LONDON CLAY FORMATION)  Very stiff high strength totally thinly laminated brownish grey slightly silly slightly micaceous CLAY, with rare bloturbation.  (LONDON CLAY FORMATION)  Very stiff high strength totally thinly laminated brownish grey slightly micaceous CLAY, with rare bloturbation.  (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey slightly micaceous CLAY, with rare bloturbation.  (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bloturbation.  (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bloturbation.  (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey with rare greenish grey slightly micaceous CLAY, with rare bloturbation.  (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bloturbation.  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bloturbation.  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous grey with rare greening drey slightly micaceous grey	Description	Legend	Depth	O.D.	Sam	ple Test			<b>-</b>	1.6.
Very stiff fligh strength locally thinly laminated brownish grey slightly slightly micaceous CLAY, with rare bloturbation. (LONDON CLAY FORMATION)  Very stiff high strength toxally thinly laminated brownish grey slightly slightly micaceous CLAY, with rare bloturbation. (LONDON CLAY FORMATION)  Very stiff high strength toxally thinly laminated brownish grey slightly slightly micaceous CLAY, with rare bloturbation. (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey slightly slightly micaceous CLAY, with rare bloturbation. (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey slightly slightly micaceous CLAY, with rare bloturbation. (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bloturbation. (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bloturbation in the sand bands and rare shell  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bloturbation in the sand bands and rare shell  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bloturbation in the sand bands and rare shell  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bloturbation in the sand bands and rare shell  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous grey with rare greenish grey slightly micaceous grey with rare greenish grey slightly micaceous grey with rare greenish grey slightly micaceous grey with rare greenish grey slightly micaceous grey with rare greenish grey slightly micaceous grey with rare greenish grey with rare greenish grey with rare greenish grey with rare greenish grey with rare greenish g	2000, p. 10.	2090.10	(m)		, , ,	(ṁ)	Casing Depth (m)	Water Depth (m)	SPT/HV/PP (Recovery)	PID I
Very stiff high strength thinty laminated brownish grey cl.AY, (LONDON CLAY FORMATION)  Very stiff high strength thinty laminated brownish grey slightly silly slightly micaceous CLAY, with rare biofurbation (LONDON CLAY FORMATION)  Very stiff high strength locally thinty laminated brownish grey slightly silly slightly micaceous CLAY, with rare biofurbation (LONDON CLAY FORMATION)  Very stiff high strength locally thinty laminated brownish grey slightly micaceous CLAY, with rare biofurbation (LONDON CLAY FORMATION)  Very stiff high strength locally thinty laminated brownish grey slightly micaceous CLAY, with rare precision grey silty CLAY, with some thin fine sand bands and rare shell fragments.  (LAMBETH GROUP UNDIFFERENTIATED)  Dense to very dense brownish grey slity fine to meedium SAND, with some sandy clay bands.	laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation.	× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ × _ ×							34 blows	
Very stiff high strength thinly laminated brownish grey clark. (LONDON CLAY FORMATION)  Very stiff high strength brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey silty CLAY, with some thin fine sand bands and rare shell fragments. (LAMBETH GROUP UNDIFFERENTIATED)  Dense to very dense brownish grey silty fine to medium SAND, with some sandy clay bands.		× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×		D25	11.50-11.95	9.00			
Very stiff high strength brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey slightly silty slightly micaceous clay, with rare bioturbation. (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey silty CLAY, with some thin fine sand bands and rare shell fragments. (LAMBETH GROUP UNDIFFERENTIATED)  Dense to very dense brownish grey silty fine to medium SAND, with some sandy clay bands.		xx x xx xx xx	×		D27	13.00-13.45	9.00		N=27 (3,4,6,6,7,8)	
sithy slightly micaceous CLAY, with rare bloturbation. (LONDON CLAY FORMATION)  Very stiff high strength locally thinly laminated brownish grey with rare greenish grey sity CLAY, with some thin fine sand bands and rare shell fragments. (LAMBETH GROUP UNDIFFERENTIATED)  Dense to very dense brownish grey sity fine to medium SAND, with some sandy clay bands.  S 17.50-17.95 B35 18.30-18.50 S 17.50-17.95 B36 18.80-20.00 S 19.00-19.43 D37 19.00-19.43 B38 19.30-19.50  PP=250.0kPa  19.30 -7.55 B38 19.30-19.50	grey CLAY. (LONDON CLAY FORMATION)	×	Ē		D29	14.50-14.95	9.00			
Very stiff high strength locally thinly laminated brownish grey with rare greenish grey silty CLAY, with some thin fine sand bands and rare shell fragments. (LAMBETH GROUP UNDIFFERENTIATED)  Dense to very dense brownish grey silty fine to medium SAND, with some sandy clay bands.  18.30  -6.55  B35  18.30-18.50  B36  18.80-20.00  S 19.00-19.43  D37  19.30  -7.55  B38  19.30-19.50  PP=220.0kPa  PP=260.0kPa  PP=250.0kPa	silty slightly micaceous CLAY, with rare bioturbation.	X	×						50 blows	
Very stiff high strength locally thinly laminated brownish grey with rare greenish grey silty CLAY, with some thin fine sand bands and rare shell fragments. (LAMBETH GROUP UNDIFFERENTIATED)  Dense to very dense brownish grey silty fine to medium SAND, with some sandy clay bands.  PP=160.0kPa  PP=160.0kPa  PP=160.0kPa  PP=250.0kPa  19.30 -7.55 B38 19.30-19.50		x x x x x x x x x x x x x x x x x x x	×		D33	17.50-17.95	9.00			
Dense to very dense brownish grey silty fine to medium SAND, with some sandy clay bands.	brownish grey with rare greenish grey silty CLAY, with some thin fine sand bands and rare shell fragments.	×	18.30	-6.55	B36 S	18.80-20.00 19.00-19.43	9.00	(13.00	50/275mm (6,14,12,14,1	5,9)
Borehole continued	Dense to very dense brownish grey silty fine to	* - × * * * * * * * * * * * *	19.30	-7.55					PP=250.0kPa	

								Water Level	Observations		
	Diamete			niseling E		Date	Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.60 8.50 20.95	2.20 7.70 9.00				30/05/14 05/06/14	4.20 19.30	20 20	3.10 14.00	4.00 9.00	7.70 -

Dates:

04/06/2014-05/06/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.20m and 19.30mbgl, rising to 3.10m and 9.00mbgl

after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH301** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 11.747mAOD Coordinates: 535589.78E

Sheet 3 of 3

oner yunde d'a l'en dininea					,		Coordinates.		810.73N
Description	l amair d	Denth	O.D.	San	nple Test	SPT/CP	T Remarks a	nd	
Description	Legend	Depth (m)	Level (m)	Type	e Depth (m) 20.00-20.50	Casing Wa	Test Resul	i <b>ts</b> PID ry) (ppm	Installation
(LAMBETH GROUP UNDIFFERENTIATED)	× × × × × ×	20.50	-8.75	S	20.00-20.50 20.50-20.95 20.50-20.95		20) N=25 (3,4,4,5,7,9)		
Stiff medium strength light greenish grey with rare /ellowish grey CLAY. LAMBETH GROUP UNDIFFERENTIATED)		20.95	-9.20	D40	20.50-20.95				=
Borehole Complete at 20.95 m		Ē							
		E							
		E							
		E							
		E							
		E							
		E							
		-							
		<u> </u>							
		-							
		E							
		-							
		Ė.							
		E							
		Ē							

								water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling D	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.60 8.50 20.95	2.20 7.70 9.00				30/05/14 05/06/14	4.20 19.30	20 20	3.10 14.00	4.00 9.00	7.70

Dates:

04/06/2014-05/06/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.20m and 19.30mbgl, rising to 3.10m and 9.00mbgl

after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH302** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 12.397mAOD Coordinates: 535599.10E

192853.80N

Sheet 1 of 3

Description	Legend	Depth (m)	O.D. Level		ple Test	SPT/0		T1	arks and Results		Installations
		(111)	(m)	туре	Depth (m)	Casing Depth (m)	Depth (m)	SPT/HV/PP	(Recovery)	PID (ppm)	IIIStaliations
MADE GROUND: Tarmacadam  MADE GROUND: Black sandy GRAVEL. Gravel is angular to subangular fine to medium flint and tarmac.		0.20	12.20 11.95	D1 D2 D3	0.20-0.25 0.40-0.45 0.60-0.65						
MADE GROUND: Soft slightly sandy gravelly CLAY. Gravel is angular to subangular fine to coarse flint and brick.		1.30	11.10	B4 D5	1.20-1.30						
MADE GROUND: Soft dark brownish black mottled black very silty very gravelly CLAY. Gravel is angular to subangular fine to coarse concrete, tile, brick		<del>}</del>		D6 B7	1.50-1.60 1.60-2.10						
and flint.  At 2.2mbgl - One cobble sized subangular concrete fragment.		<del>X</del> <del>X</del> <del>X</del>		D8 B9	2.10-2.20 2.20-2.70						
MADE GROUND: Soft to very soft dark brownish grey slightly gravelly CLAY. No gravel description		2.70	9.70	B10 D11	2.70-3.00 3.00-3.10						
recorded.	$\times\!\!\times\!\!\times$	3.30	9.10	B12	3.30-4.00						3
Very soft dark bluish grey and brown CLAY. (ALLUVIUM)		J.30	9.10	DIZ	3.30-4.00						
Soft low strength dark brownish black slightly silty CLAY, with occasional rootlets organic material and rare fine flint and wood.	xx	4.00	8.40 7.90	S D13 B14	4.00-4.45 4.00-4.45	3.20		N=6 (1,1,1,1	1,2,2)		
(ALLUVIUM)		4.50	7.90	B14	4.50-5.50						
Loose dark brown sandy GRAVEL. Gravel is subangular to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)				S D15	5.50-5.95 5.50-5.95	5.50	(4.20)	N=8 (1,2,2,2	2,2,2)		
Dark yellowish brown slightly gravelly fine to coarse SAND. Gravel is angular to subangular fine flint. (KEMPTON PARK GRAVEL FORMATION)		5.95	6.45	B16	6.00-7.00						
Firm medium strength dark brown slightly gravelly slightly sandy CLAY. Gravel is angular to subangular fine to medium flint. (LONDON CLAY FORMATION)		7.00	5.40	S D17 B18	7.00-7.45 7.00-7.45 7.00-8.00	7.00	(4.80)	N=18 (3,3,4	,4,5,5)		
Firm medium strength brownish grey slightly micaceous CLAY.		8.10	4.30	D19 S	8.10-8.20 8.50-8.95	8.50		N=14 (2,2,3	344)		
(LONDON CLAY FORMATION)		8.95	3.45	D20	8.50-8.95	6.50		14 (2,2,3	,5,4,4)		
Stiff high to very high strength locally closely fissured and or thinly laminated brownish grey slightly silty slightly micaceous CLAY, with rare bioturbation.	××			B21	9.10-9.50						
Borehole continued	_×	-			Matariti						7
	1			,	Water Lev	rei Obse	ervati	ons			

								Water Level	Observations		
Hole	Diamete	er Detail	Ch	niseling D	Details		Water	Standing	Standing	Casing	Depth
Diameter	Depth	_Casing	From	To	Time	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
(mm)	(m)	Depth (m)	(m)	(m)	(hhmm)		Strike (III)	Tille (Illins)	Level (III)	Deptil (III)	Sealed (III)
250 200 150	3.20 9.10 21.40	3.20 9.10 10.00				29/05/14 29/05/14 02/06/14	2.70 4.30 20.70	20 20 20	2.60 4.00 19.10	2.20 4.00 10.00	3.00 8.50 -

Dates:

02/06/2014-03/06/2014

Plant:

Dando 2000

Drilled By: T York Logged By: G Day

Checked By: P Lewin

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl.
2. Water observed at 2.70m, 4.30m and 20.70mbgl rising to 2.60m, 4.00m and 19.10mbgl after 20 minutes standing.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH302** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 12.397mAOD Coordinates: 535599.10E

192853 80N

Sheet 2 of 3

										1928	353.80N
	1	Donth	O.D.	Sam	ple Test	SPT/CF	РΤ	Rema	arks and	d	
Description	Legend	(m)	Level		Depth		ater	Test	Results	3	Installation
		()	(m)	1 9 00	(m) 10.00-10.45	Casing Wa Depth De (m) (r	pth n) S	PT/HV/PP	(Recovery)	(ppm)	
(LONDON CLAY FORMATION)	××	×		U22	10.00-10.45		2	21 blows			=
	x	×		D23	10.45-10.60						
	x	×									
	×x-										<u> </u>
	×x	×									
	×	×-		s	11.50-11.95	10.00	١	N=20 (3,4,4	,5,5,6)		=
From 11.50mbgl becomes very stiff	x	×		D24 B25	11.50-11.95 11.50-12.00		F	PP=170.0kF	Pa		1 3
		-									_
	xx	=									
	××	×									
	x	×									=
	x_^	X-		S D26	13.00-13.45 13.00-13.45	10.00	1	N=21 (3,3,4 PP=160.0kF	,5,6,6)		-
	<u>X</u>			B27	13.00-13.50		-   '	1 - 100.0KI	a		=
	×x	1									_
	xx	×		B28	13.80-14.20		F	PP=175.0kF	Pa		
	x	×									<u> </u>
	x	×		1100	14 50 14 05			20 hlavva			=
	×x-	1		U29	14.50-14.95		1	22 blows			
	XX	×-		D30	14.95-15.10						
	×x	×									=
	x	×									
	x	- -									
V	×x	16.00	-3.60	S	16.00-16.45	10.00	١	N=25 (3,4,6	,6,6,7)		_
Very stiff medium strength locally thinly laminated brownish grey CLAY, with occasional thin greenish		<b>F</b>		D31 B33	16.00-16.45 16.00-16.50		F	PP=200.0kF	Pa		
grey bands and rare bioturbation	I-I-I	£									3
(LONDON CLAY FORMATION)	-1-1-	1									=
		-									_
	-5-1-	-									
				S D32	17.50-17.95 17.50-17.95	10.00	l F	N=28 (5,5,5 PP=160.0kF	,7,7,9) Pa		=
		E		B34	17.50-19.00		'		<b>u</b>		3
		_									<u> </u>
		+									
		18.70	-6.30								
Very stiff medium strength brownish grey slightly silty CLAY, with occasional gravel sized pyritic	×x	100	0.00	s	19.00-19.45	10.00		N=29 (3,5,5	7 7 10)		=======================================
nodules and rare bioturbation.	×x	×		D35 B36	19.00-19.45	10.00	F	N=29 (3,5,5 PP=220.0kF	a,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
(LAMBETH GROUP UNDIFFERENTIATED)	x	×		B30	19.00-19.50						
	<u>×</u>	×									
Borehole continued	××	+									-
					Motorla	ol Oboom	a+: a .				

								vvater Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.20 9.10 21.40	3.20 9.10 10.00				29/05/14 29/05/14 02/06/14	2.70 4.30 20.70	20 20 20	2.60 4.00 19.10	2.20 4.00 10.00	3.00 8.50 -

Dates:

02/06/2014-03/06/2014

Plant:

Dando 2000

Drilled By: T York Logged By: G Day

Checked By: P Lewin

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl. 2. Water observed at 2.70m, 4.30m and 20.70mbgl rising to 2.60m, 4.00m and

19.10mbgl after 20 minutes standing.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH302** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 12.397mAOD Coordinates: 535599.10E

Sheet 3 of 3

									•	1928	53.80N
Description	Legend	Depth (m)	O.D. Level (m)		ple Test Depth (m)	SPT/C Casing Depth (m)		T	Results	חום	Installations
Very stiff medium strength brownish grey slightly silty CLAY, with occasional gravel sized pyritic nodules and rare bioturbation. (LAMBETH GROUP UNDIFFERENTIATED)	×x ×××××	20.30	-7.90 -8.10	B38 S D37 B39	20.30-20.50 20.50-20.93 20.50-20.93 20.50-21.00	10.00	(m)		(5,7,9,13,17		
Very stiff greyish brown slightly sandy CLAY, with some thin brown and greenish grey fine sand bands. (LAMBETH GROUP UNDIFFERENTIATED)	× × × × × × × × × × × × × × × × × × ×	+	-9.00								
Very dense brownish grey silty fine SAND.  (LAMBETH GROUP UNDIFFERENTIATED)  Borehole Complete at 21.40 m		-									-
											-
											- - - -
											-
											-
											-
											-
											1
											-
											-
		-									-
											-
		<u>-</u> -									
		<u>-</u>									

								Water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling D	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.20 9.10 21.40	3.20 9.10 10.00				29/05/14 29/05/14 02/06/14	2.70 4.30 20.70	20 20 20	2.60 4.00 19.10	2.20 4.00 10.00	3.00 8.50 -

Dates:

02/06/2014-03/06/2014

Plant:

Dando 2000

Drilled By: T York Logged By: G Day

Checked By: P Lewin

Remarks: 1. Inspection pit dug from ground level to 1.20mbgl. 2. Water observed at 2.70m, 4.30m and 20.70mbgl rising to 2.60m, 4.00m and

19.10mbgl after 20 minutes standing.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH303** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 11.915mAOD Coordinates: 535654.88E

192933.92N

Sheet 1 of 3

									1323	700.0ZIN
Description	Legend	Depth (m)	O.D. Level	Sam _l Type	ple Test Depth			Remarks and Test Results		Installations
		(''')	(m)	Type	(m)	Casing Depth (m)	Depth (m)	SPT/HV/PP (Recovery)	PID (ppm)	motanations
MADE GROUND: Reinforced Concrete.		0.30	11.62							3
MADE GROUND: Hardcore (DRILLERS DESCRIPTION).	*****	0.50	11.42	B1	0.50-0.60					
MADE GROUND: Yellowish brown slightly silty very gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint.		1.10	10.82	B2 B3	0.90-1.00 1.10-1.20					- - -
MADE GROUND: Stiff grey CLAY.	>>>>>	1.40	10.52							-
MADE GROUND: Yellowish grey clayey gravelly fine to medium SAND. Gravel is angular to subrounded fine to coarse flint.		1.90 2.10	10.02 9.82	B4 B5	1.90-2.00 2.10-2.20					
MADE GROUND: Stiff brownish grey CLAY.	/XXXX	-	0.02							3
MADE GROUND: Yellowish brown clayey gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint.		2.70	9.22	В6	2.70-3.00					-
MADE GROUND: Firm grey peaty CLAY with some flint, brick, gravel and wood fragments.	$\sum_{ M_{i} } \sum_{X= \hat{M}_{i} } X$	3.40	8.52	В7	3.40-3.60					
Soft dark brown very peaty CLAY. (ALLUVIUM)	× Mr. × Mr.	3.80	8.12 7.92	B8 S	3.80-3.90 4.00-4.45	4.00	(3.80)	N=8 (1,2,2,2,2,2)		
Soft yellowish grey sandy slightly gravelly CLAY. Gravel is angular to subangular fine to medium flint. (ALLUVIUM)				D10 B9	4.00-4.45 4.00-4.50					
Loose grey silty very gravelly fine to coarse SAND. Gravel is angular to subrounded fine to medium flint.	X	5.50	6.42	S	5.50-5.95	5.50	(3.80)	N=9 (1,2,2,2,2,3)		
(KEMPTON PARK GRAVEL FORMATION)  Loose grey fine to coarse SAND and GRAVEL. Gravel		_		D11 B12	5.50-5.95 5.50-6.00		, ,	( , , , , , ,		
is subangular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)										
Stiff medium to high strength locally thinly laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)	x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x _ x x _ x x x _ x x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _	6.80	5.12	S D13 B14	7.00-7.45 7.00-7.45 7.00-7.50	7.00		N=11 (2,2,2,3,3,3)		-
	X			S D15 B16	8.50-8.95 8.50-8.95 8.50-9.00	8.50		N=17 (2,3,3,4,5,5) PP=110.0kPa		
Borehole continued		-								
				1	Water Lev	el Obse	ervati	ons		

									Water Level	Observations		
	Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
	ameter mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
2	250 200 150	3.50 7.50 21.00	3.50 7.50 9.00				23/06/14 23/06/14 23/06/14	4.00 18.00 20.70	20 20 20	3.80 18.00 18.50	4.00 9.00 9.00	7.50 - -

Dates:

30/05/2014-23/06/2014

Plant:

Dando 2000

Drilled By: Logged By: J Tomalin

A Elsoff

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.00m, 18.00m and 20.70mbgl, rising to 3.80m, 18.00m and 18.50mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH303** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 11.915mAOD Coordinates: 535654.88E

192933.92N

Sheet 2 of 3

							1929	933.92N
Description	Legend	Depth	O.D.	Sam	ple Test	SPT/CPT	Remarks and	
Description	Legenu	(m)	Level (m)	Туре	Depth (m)	Casing Water Depth Depth (m) (m)	Test Results PID SPT/HV/PP (Recovery) (ppm	Installations
Stiff medium to high strength locally thinly	× ~ -	×	()	U17	10.00-10.45	(111)	30 blows	-
laminated brownish grey with rare greenish grey slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)				D18	10.45-10.50		PP=220.0kPa	-
	× - × - × - × - × - × - × - × - × - × -	×		S D19 B20	11.50-11.95 11.50-11.95 11.50-12.00	9.00	N=21 (3,4,5,5,5,6)	-
	x _ x _ x _ x _ x _ x _ x _ x _ x _ x _	×		S D21 B22	13.00-13.45 13.00-13.45 13.00-13.50	9.00	N=22 (2,5,5,5,5,7) PP=160.0kPa	
	x _ x _ x _ x _ x _ x _ x _ x _ x _ x _			S D23 B24	14.50-14.95 14.50-14.95 14.50-15.00	9.00	N=26 (3.5.5.5.8.8) PP=200.0kPa	
Very stiff high strength thinly laminated brownish	XX_ XX_ XX_ XX	16.45	-4.54		16.00-16.45 16.45-16.50		PP=220.0kPa 31 blows	
grey slightly silty CLAY, with some sandy clay bands. (LONDON CLAY FORMATION)	xx	×					PP=220.0kPa	-
	X X X X X X X X X	<del>-</del>		S D27 B28	17.50-17.95 17.50-17.95 17.50-18.00	9.00	N=26 (3,4,5,6,7,8)	
	×			S D29	19.00-19.45 19.00-19.45	9.00 (19.00	) N=40 (3,4,6,9,11,14) PP=220.0kPa	
Deschola continued	×	19.60	-7.69	B30 B31	19.00-19.50 19.60-19.80		PP=160.0kPa	-
Borehole continued	-x- :							
					Water Lev	el Observation	ons	

								water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.50 7.50 21.00	3.50 7.50 9.00				23/06/14 23/06/14 23/06/14	4.00 18.00 20.70	20 20 20	3.80 18.00 18.50	4.00 9.00 9.00	7.50 - -

Dates:

30/05/2014-23/06/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.00m, 18.00m and 20.70mbgl, rising to 3.80m, 18.00m and 18.50mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH303** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 11.915mAOD Coordinates: 535654.88E

Sheet 3 of 3

onent. AMES E a Fort Emilion				3	,		Coordinates.		33.92N
Description	Logond	Denth	O.D.	Sam	nple Test	SPT/CPT	Remarks ar	nd	
Description	Legend	Depth (m)	Level (m)	Туре	e Depth (m)	Casing Water Depth Depth (m) (m)	Test Result	S PID (ppm)	Installations
Very stiff very high strength brownish grey silty CLAY, with some greenish grey sandy clay bands. (LAMBETH GROUP UNDIFFERENTIATED)	xx	×-			20.20-20.40 20.50-20.84 20.50-20.84		0) 50/190mm (4,14,15,1		
From 20.70mbgl becomes greenish grey silty fine sand.  Borehole Complete at 20.84 m	×	20.84	-8.93	555	20.30-20.04				
Borenole Complete at 20.84 m									-
									=
		_							-
									-
									-
									-
									-
		-							-
		-							
									-
		-							
		E							]

								vvater Level	Observations		
Hole	Diamete	er Detail	Ch	iseling D	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.50 7.50 21.00	3.50 7.50 9.00				23/06/14 23/06/14 23/06/14	4.00 18.00 20.70	20 20 20	3.80 18.00 18.50	4.00 9.00 9.00	7.50 - -

Dates:

30/05/2014-23/06/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.00m, 18.00m and 20.70mbgl, rising to 3.80m, 18.00m and 18.50mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH304** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ryan Cridlin

Ground Level: 12.679mAOD Coordinates: 535776.71E

192835.36N

Sheet 1 of 3

										1928	35.36N
Description	Legend	Depth	O.D.	Samı	ple Test	SPT/		-	rks and		0 °
Description	Legend	(m)		Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	I est	Results (Recovery)	PID (ppm)	Installations
MADE GROUND: Tarmacadam.	*****	5			` '	()	()				
MADE GROUND: Reddish brown slightly silty very sandy GRAVEL. Gravel is angular fine to coarse granite.		0.30	12.38 12.23	B1 B2	0.30-0.45 0.45-1.10						3
MADE GROUND: Yellowish brown slightly silty fine to coarse SAND and GRAVEL. Gravel is angular to subrounded fine to coarse flint.		1.10	11.58	В3	1.10-1.30						
MADE GROUND: Stiff brownish grey and greyish brown slightly silty CLAY.											
		2.70	9.98	B4	2.30-2.50			PP=110.0kF	^o a		=
MADE GROUND: Greyish brown silty fine to coarse SAND and GRAVEL. Gravel is rounded fine to coarse flint.				B5	2.80-3.30						<u>-</u>
MADE GROUND: Firm greenish grey with rare yellowish grey and dark grey CLAY.		3.30	9.38	B6	3.30-3.80			PP=50.0kPa	1		-
MADE GROUND: Firm low strength dark brown sandy organic SILT, with some silty fine sand bands and occasional brick fragments.		4.20	8.48	S D7 B8	4.50-4.95 4.50-4.95 4.50-5.00	4.00		N=4 (1,0,1,1 PP=25.0kPa	,1,1) a		
Medium dense grey slightly silty very sandy GRAVEL. Gravel is angular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)		5.70	6.98	S B10 D9	6.00-6.45 6.00-6.50 6.00-6.45	6.00	(4.00)	N=12 (1,2,2	,3,3,4)		
From 7.50mbgl becomes SAND and GRAVEL.				S D11 B12	7.50-7.95 7.50-7.95 7.50-8.00	7.50	(4.50)	N=12 (1,2,3	,3,3,3)		-
Stiff medium to high strength locally thinly laminated brownish grey CLAY, with rare bioturbation. (LONDON CLAY FORMATION)	\$ CO . X	8.40	4.28	B13 S D14	9.00-9.45 9.00-9.45	9.00	(6.40)	PP=75.0kPa N=17 (2,3,4			
Borehole continued		-									

							Water Level	Observations		
Hole Diamet	er Detail	Ch	iseling D	Details		Water	Standing	Standing	Casing	Depth
Diameter Depth (mm) (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 4.20 200 9.00 150 21.40	4.20 9.00 10.20			·	14/05/14 15/05/14	4.80 20.80	20 20	4.10 19.30	4.50 10.20	

Dates:

13/05/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.80m and 20.80mbgl, rising to 4.10m and

19.30mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH304** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ryan Cridlin

Ground Level: 12.679mAOD Coordinates: 535776.71E

192835 36N

Sheet 2 of 3

								1	9283	35.36N
Description	Legend	Depth	O.D.	Sam	ple Test	SPT/C		T4 D4-		
Beschpiter	Logona	(m)	Level (m)	Туре	Depth (m)	Casing V Depth D (m)	/ater epth (m)		PID (ppm)	Installations
Stiff medium to high strength locally thinly laminated brownish grey CLAY, with rare	xx	10.20	2.48		10.20-10.50			PP=110.0kPa		
bioturbation. (LONDON CLAY FORMATION)	<u>xx</u>	×		UT16	10.50-10.95			25 blows		
Stiff brownish grey slightly silty CLAY. (LONDON CLAY FORMATION)	xx	_10.95	1.73	D17	10.95-11.10			PP=165.0kPa		<u>-</u>
Very stiff locally stiff medium strength locally thinly laminated brownish grey silty CLAY, with	-xx-	×						PP=160.0kPa		
rare bioturbation. (LONDON CLAY FORMATION)	<u>×</u> <u>×</u>	-		S	12.00-12.45	10.20		N=21 (2,4,5,5,5,6)		-
	×				12.00-12.45 12.00-12.50			PP=165.0kPa		-
	x_ <u>x</u> _x	*								
	×	*								=
	×x	*		S D20 B21	13.50-13.95 13.50-13.95 13.50-14.00	10.20		N=30 (3,4,7,7,7,9) PP=125.0kPa		=
	<u>x</u> x									<u>-</u>
1	×	×								
	×	*		UT22	15.00-15.45			25 blows		=
	- <u>×</u> - <u>×</u>	×		D23	15.45-15.60			PP=165.0kPa		-
) ·	×	×								
	×x-	*								=
	<u>x</u> x	1		S D24 B25	16.50-16.95 16.50-16.95 16.50-17.00	10.20		N=26 (3,4,7,6,6,7) PP=100.0kPa		=
	××	×								=
	×	*								
Very stiff medium strength locally thinly laminated	xx	18.00	-5.32	S	18.00-18.45 18.00-18.45	10.20		N=29 (3,4,7,7,7,8)		=
brownish grey slightly silty slightly sandy CLAY, with rare bioturbation.	×	*		D26 B27	18.00-18.50			PP=150.0kPa		3
(LONDON CLAY FORMATION)	<u>×</u> - <u>x</u> -									
*	×xx	× -								
	<u>×</u> - <u>x</u> - <u>x</u>	=		S D28 B29	19.50-19.95 19.50-19.95 19.50-20.00	10.20		N=28 (2,3,6,7,7,8)		=
Borehole continued	- X	-								

								vvater Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	4.20 9.00 21.40	4.20 9.00 10.20				14/05/14 15/05/14	4.80 20.80	20 20	4.10 19.30	4.50 10.20	-

Dates:

13/05/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.80m and 20.80mbgl, rising to 4.10m and

19.30mbgl after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH304** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ryan Cridlin

Ground Level: 12.679mAOD Coordinates: 535776.71E

Sheet 3 of 3

			•					19	92835.36N
Description	Legend	Depth (m)	O.D. Level (m)		ple Test Depth (m)	SPT/Casing		Remarks and Test Results SPT/HV/PP (Recovery) (p	nstallation
Very stiff medium strength locally thinly laminated brownish grey slightly silty slightly sandy CLAY, with rare bioturbation. (LONDON CLAY FORMATION)	xx	24.00							
Very dense yellowish grey silty fine SAND. (LAMBETH GROUP UNDIFFERENTIATED)	× × × × × × × × × × × × × × × × × × ×	21.00	-8.32	S D30	21.00-21.39 21.00-21.39	10.20	(19.30)	50/235mm (7,8,12,14,19,5	"
Stiff light greenish grey with rare yellowish grey and reddish brown slightly gravelly CLAY. Gravel is subangular to rounded fine to medium flint. Some black staining on gravel. (LAMBETH GROUP UNDIFFERENTIATED)		21.50						PP=140.0kPa	
Borehole Complete at 23.00 m		23.00	-10.32						
		- - - - - - - - -							
		-							
		-							
		-							
		- - - - - - -							
		-							-
					Water Lev	el Obse	ervati	ons	

								Water Level	Observations		
Hole	Diamete	er Detail	Chiseling Details			_	Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	4.20 9.00 21.40	4.20 9.00 10.20				14/05/14 15/05/14	4.80 20.80	20 20	4.10 19.30	4.50 10.20	

Dates:

13/05/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.80m and 20.80mbgl, rising to 4.10m and

19.30mbgl after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

Gr	GROUND TECHNOLOGY Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657
	www.groundtechnology.co.uk

### **Borehole Record**

**BH305** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 12.007mAOD Coordinates: 535808.17E

192835.36N

Sheet 1 of 3

									192033	J.JOIN
Description	Legend	Depth			ole Test	SPT/		Remarks and Test Results	.	stallations
	123225	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Depth (m)	SPT/HV/PP (Recovery)		staliations
MADE GROUND: Brick paving.		0.10	11.91 11.86	B1	0.25-0.80					-
MADE GROUND: Dark yellowish brown fine to coarse SAND.		0.25	11.76							
MADE GROUND: Tarmacadam.		0.80	11.21	B2	0.80-1.20					3
MADE GROUND: Brownish grey and greyish brown slightly clayey very gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint and granite.		<del>****</del>		В3	1.80-2.20					
MADE GROUND: Stiff brownish grey CLAY.		÷ , , ,	0.74	D.4	0.00.0.00					
MADE GROUND: Yellowish brown slightly silty fine to coarse SAND and GRAVEL. Gravel is angular to rounded fine to coarse flint.		2.30	9.71	B4	2.30-2.80					
MADE GROUND: Concrete.	XXXXX	2.90 3.00	9.11 9.01	B5	3.00-3.40			PP=45.0kPa		-
MADE GROUND: Firm brownish grey and brown slightly silty slightly gravelly CLAY, with rare wood and shell fragments. Gravel is angular fine to medium brick and flint.	Mts. × shts × shts = shts  Mts. × shts = shts  Mts. × shts = shts  -× sht = shts	Ė	8.61	В6	3.40-3.60					<u>-</u>
Firm low strength brown and grey peaty CLAY. (ALLUVIUM)	Allo Allo	_	7.61	S D7 B8	4.20-4.65 4.20-4.65 4.20-4.70	4.00		N=9 (1,2,2,2,3,2)		$\overline{Z}$
Loose to medium dense grey silty very sandy GRAVEL. Gravel is angular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)										
				S B10 D9	5.70-6.15 5.70-6.20 5.70-6.15	5.70	(3.80)	N=29 (3,4,7,7,8,7)		
	X X X			S D11 B12	7.20-7.65 7.20-7.65 7.20-7.70	7.20	(4.50)	N=9 (1,2,2,2,2,3)		
Stiff medium to high strength locally closely fissured brownish grey CLAY, with rare bioturbation. (LONDON CLAY FORMATION)		7.70	4.31	B13	7.70-8.20			PP=100.0kPa		
				S D14 B15	8.70-9.15 8.70-9.15 8.70-9.10	8.50	(7.70)	N=15 (1,2,3,4,4,4) PP=110.0kPa		
Borehole continued										
<del> </del>										

								Water Level	Observations		
Hole Diameter Detail			Chiseling Details				Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.60 8.90 23.07	3.20 8.90 10.20				15/05/14 20/05/14	4.40 22.40	20 20	4.00 15.00	4.00 10.20	-

Dates:

14/05/2014

Plant:

Dando 2000

Drilled By:

T York Logged By: J Tomalin

Checked By: P Lewin

- Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
  2. Groundwater observed at 4.40m and 22.40mbgl, rising to 4.00m and

  - 15.00mbgl after 20 minutes standing time.

    3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH305** 

Sheet 2 of 3

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 12.007mAOD Coordinates: 535808.17E

Client: AMECE & LUK Limited	Engineer .	. ве	II SIIII	LI I		Coordinates: 535808.17E 192835.36N				
Description	Legend De	enth	O.D.	San	nple Test	SPT/CPT		emarks an		
Description	Legend (i	m)	Level (m)	Туре	Depth (m)	Casing Water Depth Depth (m) (m)	SPT/HV	est Results //PP (Recovery)	PID	Installation
Stiff medium to high strength locally closely fissured brownish grey CLAY, with rare				UT16	10.20-10.65		21 blov	vs		
bioturbation. (LONDON CLAY FORMATION)				D17	10.65-10.80		PP=20	0.0kPa		
				S D18 B19	11.70-12.15 11.70-12.15 11.70-12.20	10.20 (11.60	) N=25 (:	3,5,6,7,6,6)		
				S D20 B21	13.20-13.65 13.20-13.65 13.20-13.70	10.20	N=27 (4 PP=14:	4,5,6,7,7,7) 5.0kPa		
Very stiff high strength brownish grey slightly	= = 18	5.00	-2.99		14.70-15.15 15.15-15.30		19 blow			<b>V</b>
silty CLAY, with rare bioturbation. (LONDON CLAY FORMATION)	X X X X X X X X X X X X X X X X X X X			S D24 B25	16.70-17.15 16.70-17.15 16.70-17.20	10.20 (16.30	) N=28 (· PP=15	4,5,7,7,7,7) 0.0kPa		
Stiff high strength brownish grey silty sandy CLAY, with some silty sand bands. (LONDON CLAY FORMATION)	X X X X X X X X X X X X X X X X X X X	7.60	-5.59	S D26 B27	18.20-18.65 18.20-18.65 18.20-18.70	10.20 (18.00	) N=30 (4 PP=12	4,5,8,7,8,7) 0.0kPa		
Borehole continued	×			S D28	19.70-20.15 19.70-20.15	10.20 (19.30	) N=29 (	3,5,5,8,8,8)		- - -
	D20 19.70 29.20 Water Level Observa					el Observati	ations			
Hole Diameter Detail Chiseling Details	Date		Water		Standing Standin		ing Casing			Depth
Diameter Depth Casing From To Time (mm) (m) Depth (m) (m) (m) (hhmm)			Strike (	m)	Time (mins)		m)	Depth (m	)	Sealed (m)
250 3.60 3.20	15/05/14	.	4.40		20	4.00		4.00		-

Hole Diameter	r Detail	Chiseling Details				Water	Standing	Standing	Casing	Depth
Diameter Depth (mm)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 3.60 200 8.90 150 23.07	3.20 8.90 10.20	(***/	· · · · /	,,	15/05/14 20/05/14	4.40 22.40	20 20	4.00 15.00	4.00 10.20	-

Dates:

14/05/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.40m and 22.40mbgl, rising to 4.00m and 15.00mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

### **Borehole Record**

**BH305** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 12.007mAOD Coordinates: 535808.17E

192835 36N

Sheet 3 of 3

								1	92835.36N
Description	Legend	Depth (m)	Level		nple Test Depth	SPT/		Remarks and Test Results SPT/HV/PP (Recovery) (I	Installation
Stiff high strength brownish grey silty sandy CLAY, with some silty sand bands. LONDON CLAY FORMATION)	x x - x - x - x - x - x - x	×- - - - - - - - - - - - - - - - - - -	(m)		(m)	(m)	<u>(ṁ)</u>	SP1/HV/PP (Recovery) (I	ppm)
/ery stiff high strength greenish grey and brownish grey slightly silty slightly sandy CLAY, with rare lioturbation.  LONDON CLAY FORMATION)	x - x - x - x - x - x - x - x - x - x -	21.20	-9.19	S D30 B31	21.20-21.65 21.20-21.70 21.20-21.70	10.20	(20.80	N=46 (5,7,8,12,14,12)	
Greyish brown silty fine SAND. LAMBETH GROUP UNDIFFERENTIATED)	× × ×	22.40	-10.39 -10.69	s	22.70-23.07	10.20	(15.00	) 48/215mm - Abandoned	
/ery dense brownish grey silty fine SAND, with some sandy clay bands.	××××,	23.07	-11.06	D32	22.70-23.07				-
Borehole Complete at 23.07 m									

								Water Level	Observations		
Hole	Hole Diameter Detail			iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.60 8.90 23.07	3.20 8.90 10.20				15/05/14 20/05/14	4.40 22.40	20 20	4.00 15.00	4.00 10.20	

Dates:

14/05/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 4.40m and 22.40mbgl, rising to 4.00m and 15.00mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

### **Borehole Record**

**BH306** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ryan Cridlin

Ground Level: 11.018mAOD Coordinates: 535857.33E

192853 39N

Sheet 1 of 3

										1928	53.39N
Day of the		Denth	O.D.	Samı	ple Test	SPT/	CPT		arks and		
Description	Legend	(m)	Level	Туре	Depth	Casing	Water		Results		Installations
MADE GROUND: Brown fine to coarse SAND and	XXXXX		(m)		(m)	(m)	(m)	SPT/HV/PP	(Recovery)	(ppm)	
GRAVEL (Drillers description).		*									3
		<u> </u>									=
MADE GROUND: Yellowish brown slightly silty fine to	****	0.80	10.22	B1	0.80-1.10						=
coarse SAND and GRAVEL. Gravel is angular to subangular fine to medium flint and plastic.		1.10	9.92	B2	1.10-1.40						
MADE GROUND: Firm brown slightly gravelly CLAY.		1.40	9.62	В3	1.40-1.80						_
Gravel is angular to subangular fine to medium flint.		1.80	9.22	B4	1.80-2.20						=
MADE GROUND: Greyish brown silty fine to coarse	× ×	2.20	8.82	B5	2.20-2.60						
SAND and GRAVEL. Gravel is subangluar to subrounded fine to coarse flint.	× × ×	_									
MADE GROUND: Yellowish brown silty fine to coarse SAND and GRAVEL. Gravel is rounded fine to coarse	-x3										=
flint and brick.	0.000	3.20	7.82	В6	3.20-3.60						
Soft grey and yellowish grey silty CLAY, with rare		-									=
semi decayed plant debris. (ALLUVIUM)				S	4.00-4.45	4.00	(2.50)	N=16 (2,2,4	2.4.5)		=
Medium dense grey slightly silty fine to coarse				D7 B8	4.00-4.45 4.00-4.50	4.00	(2.50)	10 (2,2,4	,3,4,3)		3
SAND and GRAVEL. Gravel is angular to subrounded fine to coarse flint.		Ė									=
(KEMPTON PARK GRAVEL FORMATION)											=
4		<u> </u>									-
		Ė		s	5.50-5.95	5.50	(2.50)	N=14 (1,1,3	3 4 4)		
					0.00 0.00	0.00	(2.00)	14 (1,1,0	,0,1,1)		
		-		В9	6.00-6.50						=
		-									=
Stiff brownish grey CLAY, with rare gravel sized		6.50	4.52	B10	6.50-7.00						=
nodules of weak mudstone. (LONDON CLAY FORMATION)		7.00	4.02	s	7.00-7.45	7.00	(6.00)	N=15 (2,3,3	.3.4.5)		3
Firm medium to high strength brownish grey CLAY.				D11 B12	7.00-7.45 7.00-7.50		( /	,,,,,	,		=
(LONDON CLAY FORMATION)											=
											3
				s	8.50-8.95	8.00		N=14 (1,2,3	3 4 4)		=
3				D13 B14	8.50-8.95 8.50-9.00			( . , _ , 0	,-,-,-/		
(2)		-									
	-1-13-1										=
[0]		ŧ l									=
Borehole continued	343-3	-									Ē

								Water Level	Observations			
Hole	Hole Diameter Detail			iseling D	Details		Water	Standing	Standing	Casing	Depth	
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)	
250 200 150	2.20 7.00 24.00	2.20 7.00 9.00		·	·	21/05/14 28/05/14	3.20 23.20	20 20	2.50 11.50	3.20 9.00		

Dates:

21/05/2014-28/05/2014

Plant:

Dando 2000

Drilled By: Logged By: G Day

T York

Checked By: P Lewin

- Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
  2. Groundwater observed at 3.20m and 23.20mbgl, rising to 2.50m and

  - 11.50mbgl after 20 minutes standing time.

    3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH306** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ryan Cridlin

Ground Level: 11.018mAOD Coordinates: 535857.33E

192853.39N

Sheet 2 of 3

									192003.39IN
Description	Legend	Depth (m)	O.D. Level		ple Test Depth	SPT		Took Dooulk	S
		()	(m)		(m)	Casing Depth (m)	Depth (m)	SPT/HV/PP (Recovery)	
Firm medium to high strength brownish grey CLAY. (LONDON CLAY FORMATION)		-		U15	10.00-10.50			35 blows	15
Firm to stiff medium strength dark brown mottled yellowish brown silty CLAY, with rare bioturbation (LONDON CLAY FORMATION)	x x x x x x x x x x x x x x x x x x x	10.45	0.57	D16	10.45-10.50				
	X X X X X X X X X X X X X X X X X X X			D17	12.00-12.45 12.00-12.45 12.00-12.50	9.00		N=23 (2,3,5,5,6,7)	
	××	×		S D19	13.50-13.95 13.50-13.95	9.00		N=24 (3,4,5,6,6,7)	=
	× × × × ×	*		B20	14.00-15.00				
Stiff to very stiff medium strength dark brownish grey silty CLAY, with rare bioturbation.	×	15.00	-3.98	S D21	15.00-15.45 15.00-15.45	9.00	(14.90)	N=18 (2,3,4,4,5,5)	=
(LÓNDÓN CLAY FORMATION)	× -× - × -× - × -× - × -× -			B22	15.60-16.60				
	×x ×x ×x	X		D23	16.60-17.05 16.60-17.05 17.00-18.00	9.00	(16.40	N=19 (2,3,4,4,5,6)	
	× – × – × – × – × – × – × – × – × – × –			S D25	18.00-18.45 18.00-18.45	9.00	(17.60)	N=26 (3,4,6,6,6,8)	
	× × _ × _ × _ × _ × _ × _ × _ × _ ×	***			18.50-19.50		46		- - - - - - - - - - - - - - - - - - -
Stiff high strength dark brownish grey mottled	xx	19.50	-8.48	S D27	19.50-19.95 19.50-19.95	9.00	(19.00)	N=33 (4,6,8,8,8,9)	<u> </u>
Borehole continued	<u> </u>	*							
					Water Lev	el Obs	ervati	ons	

						vvatel Level Observations										
Hole Diameter Detail Chiseling Details					Details		Water	Standing	Standing	Casing	Depth					
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)					
250 200 150	2.20 7.00 24.00	2.20 7.00 9.00				21/05/14 28/05/14	3.20 23.20	20 20	2.50 11.50	3.20 9.00	-					

Dates:

21/05/2014-28/05/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: G Day

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Groundwater observed at 3.20m and 23.20mbgl, rising to 2.50m and

11.50mbgl after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH306** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ryan Cridlin

Ground Level: 11.018mAOD Coordinates: 535857.33E

Sheet 3 of 3

										1928	53.39N
Description	Legend	Depth	O.D.		ple Test	SPT		T4	arks and Results		Installations
		(m)	Level (m)	• •	Depth (m)	Casing Depth (m)	Depth (m)	SPT/HV/PP	(Recovery)	PID (ppm)	Installations
yellowish brown slightly sandy silty CLAY. (LONDON CLAY FORMATION)	× - × - × - × - × - × - × - × - × - × -			B28 S	20.00-21.00	9.00		N=34 (4,6,	2800)		
	<u>x</u> _ <u>x</u> _ <u>x</u> _ <u>x</u>	-			21.00-21.45 21.00-21.45	9.00	(20.10)		5,0,9,9)		
	x - x - x - x - x - x - x - x - x - x -			U30	21.50-21.95 21.95-22.10			75 blows			
Firm to stiff high strength dark brownish grey mottled yellowish brown silty sandy CLAY. (LAMBETH GROUP UNDIFFERENTIATED)	x - x - x - x - x - x - x - x - x - x -	22.10	-11.08								-
	x x x			S D32 B33	23.00-23.40 23.00-23.40 23.00-24.00	9.00	(20.90)	50/250mm	(8,12,12,12	14,12)	
Borehole Complete at 24.00 m	×	24.00	-12.98								_

						Water Level Observations										
Hole [	Diamete	r Detail	Ch	iseling [	etails		Water	Standing	Standing	Casing	Depth					
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)					
250 200 150	2.20 7.00 24.00	2.20 7.00 9.00				21/05/14 28/05/14	3.20 23.20	20 20	2.50 11.50	3.20 9.00						

Dates:

21/05/2014-28/05/2014

Plant:

Dando 2000

Drilled By: T York Logged By: G Day

Checked By: P Lewin

- Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
  2. Groundwater observed at 3.20m and 23.20mbgl, rising to 2.50m and

11.50mbgl after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

## **Borehole Record**

**BH307** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 10.887mAOD Coordinates: 535884.67E

192852.81N

Sheet 1 of 3

										1920	011 0.2C
Description	Legend	Depth (m)	Level	Sam _l Type	ple Test Depth	SPT/ Casing Depth (m)		Remar Test R	Results	PID	Installations
MADE GROUND: Concrete.	XXXXX	-	(m)		(m)	(m)	(m)	SPT/HV/PP (F	Recovery)	(ppm)	4
MADE GROUND, CONClete.		₹ 0.40	10.40	D4	0.40-0.60						3
MADE GROUND: Reddish grey sandy medium GRAVEL. Gravel is angular medium granite.		0.40	10.49 10.29	B1 B2	0.60-0.90						
MADE GROUND: Yellowish brown very gravelly fine to coarse SAND. Gravel is angular to rounded fine to coarse flint.		0.90 - 1.00	9.99 9.89	B3 B4 B5	0.90-1.00 1.00-1.40 1.40-1.90						-
MADE GROUND: Soft grey slightly sandy slightly gravelly CLAY. No gravel description recorded.		1.90	8.99	B6	1.90-2.30						
MADE GROUND: Yellowish brown gravelly fine to coarse SAND. Gravel is angular fine to coarse flint.	××××	2.20	8.69	В7	2.30-2.50						
From 1.40mbgl with some brick	×××××	£									
Soft brownish grey sandy CLAY. (ALLUVIUM)	×××××	3.10	7.79	B8	3.20-3.70						
Soft brownish grey sandy SILT. (ALLUVIUM)		E									=
Medium dense grey very sandy GRAVEL. Gravel is angular to subrounded coarse flint. (KEMPTON PARK GRAVEL FORMATION)		بتبائباتن		S B10	4.00-4.45 4.00-4.50	4.00	(2.30)	N=13 (2,2,3,3	,3,4)		-
Stiff medium to high strength brownish grey CLAY,		5.10	5.79	В9	5.10-5.40						-
with rare fine and medium flint gravel. (LONDON CLAY FORMATION)				S D11 B12	5.50-5.95 5.50-5.95 5.50-6.00	5.40	(4.00)	N=12 (2,2,3,3 PP=80.0kPa	,3,3)		-
				U13	7.00-7.45			16 blows			-
				D14	7.45-7.60			PP=175.0kPa	ı		-
Crov MUDSTONE		8.20	2.69	D15	8.20-8.40						=
Grey MUDSTONE. (LONDON CLAY FORMATION)	<u> </u>	8.40	2.49	S D16	8.50-8.95 8.50-8.95	7.00		N=17 (2,2,3,4 PP=130.0kPa	,5,5)		-
Very stiff medium to high strength closely fissured locally thinly laminated brownish grey CLAY. (LONDON CLAY FORMATION)				B17	8.50-9.00						- - - - - -
Perchala and and		£ .									_
Borehole continued		9.90	0.99								-
				١	Mater I ev	ol Ohe	ervati	one			

						Water Level Observations										
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth					
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)					
250 200 150	2.20 6.20 7.00	2.20 6.20 7.00				05/06/14	23.00	20	12.90	7.00	-					

Dates:

03/06/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl. 2. Groundwater observed at 23.00m, rising to 12.90m after 20 minutes

Standing time.
 Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH307** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 10.887mAOD Coordinates: 535884.67E

192852.81N

Sheet 2 of 3

								•	192852.81N
Description	Legend	Denth	O.D.	Sam	ple Test	SPT/	CPT	Remarks and	
Description	Legend	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth	Test Results SPT/HV/PP (Recovery)	PID IIIIStaliations
Very stiff medium strength brownish grey with rare greenish grey slightly silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)	XXXXXXXXXXXXX_	<u> </u>	(,	S D18 B19	10.00-10.45 10.00-10.45 10.00-10.50	7.00	(,	N=19 (2,3,4,4,5,6) PP=180.0kPa	(KPI-17)
	× × × × × × × × × × × × × × × × × × ×			S D20 B21	11.50-11.95 11.50-11.95 11.50-12.00	7.00		N=20 (2.4.4.4.5.7) PP=180.0kPa	
	-   -   -   -   -   -   -   -   -   -	×-		S D22 B23	13.00-13.45 13.00-13.45 13.00-13.50	7.00		N=23 (3,4,5,5,6,7) PP=180.0kPa	<b>V</b>
From 14.50mbgl with some silty fine sand bands and greenish grey mottling.	× × × × × × × × × × × × × × × × × × ×			S D24 B25	14.50-14.95 14.50-14.95 14.50-15.00	7.00		N=22 (3,4,5,5,6,6) PP=150.0kPa	
	× × × × × × × × × × × × × × × × × × ×			S D26 B27	16.00-16.45 16.00-16.45 16.00-16.50	7.00		N=20 (2,4,4,5,5,6) PP=150.0kPa	
Stiff high strength thinly laminated brownish grey CLAY. (LONDON CLAY FORMATION)	×x-	17.50	-6.61	S D28 B29	17.50-17.95 17.50-17.95 17.50-18.00	7.00		N=21 (3,3,4,5,6,6) PP=140.0kPa	
Very stiff medium to high strength brownish grey slightly silty CLAY, with some greenish grey sandy mottling. (LONDON CLAY FORMATION)		19.00	-8.11	S D30 B31	19.00-19.45 19.00-19.45 19.00-19.50	7.00		N=27 (6,6,7,7,7,6) PP=160.0kPa	
Borehole continued	X	F			Materlay	al Obas	orvot:	one.	-
Hole Diameter Detail Chiseling Details					Water Lev		ervatio	פות 	

Hole Diameter Detail Chiseling Details							Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	2.20 6.20 7.00	2.20 6.20 7.00	(/	(,	ζ	05/06/14	23.00	20	12.90	7.00	-

Dates:

03/06/2014

Plant:

Dando 2000

Drilled By:

T York Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl. 2. Groundwater observed at 23.00m, rising to 12.90m after 20 minutes

standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

CONFIDENTIAL	
GROUND TECHNOLOGY	Borehole Record
Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657	Project: Edmonton Ecopark
www.groundtechnology.co.uk	Project ID: GTS-14-403
Client: AMEC E & I UK Limited	Engineer : Joanne Gavigan
Description	Legend Depth O.D. Sample Test
Description	(m) Level Type Depth (m)
Very stiff medium to high strength brownish grey slightly silty CLAY, with some greenish grey sandy mottling. (LONDON CLAY FORMATION)	X
	S 22.00-22.45 D34 22.00-22.45 B35 22.30-22.70
Brownish grey silty fine SAND.	22.90 -12.01 _{D36} 23.00-23.20

						192032.0111					
D		Denth	O.D.	Sam	ple Test	SPT/C	PT		arks and		
Description	Legend	(m)	LEVE	Туре		Casing \ Depth I (m)	Nater	Test	Results	DID	Installations
	~ .		(m)		(m)	(m)	(m)	SPT/HV/PP	(Recovery)	(ppm)	
Very stiff medium to high strength brownish grey slightly silty CLAY, with some greenish grey sandy	×x	-									_
mottling. (LONDON CLAY FORMATION)	xx	-		U32	20.50-20.95			46 blows			
(LONDON CLATT ONWIATION)	xx	<u> </u>		D33	20.95-21.10			PP=250.0kF	Pa .		
	×	-		D33	20.33-21.10			11 -250.0KI	a		_
13	×	£									
	××	E									
	<u>x</u>	F		S D34	22.00-22.45 22.00-22.45	7.00		N=38 (6,7,8	,10,10,10)		=
		F			22.30-22.70						
4		F									
Brownish grey silty fine SAND.	× × × ×	_	-12.01	D36	23.00-23.20						
(LAMBETH GROUP UNDIFFERENTIATED)	. × x	23.20	-12.31								
Borehole Complete at 23.20 m		E									
		E									
		E									
		E									
		-									
		_									
		E									=
		E									
		=									
		E									
		Ė									
		Ē									
		Ē									-
		-									
		Ē									
		E									
		F									=
		F									
		E									
		F									
					Water Lev	el Obse	rvati	ons			

						Water Level Observations										
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth					
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)					
250 200 150	2.20 6.20 7.00	2.20 6.20 7.00				05/06/14	23.00	20	12.90	7.00	-					

Dates:

03/06/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl. 2. Groundwater observed at 23.00m, rising to 12.90m after 20 minutes

Groundwater observed at 25.00m, histing to 12.90m arter 20 minutes standing time.
 Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

Sheet 3 of 3

**BH307** 

Ground Level: 10.887mAOD

192852.81N

Coordinates: 535884.67E

Gr	GROUND TECHNOLOGY Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657
	Tel: 01553 817657
	www.groundtechnology.co.uk

### **Borehole Record**

**BH308** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 12.185mAOD Coordinates: 535732.67E

Sheet 1 of 3

								192841.85N			
Description	Legend	Depth	O.D.	Sam	ole Test	SPT/0	CPT				
Description	Legena	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	Test Ro		PID (ppm)	Installations
MADE GROUND: Concrete	*****	0.00	44.00	D4	0.00.0.50	. ,					-
MADE GROUND: Black sandy GRAVEL. Gravel is angular to subangular fine to medium tarmac, granite and red brick.		0.30	11.89 11.59	B1 B2	0.30-0.50 0.60-0.80						-
MADE GROUND: Soft very gravelly CLAY, with rare rootlets. Gravel is subangluar to subrounded fine to medium concrete, brick and glass.		1.40	10.79	B3 B4	1.00-1.20 1.40-1.60						
MADE GROUND: Firm, locally soft orangish brown and yellowish brown slightly gravelly CLAY. Gravel is subangular fine brick and concrete.				B5	2.20-2.30						
	$\times\!\!\times\!\!\times\!\!\times$	2 10	0.00	B6 B7	2.90-3.00 3.10-3.40						_
Firm orangish brown mottled black slightly gravelly CLAY. Gravel is angular to subangular concrete and	oli × − vlv −×	3.10	9.09 8.79	B8	3.40-3.60						
charcoal. (ALLUVIUM)	× ,1/2 × //2	3.70	8.49								
Soft, locally firm dark brownish black very organic peaty CLAY, with abundant rootlets and wood fragments. (ALLUVIUM)				S B10 D9	4.00-4.45 4.00-4.50 4.00-4.45	4.00	(3.80)	N=18 (3,4,3,3,	6,6)		-
Medium dense brownish grey sandy GRAVEL. Gravel is subangluar to subrounded fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)				S D11 B12	5.50-5.95 5.50-5.95 5.50-6.00	5.50	(5.00)	N=9 (2,3,2,2,2	,3)		
Stiff becoming very stiff medium to high strength brownish grey slightly silty slightly micaceous	<u>××</u>	7.30	4.89	S D13 B14 B15	7.00-7.45 7.00-7.45 7.00-7.30 7.30-7.50	7.00	(4.10)	N=9 (2,2,2,2,2	,3)		-
CLAY, with rare bioturbation. (LONDON CLAY FORMATION)	××			U16	8.00-8.45			30 blows			3
	x x x x x x x x x x x x x x x x x x x			D17	8.45-8.50						
Borehole continued	xx										

									Water Level	Observations		
Hole Diameter Detail		Ch	Chiseling Details			Water	Standing	Standing	Casing	Depth		
	Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
	250 200 150	3.30 7.30 21.00	3.30 7.30 9.00				30/05/14 03/06/14 03/06/14	3.80 16.70 20.60	20 20 20	3.50 16.70 18.00	3.80 9.00 9.00	7.80 - -

Dates:

29/05/2014-03/06/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: G Day

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl
2. Groundwater observed at 3.80m, 16.70m and 20.60m, rising to 3.50m, 16.70m and 18.00mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground
/ top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH308** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 12.185mAOD Coordinates: 535732.67E

192841.85N

Sheet 2 of 3

								19204 1.001N		
Description	Legend	Depth	O.D.	Sample Test				Remarks and Test Results		
5000p.to	Logona	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	SPT/HV/PP (Recovery)	_{PID} Installatio	
Stiff becoming very stiff medium to high strength brownish grey slightly slity slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)	xx x x x x x x	× × × × × × × × × × × × × × × × × × ×	,	B19	10.0ò-10.45 10.00-10.45 10.00-10.50	9.00	V···/	N=18 (3,4,4,4,5,5) PP=110.0kPa		
Very stiff thickly laminated slightly greenish grey slightly silty CLAY. (LONDON CLAY FORMATION)	xx	11.30	0.89 0.69	S D21	11.30-11.50 11.50-11.95 11.50-11.95 11.50-12.00	9.00		PP=140.0kPa N=21 (3,4,4,5,5,7) PP=160.0kPa	- - - - -	
Very stiff medium strength slightly micaceous thinly laminated brownish grey slightly silty CLAY, with rare bioturbation. (LONDON CLAY FORMATION)		×								
	××	×=		S D23	13.00-13.45 13.00-13.45	9.00		N=22 (2,3,4,5,6,7)		
1	<u> </u>	× -		B24	13.00-13.50			PP=160.0kPa	=	
Very stiff medium strengththinly laminated brownish	××	14.00	-1.82	B25	14.00-14.20			PP=220.0kPa		
grey slightly silty CLAY, with rare bioturbation and rare pyrite nodules. (LONDON CLAY FORMATION)	x - x - x - x - x - x - x - x - x - x -	× × × × × × × × × × × × × × × × × × ×		D26	14.50-14.95 14.50-14.95 14.50-15.00	9.00		N=19 (2,3,3,4,5,7)	- - - - - - - - - -	
	××	× .		U28	16.00-16.45			50 blows	= = = = = = = = = = = = = = = = = = =	
From 16.45mbgl with some thin silty fine sand bands.	xx- -x- -x- -x- -x- -x-	×		D29	16.45-16.50			PP=220.0kPa	-	
	xx xx	×		D30	17.50-17.95 17.50-17.95 17.50-18.00	9.00	(17.50	N=23 (3,3,4,5,6,8) PP=160.0kPa		
Very stiff medium strength thinly interlaminated brownish grey with rare greenish grey slightly silty slightly micaceous CLAY, with rare	xx xx xx xx	19.10	-6.92	D32	19.00-19.45 19.00-19.50 19.00-19.50	9.00	(19.00	N=31 (3,6,6,8,8,9) PP=150.0kPa		
Borehole continued	xx-	*							=	
	X	-						ı		

						Water Level Observations							
Hole Diameter Detail		Chiseling Details				Water	Standing	Standing	Casing	Depth			
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)		
250 200 150	3.30 7.30 21.00	3.30 7.30 9.00				30/05/14 03/06/14 03/06/14	3.80 16.70 20.60	20 20 20	3.50 16.70 18.00	3.80 9.00 9.00	7.80 - -		

Dates:

29/05/2014-03/06/2014

Plant:

Dando 2000

Drilled By: A Elsoff

Logged By: G Day

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl
2. Groundwater observed at 3.80m, 16.70m and 20.60m, rising to 3.50m, 16.70m and 18.00mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground
/ top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH308** 

Sheet 3 of 3

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 12.185mAOD Coordinates: 535732.67E

Client. AWEC E & FOR Limited	Liigiiio	C1 . UC	arii e v	oavig	iai i			Coordinates:		32.67E 41.85N
Description	Lawarad	Depth	O.D.	Sam	ple Test	SPT/C	PT			
Description	Legend	(m)	Level (m)		Depth (m)	Casing Water Depth Depth (m) (m)		Test Results SPT/HV/PP (Recovery)	S PID (ppm)	Installations
bioturbation and shell fragments. (LONDON CLAY FORMATION)	× ××_×	20.20	-8.02	B34	20.20-20.40					
Very dense brownish grey silty fine SAND, with some silty clay bands. (LONDON CLAY FORMATION)		20.60	-8.42 -8.65	S D35	20.50-20.83 20.50-20.83	9.00 (*	15.20	50/182mm (4,6,12,23,	15)	=======================================
Very dense brownish grey mottled greenish grey slightly gravelly silty fine SAND, with rare shell fragments. Gravel is angular to subangular fine to medium flint. (LAMBETH GROUP UNDIFFERENTIATED)  Borehole Complete at 20.83 m										

								vvalei Levei	Observations		
Hole Diameter Detail		Chiseling Details			Water	Standing	Standing	Casing	Depth		
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.30 7.30 21.00	3.30 7.30 9.00				30/05/14 03/06/14 03/06/14	3.80 16.70 20.60	20 20 20	3.50 16.70 18.00	3.80 9.00 9.00	7.80 - -

Dates:

29/05/2014-03/06/2014

Plant:

Dando 2000

Drilled By: A Elsoff Logged By: G Day

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl
2. Groundwater observed at 3.80m, 16.70m and 20.60m, rising to 3.50m, 16.70m and 18.00mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground
/ top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH309** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 10.746mAOD Coordinates: 535673.36E

Sheet 1 of 2

One in the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the con								Coordii	iates.		94.55N
Description	Legend	Depth	O.D.	Sam	ple Test	SPT	CPT	_	arks an		
Description	Legena	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	I est	(Recovery)	PID (ppm)	Installations
MADE GROUND: Sandy GRAVEL. Gravel is angular to subangular fine to coarse brick and concrete.		0.30	10.45	B1 B2	0.10-0.20 0.30-1.20	,	()				
MADE GROUND: Yellowish brown slightly silty fine to coarse SAND and GRAVEL. Gravel is angular to subrounded fine to coarse flint.		****									
MADE GROUND: Firm to stiff grey and brownish grey slightly sandy slightly gravelly CLAY. Gravel is angular to rounded fine to coarse flint, brick and concrete.		1.30	9.45 9.05	B3 B4	1.30-1.50						
MADE GROUND: Firm dark grey grey and brown slightly silty CLAY, with occasional decayed rootlets and slight organic odour.		X	7.05	25	0.00.0.40						
Soft light grey and brownish grey sandy slightly	XXXXX	2.80	7.95	B5	2.80-3.10						
gravelly SILT, with some dark brown organic silt pockets and fine decayed roots. Gravel is subrounded fine to medium flint.  (ALLUVIUM)	× × × × × × × × × × × × × × × × × × ×	3.10	7.65	B6	3.10-3.50						
Medium dense to loose grey silty very sandy GRAVEL. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)	× * * * * * * * * * * * * * * * * * * *			S D7 B8	4.00-4.45 4.00-4.45 4.00-4.50	4.00	(3.00)	N=10 (1,2,3	3,3,2,2)		
From 5.50mbgl with some sandy clay bands  Stiff medium strength slightly greenish grey silty	x	5.90	4.85	S B10 D9 B11	5.50-5.95 5.50-5.90 5.50-5.95 5.90-6.40	5.50	(2.50)	N=9 (2,2,2,	2,2,3)		
slightly micaceous CLAY. (LONDON CLAY FORMATION)	× × × × × × × × × × × × × × × × × × ×							PP=75.0kP	a		
	xx	×		U12	7.50-7.95			20 blows			
	xxxxx	- - - - -		D13	7.95-8.05						<u>V</u>
Very stiff medium strength locally thinly laminated brownish grey silty slightly micaceous CLAY, some sandy clay bands and rare bioturbation. (LONDON CLAY FORMATION)  Borehole continued	x x x x x x x x x x x x x x x x x x x	8.90	1.85	S D14 B15	9.00-9.45 9.00-9.45 9.00-9.50	7.50		N=18 (1,2,4 PP=175.0k			
	-	KI .						ı			

								Water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.00 6.90 19.91	3.00 6.20 10.70				20/05/14 22/05/14 22/05/14	2.80 10.40 18.00	20 20 20	1.90 10.40 8.20	2.00 7.50 10.70	10.70 -

Dates:

20/05/2014-23/05/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl. 2. Water observed at 2.80m, 10.40m and 18.00mbgl, rising to 1.90m, 10.40m

and 8.20mbgl.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

G-	GROUND TECHNOLOGY Maple Road, Kings Lynn Norfolk, PE34 3AF
<b>G</b>	Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH309** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 10.746mAOD

Coordinates: 535673.36E

Sheet 2 of 2

Description  Legend Depth (m) Level (m) Level (m) Depth (m) Level (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth
Very stiff medium strength locally thinly laminated brownish grey silty slightly micaceous CLAY, some sandy clay bands and rare bioturbation. (LONDON CLAY FORMATION)  Stiff medium strength brownish grey slightly silty slightly sandy CLAY, with rare bioturbation. (LONDON CLAY FORMATION)  The property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property o
Stiff medium strength brownish grey slightly silty slightly sandy CLAY, with rare bioturbation. (LONDON CLAY FORMATION)    S   12.00-12.45   D19   12.00-12.50   D19
SAND. (LONDON CLAY FORMATION)  Very stiff brownish grey slightly silty slightly sandy CLAY, with rare bioturbation. (LONDON CLAY FORMATION)
U24 15.10-15.55 36 blows  D25 15.55-15.65
Very stiff high strength greenish grey sandy glauconitic CLAY, with rare bioturbation and fine and medium gravel sized pyrite. (LONDON CLAY FORMATION)
Very stiff thinly laminated greyish brown sandy SILT, with some fine sand bands. (LONDON CLAY FORMATION)  Medium dense grey silty fine SAND, with some glauconitic specks.  17.40 -6.65 B28 17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80   -6.65 B28   17.40-17.80
(LAMBETH GROUP UNDIFFERENTIATED)  Stiff light grey, reddish brown and yellowish grey slightly gravelly CLAY. Gravel is subrounded to rounded fine to coarse flint. Some black staining
on gravel. (LAMBETH GROUP UNDIFFERENTIATED)  Borehole continued  19.30 -8.55 S 19.50-19.91 D32 19.50-19.91 B33 19.50-19.80

								Water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.00 6.90 19.91	3.00 6.20 10.70				20/05/14 22/05/14 22/05/14	2.80 10.40 18.00	20 20 20	1.90 10.40 8.20	2.00 7.50 10.70	10.70

Dates:

20/05/2014-23/05/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl. 2. Water observed at 2.80m, 10.40m and 18.00mbgl, rising to 1.90m, 10.40m

and 8.20mbgl.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

Gr	GROUND TECHNOLOGY Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk
----	---------------------------------------------------------------------------------------------------------------------

### **Borehole Record**

**BH309** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 10.746mAOD Coordinates: 535673.36E

192794 55N

Sheet 2+ of 2

									1927	'94.55N
Description	Legend	Depth (m)	O.D. Level (m)	Samp Type	Depth (m)	SPT/CP Casing Wate Depth Dep	ı —	narks and t Results		Installations
Stiff very high strength light greenish grey reddish brown and yellowish brown CLAY. (LAMBETH GROUP UNDIFFERENTIATED)  Borehole Complete at 20.00 m		- 20.00	-9.25							

								Water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.00 6.90 19.91	3.00 6.20 10.70				20/05/14 22/05/14 22/05/14	2.80 10.40 18.00	20 20 20	1.90 10.40 8.20	2.00 7.50 10.70	10.70

Dates:

20/05/2014-23/05/2014

Plant:

Dando 2000

Drilled By:

T York

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl. 2. Water observed at 2.80m, 10.40m and 18.00mbgl, rising to 1.90m, 10.40m

Water Observed at 2.50fff, 10.40ff and 16.50fflogf, fishing to 1.50fff, 10.40ff and 8.20mbgl.
 Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

<u>C</u>	GROUND TECHNOLOGY Maple Road, Kings Lynn Norfolk, PE34 3AF
ОГ	Nопоік, РЕЗ4 ЗАР Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH310** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 11.644mAOD Coordinates: 535715.26E

192805.94N

Sheet 1 of 2

									1928	05.94N
Description	Legend	Depth			ple Test			T 4 D 14-		lo et ell eti e e e
	200	(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Depth (m)	SPT/HV/PP (Recovery)	PID	Installations
MADE GROUND: Tarmacadam.	XXXX	0.30	11.34				` '			
MADE GROUND: Hardcore (DRILLERS DESCRIPTION).		0.50	11.34	B1	0.50-0.80					3
MADE GROUND: Orangish brown slightly silty fine to coarse SAND and GRAVEL. Gravel is angular to subrounded fine to coarse flint.		1.00	10.64	B2	1.00-1.50					-
MADE GROUND: Stiff brownish grey slightly gravelly CLAY. Gravel is subrounded fine to medium flint.		1.50	10.14	В3	1.50-2.10					-
MADE GROUND: Greyish brown silty fine to coarse SAND and GRAVEL. Gravel is angular to rounded fine to coarse flint.		2.10	9.54	B4	2.10-2.60					- -
MADE GROUND: Yellowish brown slightly silty fine to coarse SAND and GRAVEL, with occasional cobbles. Gravel is angular fine to coarse brick and flint.		2.60	9.04	B5	2.60-3.00					-
Firm grey and yellowish grey CLAY. (ALLUVIUM)		3.60	8.04							
Medium dense grey slightly silty very gravelly fine to coarse SAND. Gravel is angular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)			6.04	S D6 B7	4.00-4.45 4.00-4.45 4.00-4.50	4.00	(3.00)	N=17 (2,3,4,4,5,4)		
From 5.50mbgl becomes SAND and GRAVEL.				S B8	5.50-5.95 5.50-6.00	5.50	(3.00)	N=20 (2,3,4,5,5,6)		
Stiff medium strength grevish brown slightly	X Cox	6.70	4.94	В9	6.70-7.00					
gravelly CLAY. Gravel is angular fine to medium flint. (LONDON CLAY FORMATION)				S D10 B11	7.00-7.45 7.00-7.45 7.00-7.50	7.00	(5.50)	N=15 (2,3,3,4,4,4)		
		- 000	2.74	UT12	8.50-8.95			35 blows		
Very stiff medium to high strength locally thinly laminated brownish grey slightly silty CLAY, with some thin brown silt bands and rare bioturbation. (LONDON CLAY FORMATION)	x	8.90	2.74	D13	8.95-9.00			PP=200.0kPa		
Borehole continued	-× s			<u> </u>	Matarla	ol Oh a	om 101:			-
					Water Lev	el Obse	ervati	ons		

								Water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details	_	Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	3.00 7.00 19.90	3.00 7.00 9.00		·	·	04/06/14 06/06/14 06/06/14	3.60 15.00 19.80	20 20 20	3.00 15.00 17.80	3.60 9.00 9.00	- - -

Dates:

05/06/2014-06/06/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl
2. Water observed at 3.60m, 15.00m and 19.80mbgl, rising to 3.00m, 15.00m and 17.80mbgl.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH310** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Joanne Gavigan

Ground Level: 11.644mAOD Coordinates: 535715.26E

Sheet 2 of 2

Description										19280	05.94N
Very stiff medium to high strength locally thinly laminated brownish grey slightly sity CLAY, with some thin brown silt bands and rare bioturbation. (LONDON CLAY FORMATION)	Description	Legend	Depth (m)	Level		Depth			Test Results	_{PID} I	nstallations
Suff medium strength brownis fare grey slightly silty slightly microeurs (LAY, with rare bioturbation. (LONDON CLAY FORMATION)  S 13.00-13.45	laminated brownish grey slightly silty CLAY, with some thin brown silt bands and rare bioturbation.	x x x	-	(111)	D14	10.00-10.45 10.00-10.45	9.00	(m)	N=17 (1,3,3,4,4,6)	(ррш)	
D18 13.00-13.50  PP=160.0kPa  PP=160.0kPa  PP=160.0kPa  PP=160.0kPa  PP=160.0kPa  PP=165.0kPa  PP=165.0kPa  PP=165.0kPa  Vory stiff high strength greyish brown CLAY, with some greenish grey sandy clay bands.	slightly micaceous CLAY, with rare bioturbation.	x x x x x x x x x x x x x x x x x x x	11.50	0.14	D16	11.50-11.95	9.00				
Very stiff high strength greyish brown CLAY, with some greenish grey sandy clay bands.  D20 14.50-14.95 B21 14.50-15.00  PP=165.0kPa  VT22 16.00-16.45  D23 16.45-16.50  S 17.50-17.95 D24 17.50-17.95 D24 17.50-17.95 B25 17.50-17.80 B26 17.80-18.00 PP=165.0kPa  PP=165.0kPa  PP=165.0kPa  PP=165.0kPa  PP=170.0kPa		x x x x x x x x x x x x x x x x x x x			D18	13.00-13.95	9.00		N=22 (3,4,4,5,6,7) PP=160.0kPa		
Very stiff high strength greyish brown CLAY, with some greenish grey sandy clay bands.  D23 16.45-16.50  S 17.50-17.95 D24 17.50-17.95 B25 17.50-17.80 B26 17.80-18.00 B26 17.80-18.00 PP=170.0kPa PP=170.0kPa		× × × × × × × × × × × × × × × × × × ×			D20	14.50-14.95	9.00		N=24 (3,4,5,5,7,7) PP=165.0kPa	-	
Very stiff high strength greyish brown CLAY, with some greenish grey sandy clay bands.  D24 17.50-17.95 B25 17.50-17.80 B26 17.80-18.00 PP=165.0kPa PP=170.0kPa PP=170.0kPa		x _ x _ x _ x _ x _ x _ x _ x _ x _ x _							45 blows		
(LONDON CLAT I CHIWATION)	some greenish grey sandy clay bands.	x _ x _ x _ x _ x _ x _ x _ x _ x _ x _	17.80	-6.16	D24 B25 B26	17.50-17.95 17.50-17.80 17.80-18.00	9.00	(17.50)	PP=165.0kPa PP=170.0kPa		▼- - - - - -
Very dense greyish brown silty fine SAND. (LAMBETH GROUP UNDIFFERENTIATED)	Very dense greyish brown silty fine SAND.	× × × × × × ×	18.80	-7.16	B28	18.80-19.00			rr=1/u.ukPa		
S 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 19.50-19.85 D29 D29 D29 D29 D29 D29 D29 D29 D29 D29	Powerhole Commission of 40 00 m	X	19.90	-8.26			9.00	(18.00)	50/198mm (7,10,13,17,	20)	

Borehole Complete at 19.90 m

Water Level Observations Hole Diameter Detail Chiseling Details Water Casing Standing Standing Depth Date Diameter (mm) Depth (m) Casing Depth (m) Time (hhmm) Strike (m) Time (mins) Level (m) Depth (m) Sealed (m) 250 200 150 3.00 7.00 19.90 3.00 7.00 9.00 04/06/14 06/06/14 3.60 15.00 19.80 20 20 20 3.00 15.00 17.80 3.60 9.00 9.00 06/06/14

Dates:

05/06/2014-06/06/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl 2. Water observed at 3.60m, 15.00m and 19.80mbgl, rising to 3.00m, 15.00m

and 17.80mbgl.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH311** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 13.587mAOD Coordinates: 535816.20E

192810.19N

Sheet 1 of 3

								1:	92810.19N
Description	Lamand	Depth	O.D.	Sam	ple Test	SPT/	CPT	Remarks and	
Description	Legend	(m)	Level	Туре	Depth	Casing Depth (m)	Water	Test Results	PID Installations
MADE GROUND: Brick Weave	NANA.	- 0.05	(m) 13.54		(m)	(m)	(m)	SPT/HV/PP (Recovery) (	ppm)
MADE GROUND: Concrete		0.25	13.34	B1	0.35-0.50				
	/XXXX	0.35	13.24						=
MADE GROUND: Yellowish brown slightly silty fine to coarse SAND and GRAVEL. Gravel is angular to subrounded fine to coarse flint.				B2	0.90-1.20				=
MADE GROUND: Grey slightly silty fine to coarse SAND and GRAVEL. Gravel is angular to subangular fine to cobble sized flint, brick and concrete.		1.30	12.29	В3	1.30-1.50				=
MADE GROUND: Firm greyish brown slightly sandy slightly gravelly CLAY. Gravel is angular fine to medium flint and brick.		2.50	11.09	В4	2.50-2.70				
MADE GROUND: Firm to stiff greyish brown CLAY.		X X X X	11.00						6)
		<u>*</u>		B5	3.50-3.70			PP=75.0kPa	=
MADE GROUND: Brownish grey slightly silty very		3.80	9.79	B6 S	3.80-4.00	4.00		50/045 /0.0.40.44.40	-
sandy GRAVEL. Gravel is angular to subrounded fine		4.00	9.59	D7 B8	4.00-4.37 4.00-4.37	4.00		50/215mm (2,6,12,14,18,	b) <u> </u>
to coarse flint and quartz.		4.30	9.29 9.09	B9	4.00-4.50 4.30-4.50				=
MADE GROUND: Yellowish brown fine to coarse SAND and GRAVEL. Gravel is angular to subangular fine to coarse flint.		4.70	8.89	B10 B11	4.50-4.70 4.70-5.00			PP=50.0kPa	-
MADE GROUND: Grey clayey fine to coarse SAND and	silve silve silve	5.10 5.30	8.49 8.29	B12 B13	5.10-5.30 5.30-5.50				
GRAVEL. Gravel is angular to subangular fine to coarse flint, brick and concrete.	××	1		S	5.50-5.95	5.50	(5.30)	N=31 (5,7,8,8,8,7) PP=10.0kPa	
MADE GROUND: Soft greyish brown and brownish grey CLAY, with some black sandy gravelly pockets, slight organic odour.	*	5.70	7.89	D14 B15	5.50-5.95 5.70-6.00			PP=10.0KPa	
Firm grey with rare brown CLAY, with some roots and rootlets. (ALLUVIUM)				s	7.00-7.45	7.00	(4.20)	N=22 (4.2 F. F. C. C.)	
Soft dark brown amorphous PEAT, locally an organic silt. (ALLUVIUM)				D16	7.00-7.45	7.00	(4.20)	N=22 (1,3,5,5,6,6)	3
Very soft high strength brownish grey silty CLAY, with some dark brown silty organic pockets. Gravel is angular to subrounded fine to coarse flint. (LONDON CLAY FORMATION)		7.70 7.90	5.89 5.69	B17 UT18	7.70-7.90 8.50-8.95			25 blows	
Medium dense yellowish grey slightly silty very gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint. (LONDON CLAY FORMATION)				D19	8.95-9.00			ES SISTES	
Firm brownish grey CLAY. (LONDON CLAY FORMATION) Borehole continued									- - -
Doronoie continueu	-	Г							7

								Water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
200 150	8.00 25.42	8.00 9.00				22/05/14 28/05/14 28/05/14	5.70 19.10 25.00	20 20 20	5.50 19.10 12.00	5.50 9.00 9.00	-

Dates:

22/05/2014-29/05/2014

Plant:

Dando 2000

Drilled By: A Elsoff

Logged By: G Day

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Water observed at 5.70m, 19.10m and 25.00m, rising to 5.50m, 19.10m and

12.00mbgl after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH311** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 13.587mAOD Coordinates: 535816.20E

192810.19N

Sheet 2 of 3

								ĺ	192810.19N
Description	Legend	Depth	O.D.	Sam	ple Test	SPT/	CPT	Remarks and	
Description	Legend	(m)	Level (m)	Туре		Casing Depth	Water Depth	Test Results SPT/HV/PP (Recovery)	PID Installations
Firm to stiff medium to high strength dark bluish grey CLAY. (LONDON CLAY FORMATION) From 10.00mbgl with rare brownish black mottling.		10.60	2.99	S D20 B21 B22	(m) 10.00-10.45 10.00-10.45 10.00-10.50 10.60-10.80	(ṁ) 9.00	(m)	N=17 (2,2,2,4,5,6)	(ppm)
Firm to stiff high strength thinly laminated dark brownish grey CLAY with occasional silt. (LONDON CLAY FORMATION)  From 11.50mbgl with occasional selenite					11.50-11.95 11.50-11.95	9.00		N=16 (2,3,3,3,4,6)	
crystals.				B24	11.50-12.00				
				S D25 B26	13.00-13.45 13.00-13.45 13.00-13.50	9.00		N=21 (3,3,4,5,5,7)	
Firm high strength dark brownish grey mottled brownish grey slightly silty sandy CLAY.	××	14.00	-0.41	S D27	14.00-14.45 14.00-14.45	9.00		N=19 (3,3,4,5,5,5)	-
(LONDON CLAY FORMATION)	X - X - X - X - X - X - X - X - X - X -			B28	14.50-15.00				
	X X X X X X X X X X X X X X X X X X X			S D29 B30	16.00-16.45 16.00-16.45 16.00-16.50	9.00		N=23 (3,3,5,5,6,7)	
	×	E		UT31	17.50-17.95			60 blows	
	×	<del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del> <del>*</del>		D32	17.95-18.00				
	x—————————————————————————————————————			S D33 B34	19.00-19.45 19.00-19.45 19.00-19.50	9.00		N=21 (2,5,6,5,5,5)	
Borehole continued	××-	-							F

								vvater Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
200 150	8.00 25.42	8.00 9.00				22/05/14 28/05/14 28/05/14	5.70 19.10 25.00	20 20 20	5.50 19.10 12.00	5.50 9.00 9.00	1.1.1

Dates:

22/05/2014-29/05/2014

Plant:

Dando 2000

Drilled By: A Elsoff Logged By: G Day

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Water observed at 5.70m, 19.10m and 25.00m, rising to 5.50m, 19.10m and

12.00mbgl after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH311** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 13.587mAOD Coordinates: 535816.20E

192810.19N

Sheet 3 of 3

								1	92810.19N
Description	Legend	Depth			ple Test	SPT/		T D	L. C. B. C.
•		(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	SPT/HV/PP (Recovery) (	PID Installations
Firm high strength dark brownish grey mottled brownish grey slightly silty sandy CLAY. (LONDON CLAY FORMATION)	×x	20.50	-6.91	S D35	20.50-20.95 20.50-20.95			N=23 (2,5,5,5,6,7)	
Stiff medium strength dark brownish grey and yellowish brown slightly silty slightly sandy CLAY, with some black organic specks. (LONDON CLAY FORMATION)	× × × × × × × × × × × × × × × × × × ×	*		B36	20.50-21.00				
Firm to stiff medium strength dark brownish grey mottled black silty sandy CLAY. (LONDON CLAY FORMATION)	X - X	22.00	-8.41	S D37 B38	22.00-22.45 22.00-22.45 22.00-22.50			N=27 (3,5,5,7,7,8)	
Firm to stiff high strength dark brownish grey and	×x-	23.80	-10.21	S D39 B40	23.50-23.95 23.50-23.95 23.50-24.00	9.00	(23.50)	N=42 (4,6,7,9,11,15)	
yellowish brown sandy silty CLAY with occasional pockets of dark green organic silt. (LAMBETH GROUP UNDIFFERENTIATED)	×	24.30	-10.71	B41	24.30-24.60				- - - -
Soft yellowish brown and greyish brown very sandy CLAY. (LAMBETH GROUP UNDIFFERENTIATED)		25.00	-11.41	S D42	25.00-25.42 25.00-25.42	9.00	(12.00)	) 54/265mm (8,14,14,7,12	,21)
Very dense yellowish brown mottled black fine slightly clayey SAND. \((LAMBETH GROUP UNDIFFERENTIATED)\) Borehole Complete at 25.42 m		25.42	-11.83						
			I.		Water Lev	el Obs	ervati	ons	
Hala Diameter Datail Chicalina Dataila	+								1

Hole	e Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter	Depth	Casing	Fŗoṃ	Τo	Time	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
(mm)	(m)	Depth (m)	(m)	(m)	(hhmm)		Strike (III)	Tille (Illins)	Level (III)	Deptil (III)	Sealed (III)
200	8.00	8.00				22/05/14	5.70	20	5.50	5.50	-
150	25.42	9.00				28/05/14	19.10	20	19.10	9.00	-
						28/05/14	25.00	20	12.00	9.00	-

Dates:

22/05/2014-29/05/2014

Plant:

Dando 2000

Drilled By: A Elsoff Logged By: G Day

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Water observed at 5.70m, 19.10m and 25.00m, rising to 5.50m, 19.10m and

12.00mbgl after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH312** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 15.866mAOD Coordinates: 535831.85E

Sheet 1 of 3

									1927	90.82N
Description	Legend	Depth (m)	O.D. Level (m)	Sam _l Type	ple Test Depth (m)	SPT/C Casing V Depth Depth (m)		Remarks and Test Results		Installations
MADE GROUND: Reinforced concrete		0.50	15.37	B1	0.50-1.00	(111)	(111)	(1000)	(FF)	- 49
MADE GROUND: Medium dense yellowish brown slightly silty fine to coarse SAND and GRAVEL. Gravel is angular to subrounded fine to coarse flint.			15.37	ВІ	0.50-1.00					
		<del>}</del>		S D2	4.00-4.45 4.00-4.45	4.00 (	(3.70)	N=12 (6,6,4,3,3,2)		
MADE GROUND: Firm low strength brownish grey slightly sandy slightly gravelly CLAY. Gravel is angular to subangular fine to coarse flint and brick.		4.50	11.37	B3 S D4	4.50-5.00 5.50-5.95 5.50-5.95	5.20		N=8 (2,2,2,2,2,2)		-
		6.60	9.27							-
MADE GROUND: Firm medium strength greyish brown slightly gravelly CLAY. Gravel is angular to subangular fine to cobble sized flint and brick.		<del>'Y'Y'Y'</del>		B5 S D6 W7	6.70-7.00 7.00-7.45 7.00-7.45 7.20	5.20		N=16 (2,3,5,4,4,3)		<u>-</u>
Medium dense grey slightly silty very sandy GRAVEL. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)	× × × × ×	7.50	8.37	B9	7.50-8.00					
Borehole continued				S D8	8.50-8.95 8.50-8.95	8.50 (	(7.70)	N=12 (2,2,3,3,3,3)		
	1-29-36	1		١ .	Water Lev	el Obser	rvati	ons		-

								vvater Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	8.20 11.50 13.50	8.20 11.50 13.50				15/05/14 19/05/14 20/05/14	7.60 20.20 28.50	20 20 20	7.20 20.20 16.00	7.50 13.50 13.50	0.00 - -

Dates:

19/05/2014-21/05/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Water observed at 7.60m, 20.20m and 28.50mbgl, rising to 7.20m, 20.20m and 16.00mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH312** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 15.866mAOD Coordinates: 535831.85E

Sheet 2 of 3

								192	2790.82N
Description	1	Depth	O.D.	Sam	ple Test	SPT/	CPT	Remarks and	
Description	Legend	(m)	Level		Depth	Casing	Water	Test Results PII SPT/HV/PP (Recovery) (ppr	Installation
Madissa da a a a a a a a a a a a a a a a a a			(m)	S	(m) 10.00-10.45	(m) 10.00	(m)	SPT/HV/PP (Recovery) (ppi N=16 (2,2,4,4,4,4)	m)
Medium dense grey slightly silty very sandy GRAVEL. Gravel is angular to subrounded fine to coarse	× × × .	F		D10	10.00-10.45 10.00-10.50	10.00	(1.00)	10 (2,2,3,3,3,7)	3
flint. (KEMPTON PARK GRAVEL FORMATION)	* 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	10.50	5.37		10.50-11.00			PP=100.0kPa	=
Stiff medium to high strength locally closely		-							=
fissured and or thinly laminated brownish grey		E							3
CLAY. (LONDON CLAY FORMATION)		-							3
(,		ŧ							=
		-		S	12.00-12.45	12.00	(10.00	N=10 (1,1,1,2,3,4)	-
		ŧ		D1 B2	12.00-12.45 12.00-12.50			PP=90.0kPa	3
		Ė							3
	I-I-I	Ł							_
		-							=
		1		UT3	13.50-13.95			50 blows	-
		F							-
Very stiff medium strength thinly laminated	x_~	14.00	1.87	D4	13.95-14.00			PP=140.0kPa	-
brownish grey slightly silty CLAY, with rare bioturbation.	x_^	F							=
(LONDON CLAY FORMATION)		-							
		E		s	15.00-15.45	13.50		N=24 (2,4,5,6,6,7)	
	××	-		D5 B6	15.00-15.45 15.00-15.50			PP=150.0kPa	3
	××	*							
	×x	×							
	×	×		D7	16.00-16.10			PP=140.0kPa	=
		×		UT8	16.50-16.95			60 blows	
		-		0.0	10.00 10.00			00 2.0.10	
		-		D9	16.95-17.00				
	×x	Ė							
	×	¥							
	×x	×-		s	18.00-18.45	13.50		N=28 (3,5,6,6,8,8)	-
	×	×		D10	18.00-18.45	13.30		PP=200.0kPa	-
	×	×		B11	18.50-19.00				
		×							
		×							-
	×x-	-							
	××	=		D12	19.50-19.95 19.50-19.95	13.50		N=21 (3,4,5,5,5,6) PP=160.0kPa	
Borehole continued	××	*		B13	19.50-20.00				=

								vvater Level	Observations		
Hole	Diamete	er Detail	Ch	iseling D	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	8.20 11.50 13.50	8.20 11.50 13.50				15/05/14 19/05/14 20/05/14	7.60 20.20 28.50	20 20 20	7.20 20.20 16.00	7.50 13.50 13.50	0.00 - -

Dates:

19/05/2014-21/05/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Water observed at 7.60m, 20.20m and 28.50mbgl, rising to 7.20m, 20.20m

and 16.00mbgl after 20 minutes standing time.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH312** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 15.866mAOD

Coordinates: 535831.85E

Sheet 3 of 3

								192	790.82N
Description	Legend	Depth		Sam	ple Test	SPT/		Remarks and Test Results	
2000р.то		(m)	Level (m)	Туре	Depth (m)	Casing Depth (m)	Water Depth (m)	PID SPT/HV/PP (Recovery) (ppm	Installations
Very stiff medium strength thinly laminated brownish grey slightly silty CLAY, with rare bioturbation. (LONDON CLAY FORMATION) From 20.30mbgl with some greenish grey bands.  Stiff medium strength brownish grey silty CLAY,	X	- - - 20.70 - -	-4.83	S D15	21.00-21.45 21.00-21.45 21.00-21.50			PP=130.0kPa ) N=26 (3.5.6.6.7.7) PP=130.0kPa	
with some sandy bands and rare selenite crystals. (LONDON CLAY FORMATION)  Stiff medium strength brownish grey CLAY. (LONDON CLAY FORMATION)	xx xx	22.00	-6.13	B10	22.50-22.95	13 50	(22.30	) N=24 (3,3,5,5,6,8)	-
				D17	22.50-22.95 22.50-23.00	13.30	(22.30)	PP=100.0kPa	
Very stiff medium strength locally thinly laminated brownish grey silty CLAY, with some sandy bands, rare bioturbation and selenite crystals. (LONDON CLAY FORMATION)	x x x x x x x x x x x x x x x x x x x	24.00	-8.13	B20	24.00-24.45 24.00-24.45 24.00-24.50	13.50	(23.80	N=27 (4,5,6,6,7,8)	
Very high strength locally thinly laminated brownish grey with rare greenish grey slightly sandy slightly gravelly CLAY, with rare bioturbation. Gravel is angular to subangular fine to medium flint. (LAMBETH GROUP UNDIFFERENTIATED)		25.30	-9.43	S D22 B23	25.30-25.40 25.50-25.95 25.50-25.95 25.50-26.00 26.70-26.80	13.50	(23.80)	PP=200.0kPa N=31 (6.7.7.7.8,9) PP=150.0kPa	-
Stiff very high strength brownish grey sandy slightly gravelly SILT, with occasional shell fragments. Gravel is angular to subangular fine to medium flint.	* * * * * * * * * * * * * * * * * * *	27.10	-11.23	S D25	27.00-27.42 27.00-27.42 27.50-28.00	13.50	(25.90	50/270mm (5,9,11,13,15,11)	
Very dense brownish grey silty slightly gravelly fine SAND. Gravel is angular to subangular fine to medium flint. (LAMBETH GROUP UNDIFFERENTIATED)  Borehole Complete at 29.30 m		28.50	-12.63 -13.43	S D27 B28	28.50-28.87 28.50-28.87 28.50-29.00	13.50	(16.00	50/220mm (8,16,15,18,17)	

								Water Level	Observations		
Hole	Diamete	er Detail	Ch	iseling [	Details		Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
250 200 150	8.20 11.50 13.50	8.20 11.50 13.50				15/05/14 19/05/14 20/05/14	7.60 20.20 28.50	20 20 20	7.20 20.20 16.00	7.50 13.50 13.50	0.00 - -

Dates:

19/05/2014-21/05/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl.
2. Water observed at 7.60m, 20.20m and 28.50mbgl, rising to 7.20m, 20.20m and 16.00mbgl after 20 minutes standing time.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

Gr	GROUND TECHNOLOGY  Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657  www.groundtechnology.co.uk
----	-----------------------------------------------------------------------------------------------------------

### **Borehole Record**

**BH313** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 14.459mAOD Coordinates: 535874.34E

192766.48N

Sheet 1 of 3

									192700	0.40IN
Description	Legend	Depth (m)	O.D. Level		ple Test	SPT/0		Remarks and Test Results	ln.	stallations
	A	(111)	(m)	Туре	Depth (m)	Depth (m)	Depth (m)		PID (ppm)	istaliations
MADE GROUND: Brick weave	/XXXX	0.05	14.41 14.21	B1	0.25-0.40		, ,			
MADE GROUND: Rienforced concrete	$\mathbb{R}^{\times\times\times}$	0.40	14.06	B2	0.40-0.60					
MADE GROUND: Reddish brown silty fine to coarse SAND and GRAVEL. Gravel is angular fine to coarse granite.		1.00	13.46 13.26	B3 B4	1.00-1.20 1.20-1.50				_	<u></u>
MADE GROUND: Orangish brown slightly clayey fine to coarse SAND and GRAVEL. Gravel is angular to subangular fine to coarse flint.		1.20	13.20	Б4	1.20-1.50					
MADE GROUND: Yellowish brown slightly silty fine to coarse SAND. Gravel is subangluar to subrounded fine to coarse flint.				B5	2.00-2.50			PP=110.0kPa		
MADE GROUND: Firm to stiff brownish grey silty CLAY.										-
		}		В6	3.50-3.70			PP=140.0kPa		
				S D7 B8	4.00-4.45 4.00-4.45 4.00-4.50	3.00		N=11 (1,1,2,2,3,4) PP=80.0kPa		_
MADE GROUND: Yellowish brown slightly silty very sandy GRAVEL. Gravel is angular to rounded fine to coarse flint.		4.50	9.96	B9	4.50-4.80					
MADE GROUND: Loose yellowish grey slightly silty fine to coarse SAND and GRAVEL. Gravel is angular to subangular fine to coarse flint, brick and wood.		5.10	9.36	B10 S D11	5.10-5.50 5.50-5.95 5.50-5.95	5.50	(5.10)	N=8 (8,8,3,3,1,1)		
Soft low strength dark grey and grey slightly gravelly silty CLAY, with rare semi decayed plant debris. Gravel is angular fine to coarse flint.	Z - Z	3.70	6.76	B12 B13	5.50-5.70 5.70-6.00					_
Organic odour.	XXXX	6.40	8.06	B14	6.40-6.70					
\(ALLUVIUM)	/ × × ×	6.70	7.76	B15	6.70-7.00					
Soft dark greyish brown sandy slightly gravelly SILT, with some roots and rootlets. Gravel is rounded fine to coarse flint and chalk. (ALLUVIUM)	x X x	7.00	7.46	S D16 B17	7.00-7.45 7.00-7.45 7.00-7.50	7.00	(6.70)	N=22 (2,3,4,5,6,7)		-
Grey silty gravelly fine to coarse SAND. Gravel is angular to subangular fine to medium flint. (KEMPTON PARK GRAVEL FORMATION)	ster via all a alla ster	7.60	6.86 6.56	B18 B19	7.60-7.90 7.90-8.20					
Medium dense grey silty very sandy GRAVEL. Gravel is angular to rounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)		8.60	5.86	S D20 B21	8.50-8.95 8.50-8.95 8.70-9.00	8.00	(5.80)	N=14 (2,2,2,3,4,5) PP=75.0kPa		-
Spongy dark brown slightly sandy slightly gravelly amorphous PEAT. Gravel is angular to subangular fine to medium flint. (ALLUVIUM)										
Borehole continued										
-										

								Water Level	Observations		
Hole	Diamete	er Detail	Chiseling Details		_	Water		Standing Standing		Depth	
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Casing Depth (m)	Sealed (m)
250 200	6.00 9.00	6.00 9.00				21/05/14 21/05/14	1.00 6.70	20 20	0.95 6.40	0.00 6.70	-
150	28.30	10.50				27/05/14 27/05/14	13.60 27.80	20 20	13.55 16.50	10.50 10.50	-

Dates:

21/05/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl
2. Groundwater observed at 1.00m, 6.70m, 13.60m, 27.80m, rising to 0.95m, 6.40m, 13.55m and 16.50mbgl.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.

### **Borehole Record**

**BH313** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 14.459mAOD Coordinates: 535874.34E

192766.48N

Sheet 2 of 3

							192700.40IN
Description	Legend De	ṁ)   Le		nple Test e Depth (m)	SPT/CPT  Casing Water Depth Depth (m) (m)	T	S _{PID} Installation
7.90m - 8.60m: Medium dense grey sandy GRAVEL. Gravel is angular to subrounded fine to coarse flint. (KEMPTON PARK GRAVEL FORMATION)  8.60m - 16.00m: Stiff medium strength brownish			J22 D23	10.00-10.45	(iii)	65 blows	
grey CLAY. (LONDON CLAY FORMATION)			S D24 B25	11.50-11.95 11.50-11.95 11.50-12.00	10.50	N=18 (2,2,3,4,5,6) PP=110.0kPa	111111111111111111111111111111111111111
			S D26 B27	13.00-13.45 13.00-13.45 13.00-13.50	10.50	N=21 (2.3.4.5.5.7) PP=170.0kPa	
			D28	14.95-15.00			
Very stiff high strength brownish grey locally greenish grey silty slightly micaceous CLAY. (LONDON CLAY FORMATION)	× × × 1	6.00 -1.	.54 S D29 B30	16.00-16.45 16.00-16.45 16.00-16.50	10.50 (15.95	N=24 (3,5,6,5,6,7) PP=140.0kPa	
Very stiff high strength brownish grey silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)	× × × 1 × × × × 1 × × × × × × × × × × ×	7.50 -3.	04 S D31 B32	17.50-17.95 17.50-17.95 17.50-18.00	10.50 (17.35	N=26 (4,6,6,6,6,8) PP=140.0kPa	
Borehole continued	× × × × × × × × × × × × × × × × × × ×			19.00-19.45 19.00-19.45 19.00-19.50	10.50 (18.80	) N=27 (4.4.6.6,7,8) PP=165.0kPa	-
DOTOTION CONTINUES	~ ×			Water Lev	l rel Observati	One	
Hole Diameter Detail Chiseling Details		14	lator				Donth
Diameter Depth Casing From To Time	Date		Vater	Standing	Standi	•	Depth

Dates:

Diameter (mm)

250 200 150

21/05/2014

Casing Depth (m)

6.00 9.00 10.50

From (m)

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Depth (m)

6.00 9.00 28.30

Checked By: P Lewin

21/05/14 21/05/14 27/05/14 27/05/14

Time (hhmm)

Time (mins)

20 20 20

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl 2. Groundwater observed at 1.00m, 6.70m , 13.60m, 27.80m, rising to 0.95m,

Level (m)

0.95 6.40 13.55 16.50

Depth (m)

0.00 6.70 10.50 10.50

Sealed (m)

Strike (m)

1.00 6.70 13.60 27.80

6.40m, 13.55m and 16.50mbgl.

3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation

**GROUND TECHNOLOGY** Maple Road, Kings Lynn Norfolk, PE34 3AF Tel: 01553 817657 www.groundtechnology.co.uk

### **Borehole Record**

**BH313** 

Project: Edmonton Ecopark

Project ID: GTS-14-403

Client: AMEC E & I UK Limited

Engineer: Ben Smith

Ground Level: 14.459mAOD Coordinates: 535874.34E

Sheet 3 of 3

Client. AMEC E & FOR Limited	Liigiile	CI. D	en om	uı				Coordinates:		374.34E 766.48N
		Depth	O.D.	Sam	ple Test	SPT	/CPT	Remarks an		
Description	Legend	(m)	Level (m)			Casing Depth (m)	Water Depth (m)	Test Result	PID	Installations
Very stiff high strength brownish grey silty slightly micaceous CLAY, with rare bioturbation. (LONDON CLAY FORMATION)	xx x	21.00	-6.54	S D35 B36	20.50-20.95 20.50-20.95 20.50-21.00			N=26 (3,4,5,6,7,8) PP=160.0kPa		-
Stiff to very stiff high strength dark bluish grey slightly sandy very silty CLAY. (LONDON CLAY FORMATION)	X - X - X - X - X - X - X - X - X - X -	21.00	0.04	S D37 B38	22.00-22.45 22.00-22.45 22.00-22.50	10.50	(20.80	) N=19 (2,2,3,4,5,7)		
	xx xx xx			S D39 B40	23.50-23.95 23.50-23.95 23.50-24.00	10.50	(23.30	N=28 (3,5,6,7,7,8)		-
	×x x	-		B41	24.40-24.60					=
	x x - x - x - x - x - x - x - x - x			S D42 B43	25.00-25.45 25.00-25.45 25.00-25.50	10.50	(22.60	N=32 (3,4,6,8,8,10)		
	×— +×			B44	26.20-26.40					=
Firm probably very high strength dark brownish grey mottled yellowish brown silty very sandy CLAY, with occasional black organic specks. (LAMBETH GROUP UNDIFFERENTIATED)	× - × - × - × - × - × - × - × - × - × -	26.50	-12.04	S D45 B46	26.50-26.94 26.50-26.94 26.50-27.00	10.50	(25.00	) 50/290mm (6,9,10,11,	14,15)	
Dark brownish grey mottled yellowish brown slightly silty very clayey fine to medium SAND. (LAMBETH GROUP UNDIFFERENTIATED) Borehole Complete at 28.30 m	× × ×	27.80		B47	27.80-28.30				Ш	
										1

								Water Level	Observations		
Hole	Diamete	er Detail	Chiseling Details		_	Water		Standing Standing		Depth	
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Casing Depth (m)	Sealed (m)
250 200	6.00 9.00	6.00 9.00				21/05/14 21/05/14	1.00 6.70	20 20	0.95 6.40	0.00 6.70	-
150	28.30	10.50				27/05/14 27/05/14	13.60 27.80	20 20	13.55 16.50	10.50 10.50	-

Dates:

21/05/2014

Plant:

Dando 2000

Drilled By:

A Elsoff

Logged By: J Tomalin

Checked By: P Lewin

Remarks: 1. Inspection pit hand dug from ground level to 1.20mbgl
2. Groundwater observed at 1.00m, 6.70m, 13.60m, 27.80m, rising to 0.95m, 6.40m, 13.55m and 16.50mbgl.
3. Aquifer protection (environmental seals) installed at base of Made Ground / top of Alluvium and at base of the Kempton Park Gravels / top of the London Clay Formation.





# **Contract Number: 23719**

Client's Reference: GTS-14-403 Report Date: 21-07-2014

**Client Ground Technology Services** 

Maple Road Kings Lynn Norfolk PE34 3AF

Contract Title: Edmonton Ecopark
For the attention of: Ben Armstrong

Date Received: 26-06-2014

Date Commenced: 26-06-2014

Date Completed: 21-07-2014

Test Description	Qty
Moisture Content  1377: 1990 Part 2: 3,2 - * UKAS	13
4 Point Liquid & Plastic Limit (LL/PL) 1377: 1990 Part 2: 4.3 & 5.3 - * UKAS	13
One-dimensional Consolidation 75mm or 50mm diameter specimens (5 days) 1377: 1990 Part 5: 3 - * UKAS	12
Quick Undrained Triaxial Compression Test - Multi-stage Loading of a single specimen (100mm diameter)	12

1377 : 1990 Part 7 : 9 - * UKAS

Observations and Interpretations are outside the UKAS Accreditation

* - denotes test included in laboratory scope of accreditation

# - denotes test carried out by approved contractor

@ - denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

#### **Approved Signatories:**

Notes:

Alex Wynn (Associate Director) - Benjamin Sharp (Contracts Manager) - D V Edwards (Managing Director) Emma Williams (Office Manager) - Paul Evans (Quality/Technical Manager)

Test Report: Method of the Determination of the plastic limit and plasticity index

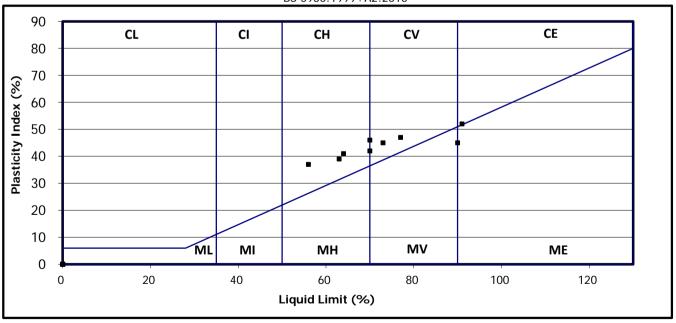
BS 1377: Part 2: 1990 Method 5

Client ref: 35180

Location: Edmonton Ecopark

Contract Number: 23719

Hole/			Moisture	Liquid	Plastic	Plasticity	%	
Sample	Sample	Depth	Content	Limit	Limit	Index	Passing	Remarks
Number	Туре	m	%	%	%	%	.425mm	
			CI. 3.2	CI. 4.3/4.4	CI. 5.	CI. 6.		
BH301/11	D	3.20	67	91	39	52	100	CE Extremely High Plasticity
BH302/19	D	8.10	20	63	24	39	93	CH High Plasticity
BH303/13	D	7.00	25	56	19	37	70	CH High Plasticity
BH306/11	D	7.00	34	73	28	45	73	CV Very High Plasticity
BH307/11	D	5.50	36	77	30	47	100	CV Very High Plasticity
BH308/11	D	5.50	2.4		NP		21	
BH309/13	D	7.95	28	64	23	41	100	CH High Plasticity
BH310/10	D	7.00	32	70	24	46	100	CH/V High/High Plasticity
BH311/19	D	8.95	32	70	28	42	100	CH/V High/High Plasticity
BH313/11	D	5.50	58	90	45	45	68	MV/E Very/Extremely High Plastic


Symbols:

NP : Non Plastic

#: Liquid Limit and Plastic Limit Wet Sieved

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

BS 5930:1999+A2:2010





For and behalf of GEO Site & Testing Services Ltd

Authorised By:

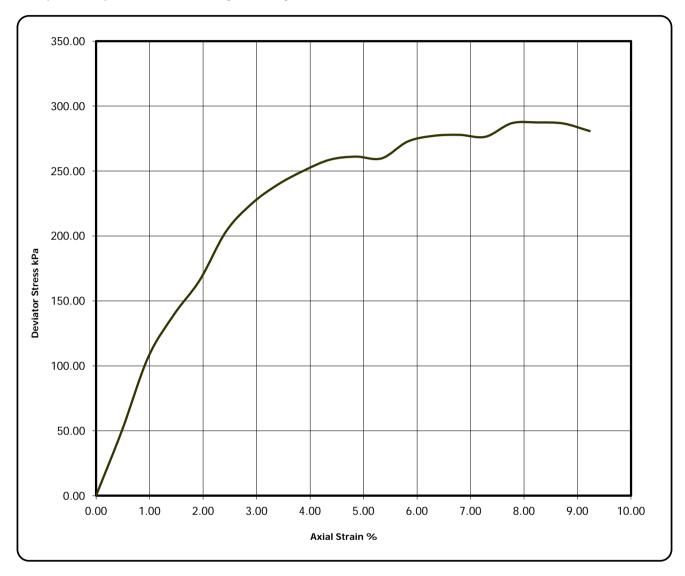
Ben Sharp (Contracts Manager)

Date: 17.7.14





BS 1377 : Part7 : Clause 8 : 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH301 Sample Number: 23

Depth (m): 10.00 to N/A Sample Description: Very Firm silty CLAY.



Diamete	er (mm):	103	Height	(mm):	200	Test:	100m	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure		Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	26.7	2.04	1.61	100	261	131	4.9	Compound	Rate of strain = 2 %/min
				200	278	139	6.8		Latex Membrane used mm
				300	287	144	8.3		thickness





2 P Gans



Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH301 Sample Number: 23 Depth (m): 10.00





Post Test Specimen

**Specimen Split** 

Diamete	Diameter (mm):		Height	(mm):	200	Test:	100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	26.7	2.04	1.61	100	261	131	4.9	Compound	Rate of strain = 2 %/min
				200	278	139	6.8		Latex Membrane used mm
				300	287	144	8.3		thickness



3500

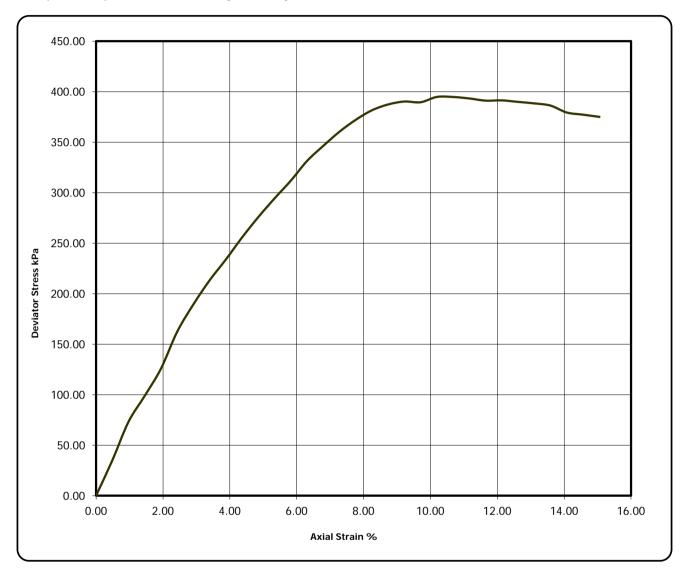
Checked By

DP Rions

Approved By:



BS 1377: Part7: Clause 8: 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH302 Sample Number: 22

Depth (m): 10.00 to N/A Sample Description: Very Firm silty CLAY.



Diamete	er (mm):	103	Height	(mm):	200	Test:	100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure		Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	27.3	2.05	1.61	100	390	195	9.2	Compound	Rate of strain = 2 %/min
				200	395	197	10.2		Latex Membrane used mm
				300	391	196	12.1		thickness









Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

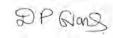
Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH302 Sample Number: 22 Depth (m): 10.00





Post Test Specimen


**Specimen Split** 

Diamete	er (mm):	103	Height	(mm):	200	Test:	100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	27.3	2.05	1.61	100	390	195	9.2	Compound	Rate of strain = 2 %/min
				200	395	197	10.2		Latex Membrane used mm
				300	391	196	12.1		thickness





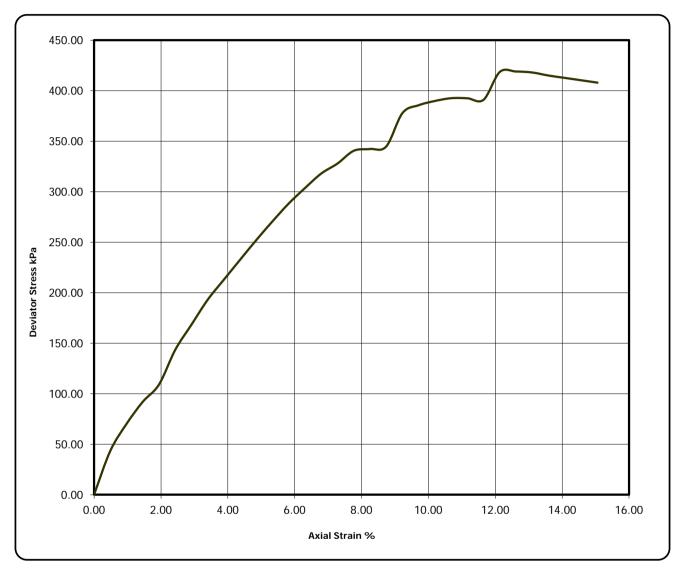
Checked By







BS 1377: Part7: Clause 8: 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH303 Sample Number: 17

Depth (m): 10.00 to N/A Sample Description: Very Firm silty CLAY.



Diamete	er (mm):	103	Height	ht (mm): 200 Test: 100mm Multistag				stage	
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	23.7	2.10	1.70	100	345	172	8.7	Compound	Rate of strain = 2 %/min
				200	393	196	10.7		Latex Membrane used mm
				300	419	210	12.6		thickness





2 P Rons



Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

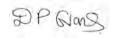
Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH303 Sample Number: 17 Depth (m): 10.00





**Post Test Specimen** 


**Specimen Split** 

Diamete	er (mm):	103	Height	(mm):	200	Test:	100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	23.7	2.10	1.70	100	345	172	8.7	Compound	Rate of strain = 2 %/min
				200	393	196	10.7		Latex Membrane used mm
				300	419	210	12.6		thickness





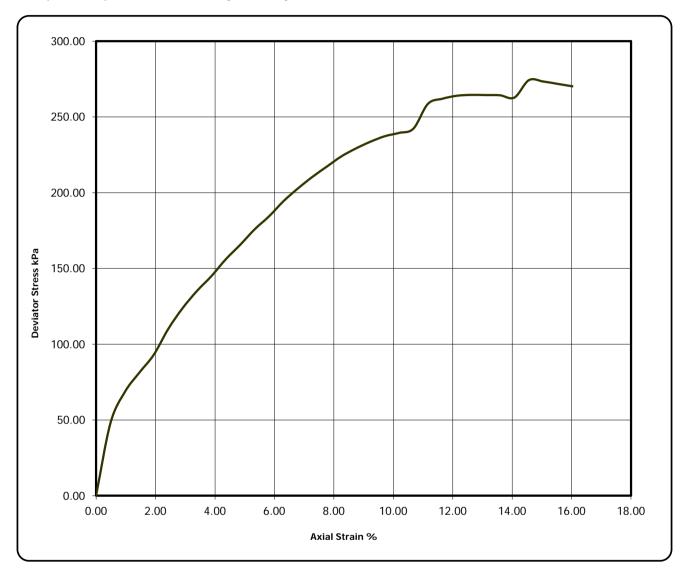
Checked By



Approved By:



BS 1377 : Part7 : Clause 8 : 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH304 Sample Number: 16

Depth (m): 10.50 to N/A Sample Description: Very Firm silty CLAY.



Diamete	er (mm):	103	Height	ht (mm): 200 Test: 100mm Multistage				stage	
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	26.2	2.06	1.63	100	242	121	10.7	Compound	Rate of strain = 2 %/min
				200	265	132	12.6		Latex Membrane used mm
				300	274	137	14.6		thickness





2 P Rons



Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH304 Sample Number: 16 Depth (m): 10.50





Post Test Specimen

**Specimen Split** 

Diamete	er (mm):	103	Height	(mm):	200	Test:	100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	26.2	2.06	1.63	100	242	121	10.7	Compound	Rate of strain = 2 %/min
				200	265	132	12.6		Latex Membrane used mm
				300	274	137	14.6		thickness



3500

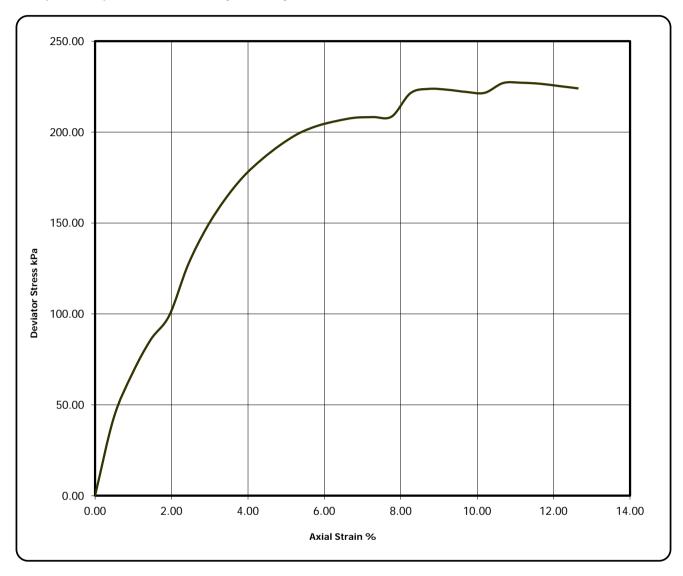
Checked By

DP Rions

Approved By:



BS 1377 : Part7 : Clause 8 : 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH305 Sample Number: 16

Depth (m): 10.20 to N/A Sample Description: Very Firm silty CLAY.



Diamete	er (mm):	103	Height	(mm):	n): 200 Test: 100mm Multistage				stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure		Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	27.7	1.99	1.56	100	209	104	7.8	Compound	Rate of strain = 2 %/min
				200	224	112	8.7		Latex Membrane used mm
				300	227	114	11.2		thickness









Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH305 Sample Number: 16 Depth (m): 10.20





Post Test Specimen

**Specimen Split** 

Diamete	er (mm):	103	Height	(mm):	200	Test:	100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	27.7	1.99	1.56	100	209	104	7.8	Compound	Rate of strain = 2 %/min
				200	224	112	8.7		Latex Membrane used mm
				300	227	114	11.2		thickness



3500

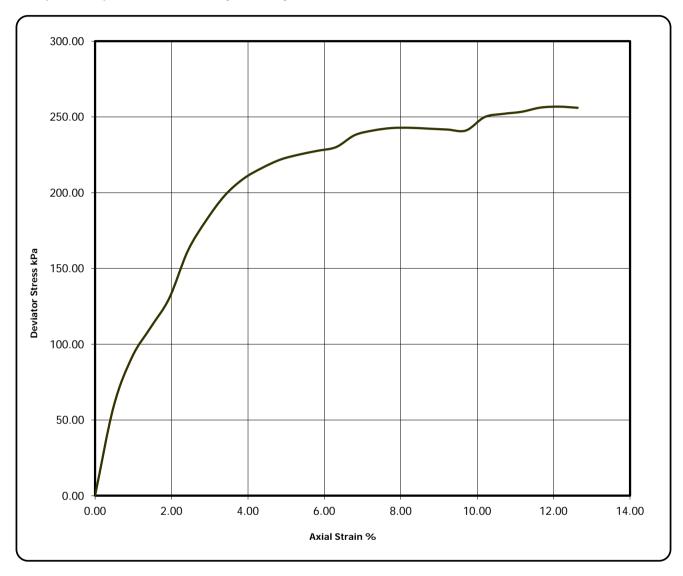
Checked By

2 P Gans

Approved By:



BS 1377 : Part7 : Clause 8 : 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH306 Sample Number: 15

Depth (m): 10.00 to N/A Sample Description: Very Firm silty CLAY.



Diamete	1 / 1 1		Height	ht (mm): 200 Test: 100mm Mult			100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	25.2	2.10	1.68	100	230	115	6.3	Compound	Rate of strain = 2 %/min
	•		·	200	243	121	8.3		Latex Membrane used mm
				300	257	128	12.1		thickness









Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH306 Sample Number: 15 Depth (m): 10.00





Post Test Specimen

**Specimen Split** 

Diamete	er (mm):	103	Height	(mm):	200	Test:	100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	25.2	2.10	1.68	100	230	115	6.3	Compound	Rate of strain = 2 %/min
				200	243	121	8.3		Latex Membrane used mm
				300	257	128	12.1		thickness



Bomo

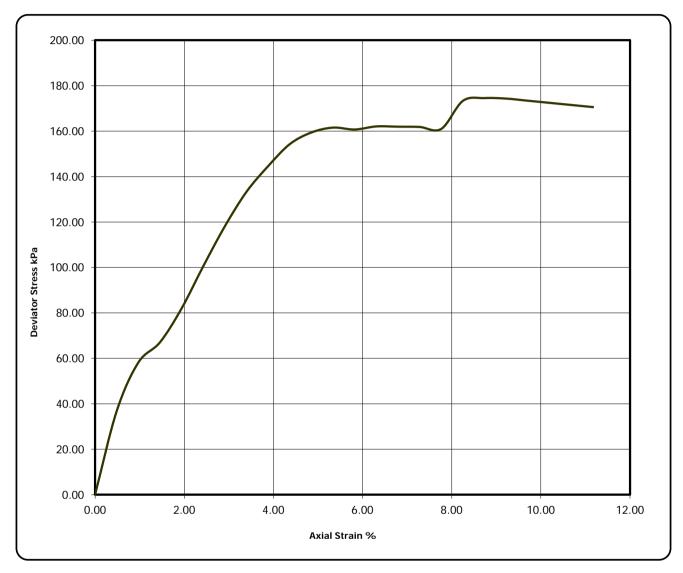
Checked By

DP GONS

Approved By:



BS 1377: Part7: Clause 8: 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH307 Sample Number: 13

Depth (m): 7.00 to N/A Sample Description: Very Firm silty CLAY.



Diamete	er (mm):	103	Height	t (mm): 200 Test: 100mm Multistage				stage	
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure		Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	O1	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	30.4	1.95	1.50	75	162	81	5.3	Compound	Rate of strain = 2 %/min
				150	162	81	6.3		Latex Membrane used mm
				300	175	87	8.7		thickness





2 P Gans



Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

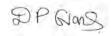
Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH307 Sample Number: 13 Depth (m): 7.00





Post Test Specimen


**Specimen Split** 

Diamete	er (mm):	103	Height	(mm):	200	Test:	100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	30.4	1.95	1.50	75	162	81	5.3	Compound	Rate of strain = 2 %/min
				150	162	81	6.3		Latex Membrane used mm
				300	175	87	8.7		thickness





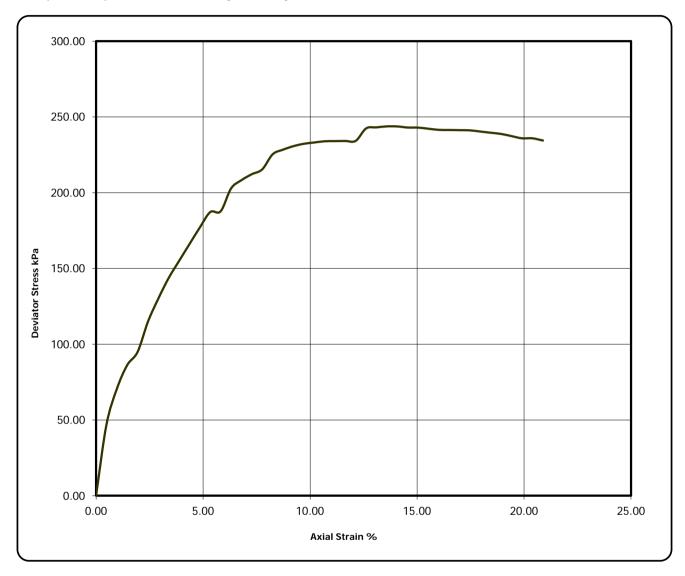








BS 1377 : Part7 : Clause 8 : 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH308 Sample Number: 16

Depth (m): 8.00 to N/A Sample Description: Very Firm silty CLAY.



Diamete	<del> </del>			t (mm): 200 Test: 100mm Multistage				stage	
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	27.3	2.06	1.62	75	215	108	7.8	Compound	Rate of strain = 2 %/min
				150	234	117	12.1		Latex Membrane used mm
				300	244	122	13.6		thickness









Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH308 Sample Number: 16 Depth (m): 8.00





**Post Test Specimen** 

**Specimen Split** 

Diameter (mm):		103	103 Height (mr		mm): 200 Test:		100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	27.3	2.06	1.62	75	215	108	7.8	Compound	Rate of strain = 2 %/min
				150	234	117	12.1		Latex Membrane used mm
				300	244	122	13.6		thickness



Bomo

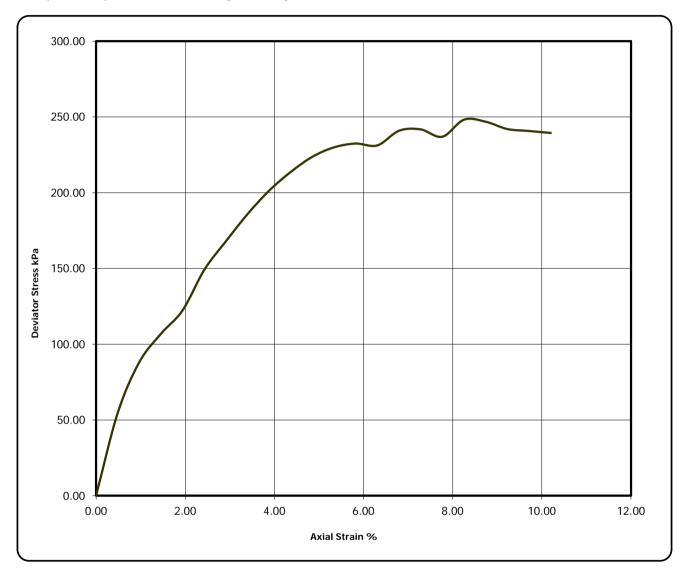
Checked By

DP Rions

Approved By:



BS 1377 : Part7 : Clause 8 : 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH309 Sample Number: 12

Depth (m): 7.50 to N/A Sample Description: Very Firm silty CLAY.



Diameter (mm):		103	103 Height		200	00 Test: 100mm Multis		nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure		Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	26.8	2.13	1.68	75	232	116	5.8	Compound	Rate of strain = 2 %/min
				150	242	121	7.3		Latex Membrane used mm
				300	248	124	8.3		thickness









Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

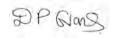
Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH309 Sample Number: 12 Depth (m): 7.50





Post Test Specimen


**Specimen Split** 

Diameter (mm):		103	103 Height (m		(mm): 200		100mm Multi		stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	26.8	2.13	1.68	75	232	116	5.8	Compound	Rate of strain = 2 %/min
				150	242	121	7.3		Latex Membrane used mm
				300	248	124	8.3		thickness





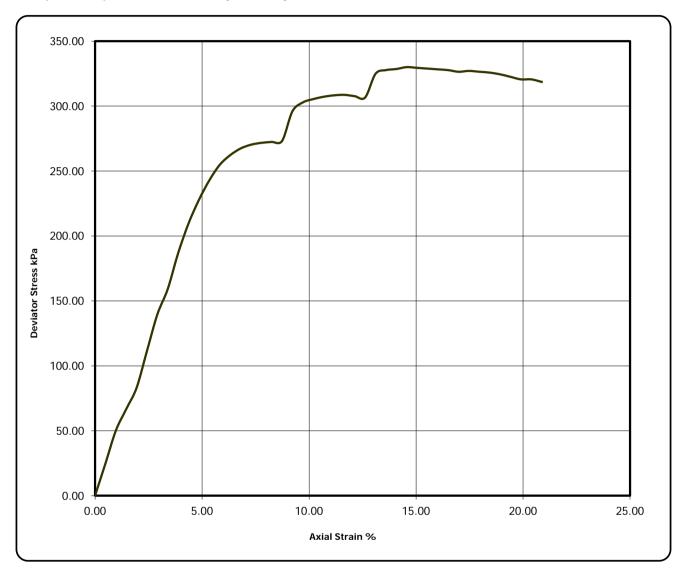








BS 1377 : Part7 : Clause 8 : 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH310 Sample Number: 10

Depth (m): 8.50 to N/A Sample Description: Very Firm silty CLAY.



Diameter (mm):		103	103 Height		m): 200 Test: 100mm Multist		nm Multi	stage	
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	24.9	2.06	1.65	100	273	137	8.7	Compound	Rate of strain = 2 %/min
				200	309	154	11.7		Latex Membrane used mm
					330	165	14.6		thickness









Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH310 Sample Number: 10 Depth (m): 8.50





Post Test Specimen

**Specimen Split** 

Diameter (mm):		103	103 Height (r		t (mm): 200 Test:		100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	24.9	2.06	1.65	100	273	137	8.7	Compound	Rate of strain = 2 %/min
				200	309	154	11.7		Latex Membrane used mm
				300	330	165	14.6		thickness



Bomo

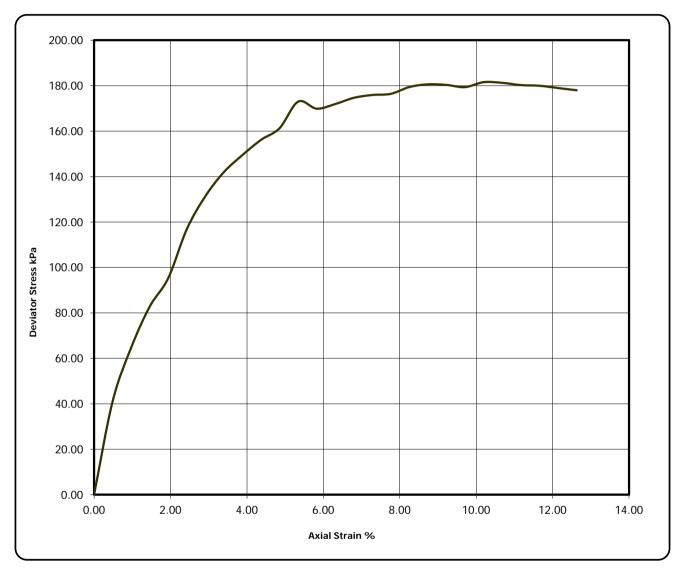
Checked By

DP Glons

Approved By:



BS 1377: Part7: Clause 8: 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH311 Sample Number: 18

Depth (m): 8.50 to N/A Sample Description: Very Firm silty CLAY.



Diamete	er (mm):	103	Height	(mm):	200	Test:	100m	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	24.9	1.96	1.57	100	176	88	7.8	Compound	Rate of strain = 2 %/min
				200	181	90	8.7		Latex Membrane used mm
				300	182	91	10.2		thickness





2 P Rons



Checked By

Approved By:

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH311 Sample Number: 18 Depth (m): 8.50





Post Test Specimen


**Specimen Split** 

Diamete	Diameter (mm):		Height (mm):		200	Test:	100n	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	24.9	1.96	1.57	100	176	88	7.8	Compound	Rate of strain = 2 %/min
				200	181	90	8.7		Latex Membrane used mm
				300	182	91	10.2		thickness





Checked By

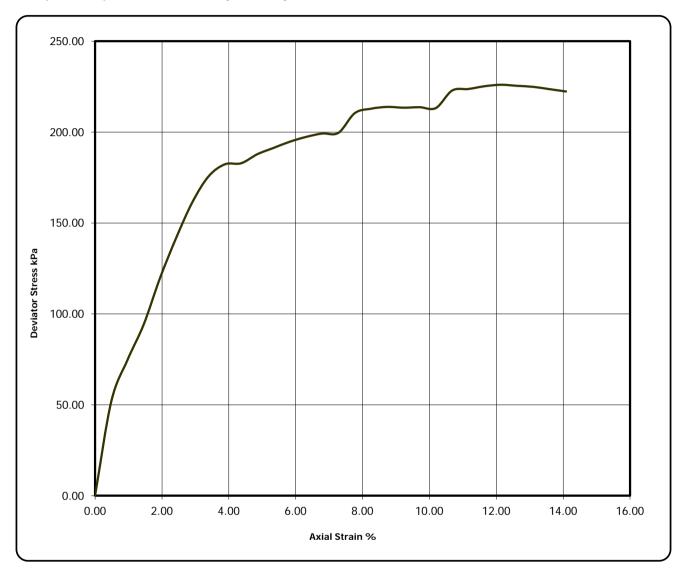


Approved By:



Date Approved: 17.7.14

BS 1377 : Part7 : Clause 8 : 1990 Multistage Test


without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH312 Sample Number: 3

Depth (m): 13.50 to N/A Sample Description: Very Firm silty CLAY.



Diamete	er (mm):	103	Height	(mm):	200	Test:	100m	nm Multi	stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	UI	Sample taken from Top of
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	tube
Α	32.5	1.97	1.48	100	200	100	7.3	Compound	Rate of strain = 2 %/min
				200	214	107	8.7		Latex Membrane used mm
				300	226	113	12.1		thickness





2 P Rons



Checked By

Approved By:

Date Approved: 17.7.14

BS 1377: Part7: Clause 8: 1990 Multistage Test

without measurement of Pore Pressure

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714

Hole Number BH312 Sample Number: 3 Depth (m): 13.50





Post Test Specimen

**Specimen Split** 

Diamete	er (mm):	103	Height	(mm):	200	Test:	100mm Multist		stage
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Sample taken from Top of tube
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
Α	32.5	1.97	1.48	100	200	100	7.3	Compound	Rate of strain = 2 %/min
				200	214	107	8.7		Latex Membrane used mm
				300	226	113	12.1		thickness



3500

Checked By

DP Glons

Approved By:

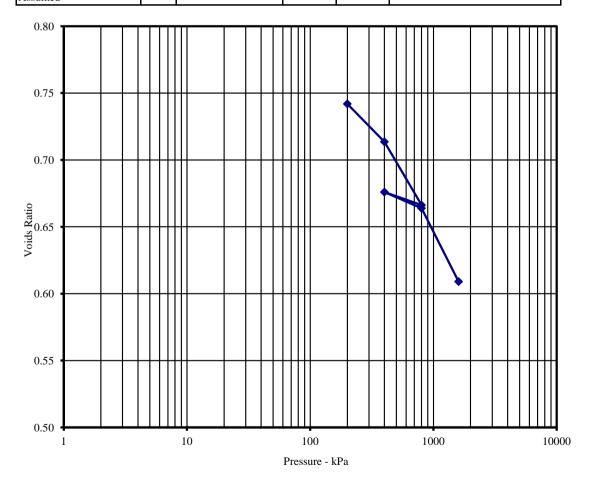


Date Approved: 17.7.14

BS1377: Part 5: 1990

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714


Hole/Sample Number: BH301

Depth (m): 2.00 - N/A

Sample Type: U

Hole Number: BH301 Depth (m): 2.00 to N/A

Initial Conditions		Pres	Pressure Range			Cv	Method of time fitting used
Moisture Content (%):	27		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.92	0	-	100	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.51	100	-	200	0.08	10.27	20'C
Voids Ratio:	0.7493	200	-	400	0.08	6.71	Location of specimen with sample
Degree of saturation:	95.1	400	-	800	0.07	4.51	top
Height (mm):	20.13	800	-	400	0.01	3.38	Remarks:
Diameter (mm)	50.01	400	-	800	0.02	9.36	
Particle Density (Mg/m3):	2.65	800	-	1600	0.04	2.38	
Assumed							





SP Grons

Checked By

21/07/14 Date

d By I

Bomp

**Approved By** 

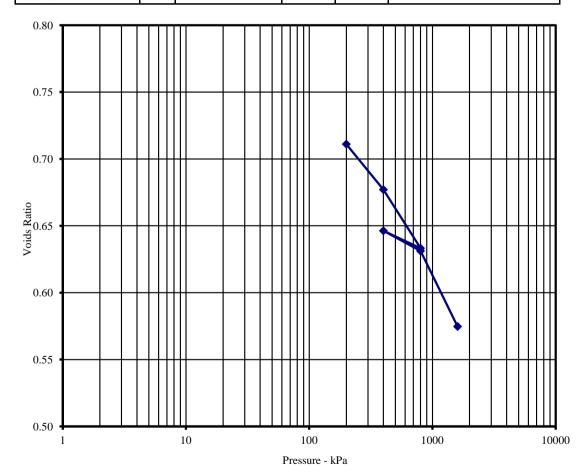
21/07/14 Date



BS1377: Part 5: 1990

Client ref: 35180

Location: **Edmonton Ecopark** 23719-010714 **Contract Number:** 


Hole/Sample Number: BH302

Depth (m): 10.00 -N/A

Sample Type: U

> Hole Number: BH302 Depth (m): 10.00 to N/A

Initial Conditions		Pres	Pressure Range			Cv	Method of time fitting used
Moisture Content (%):	28		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.95	0	-	100	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.53	100	-	200	0.10	9.91	20'C
Voids Ratio:	0.7305	200	-	400	0.10	6.44	Location of specimen with sample
Degree of saturation:	100.2	400	-	800	0.07	3.36	top
Height (mm):	19.9	800	-	400	0.02	9.01	Remarks:
Diameter (mm)	75.13	400	-	800	0.02	6.03	
Particle Density (Mg/m3):	2.65	800	-	1600	0.04	2.28	
Assumed							



DP Grans

Checked By

21/07/14 Date

21/07/14

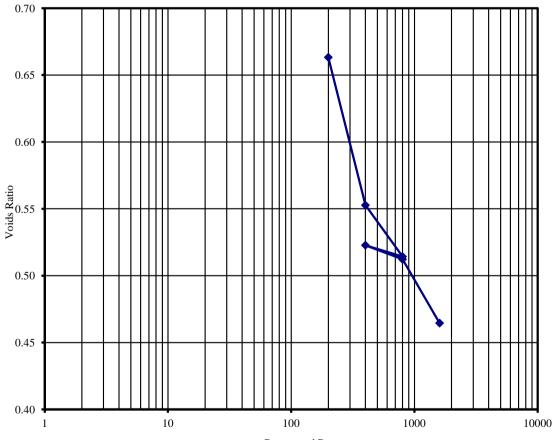




BS1377: Part 5: 1990

Client ref: 35180

Location: **Edmonton Ecopark** 23719-010714 **Contract Number:** 


Hole/Sample Number: BH303

Depth (m): 10.00 -N/A

Sample Type: U

> Hole Number: BH303 Depth (m): 10.00 to N/A

Initial Conditions		Pres	Pressure Range			Cv	Method of time fitting used
Moisture Content (%):	24		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.96	0	-	100	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.58	100	-	200	0.07	22.27	20'C
Voids Ratio:	0.6769	200	-	400	0.33	10.28	Location of specimen with sample
Degree of saturation:	92.8	400	-	800	0.06	8.81	top
Height (mm):	19.82	800	-	400	0.01	13.49	Remarks:
Diameter (mm)	74.98	400	-	800	0.02	15.66	
Particle Density (Mg/m3):	2.65	800	-	1600	0.04	5.76	
Assumed							



Pressure - kPa

**GEO SITE & TESTING SERVICES LTD** 

DP Grans

Checked By

21/07/14

Date

**Approved By** 

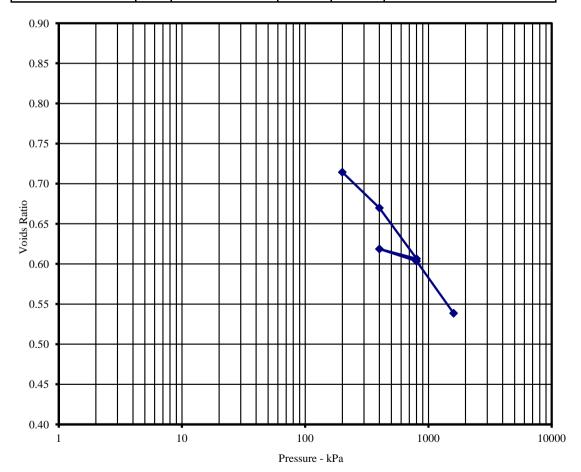
21/07/14



BS1377: Part 5: 1990

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714


Hole/Sample Number: BH304

Depth (m): 10.50 - N/A

Sample Type: U

Hole Number: BH304 Depth (m): 10.50 to N/A

Initial Conditions		Pres	Pressure Range			Cv	Method of time fitting used
Moisture Content (%):	26		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.92	0	-	100	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.52	100	-	200	0.13	9.87	20'C
Voids Ratio:	0.7411	200	-	400	0.13	3.42	Location of specimen with sample
Degree of saturation:	94.3	400	-	800	0.09	9.41	top
Height (mm):	19.91	800	-	400	0.02	4.13	Remarks:
Diameter (mm)	75.09	400	-	800	0.02	3.31	
Particle Density (Mg/m3):	2.65	800	-	1600	0.05	2.40	
Assumed							





2P Grons

Checked By

21/07/14 Date

Bono

21/07/14 Date

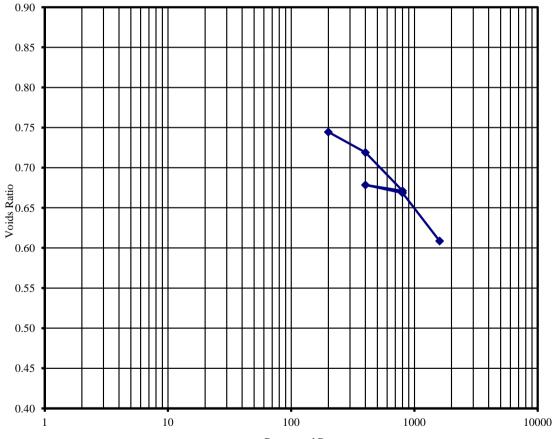


Approved By

BS1377: Part 5: 1990

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714


Hole/Sample Number: BH305

Depth (m): 10.20 - N/A

Sample Type: U

Hole Number: BH305 Depth (m): 10.20 to N/A

Initial Conditions		Pres	Pressure Range			Cv	Method of time fitting used
Moisture Content (%):	28		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.93	0	-	100	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.51	100	-	200	0.06	22.91	20'C
Voids Ratio:	0.7516	200	-	400	0.07	11.16	Location of specimen with sample
Degree of saturation:	98.4	400	-	800	0.07	10.07	top
Height (mm):	20.03	800	-	400	0.01	9.30	Remarks:
Diameter (mm)	50	400	-	800	0.01	10.42	
Particle Density (Mg/m3):	2.65	800	-	1600	0.04	2.35	
Assumed							



Pressure - kPa

GS7L

GEO SITE & TESTING SERVICES LTD

SP Grans

Checked By

спескей Бу

Approved By

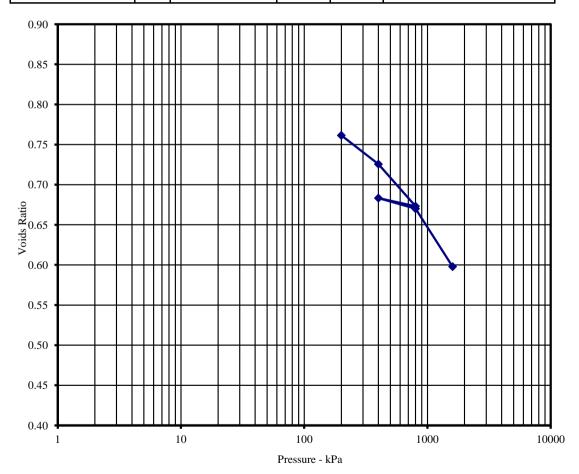
21/07/14 Date

21/07/14

BS1377: Part 5: 1990

35180 Client ref:

Location: **Edmonton Ecopark** 23719-010714 **Contract Number:** 


Hole/Sample Number: **BH306** 

Depth (m): 10.00 -N/A

Sample Type: U

> Hole Number: BH306 Depth (m): 10.00 to N/A

Initial Conditions		Pres	Pressure Range			Cv	Method of time fitting used
Moisture Content (%):	26		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.85	0	-	100	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.47	100	-	200	0.12	9.02	20'C
Voids Ratio:	0.8049	200	-	400	0.10	9.81	Location of specimen with sample
Degree of saturation:	84.9	400	-	800	0.08	6.10	top
Height (mm):	19.22	800	-	400	0.02	3.88	Remarks:
Diameter (mm)	75.07	400	-	800	0.02	15.52	
Particle Density (Mg/m3):	2.65	800	-	1600	0.05	2.81	
Assumed							



2P Grans

Checked By

21/07/14

Date

21/07/14 Date

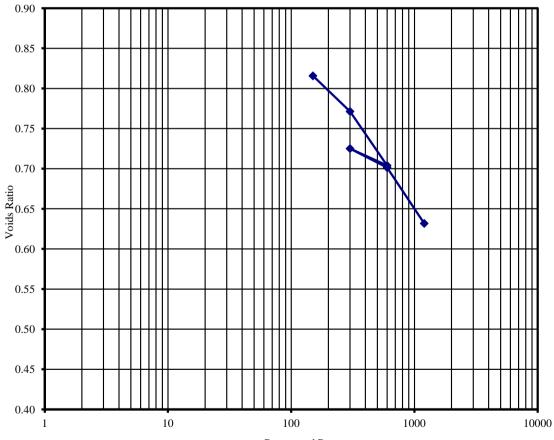


**Approved By** 

BS1377: Part 5: 1990

35180 Client ref:

Location: **Edmonton Ecopark** 23719-010714 **Contract Number:** 


Hole/Sample Number: **BH307** 

Depth (m): 7.00 -N/A

Sample Type: U

> Hole Number: BH307 Depth (m): 7.00 to N/A

Initial Conditions		Pres	Pressure Range			Cv	Method of time fitting used
Moisture Content (%):	30		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.90	0	-	75	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.45	75	-	150	0.18	9.97	20'C
Voids Ratio:	0.8215	150	-	300	0.16	2.69	Location of specimen with sample
Degree of saturation:	98.3	300	-	600	0.13	0.82	top
Height (mm):	19.76	600	-	300	0.04	0.61	Remarks:
Diameter (mm)	74.91	300	-	600	0.05	1.53	
Particle Density (Mg/m3):	2.65	600	-	1200	0.07	0.58	
Assumed							



Pressure - kPa



2P Grans

Checked By

21/07/14

Date

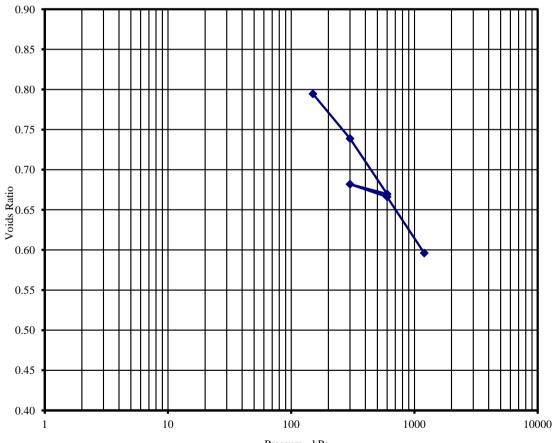
**Approved By** 

21/07/14

BS1377: Part 5: 1990

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714


Hole/Sample Number: BH308

Depth (m): 8.00 - N/A

Sample Type: U

Hole Number: BH308 Depth (m): 8.00 to N/A

Initial Conditions		Pres	Pressure Range			Cv	Method of time fitting used
Moisture Content (%):	28		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.85	0	-	75	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.45	75	-	150	0.19	22.33	20'C
Voids Ratio:	0.8264	150	-	300	0.21	6.94	Location of specimen with sample
Degree of saturation:	88.9	300	-	600	0.13	6.46	top
Height (mm):	19.96	600	-	300	0.02	2.38	Remarks:
Diameter (mm)	50.06	300	-	600	0.03	9.53	
Particle Density (Mg/m3):	2.65	600	-	1200	0.07	1.01	
Assumed							



Pressure - kPa

GS7L

GEO SITE & TESTING SERVICES LTD

SP Grans

Checked By

d By

Bono

**Approved By** 

21/07/14

21/07/14

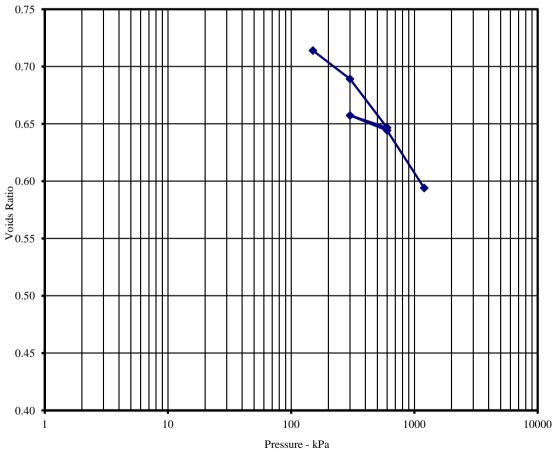
Date



BS1377: Part 5: 1990

Client ref: 35180

Location: **Edmonton Ecopark** 23719-010714 **Contract Number:** 


Hole/Sample Number: **BH309** 

Depth (m): 7.50 -N/A

Sample Type: U

> Hole Number: BH309 Depth (m): 7.50 to N/A

Initial Conditions		Pres	sure Ra	inge	Mv	Cv	Method of time fitting used
Moisture Content (%):	27		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.96	0	-	75	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.55	75	-	150	0.07	7.52	20'C
Voids Ratio:	0.7136	150	-	300	0.10	2.65	Location of specimen with sample
Degree of saturation:	99.4	300	-	600	0.08	1.13	top
Height (mm):	20.04	600	-	300	0.02	1.58	Remarks:
Diameter (mm)	50.02	300	-	600	0.03	2.65	
Particle Density (Mg/m3):	2.65	600	-	1200	0.05	0.60	
Assumed							



**GEO SITE & TESTING SERVICES LTD** 

DP Grans

Checked By

21/07/14 Date

**Approved By** 

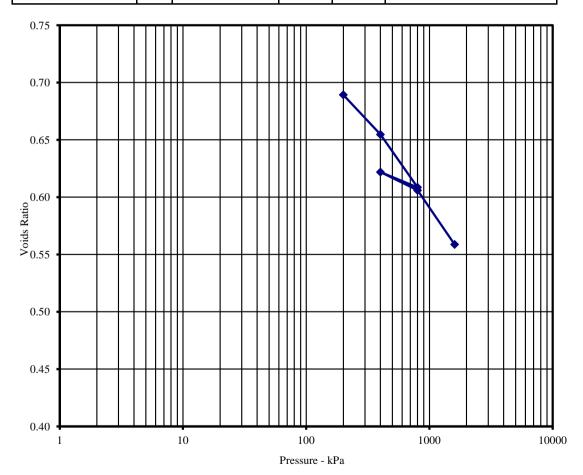
21/07/14



BS1377: Part 5: 1990

Client ref: 35180

Location: **Edmonton Ecopark** 23719-010714 **Contract Number:** 


Hole/Sample Number: **BH310** 

Depth (m): 8.50 -N/A

Sample Type: U

> Hole Number: BH310 Depth (m): 8.50 to N/A

Initial Conditions		Pres	sure Ra	inge	Mv	Cv	Method of time fitting used
Moisture Content (%):	26		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.95	0	-	100	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.55	100	-	200	0.11	6.65	20'C
Voids Ratio:	0.7133	200	-	400	0.10	1.09	Location of specimen with sample
Degree of saturation:	96.6	400	-	800	0.07	1.05	top
Height (mm):	19.06	800	-	400	0.02	1.50	Remarks:
Diameter (mm)	74.93	400	-	800	0.02	2.94	
Particle Density (Mg/m3):	2.65	800	-	1600	0.04	0.99	
Assumed							





DP Grans

21/07/14

Checked By

Date

21/07/14



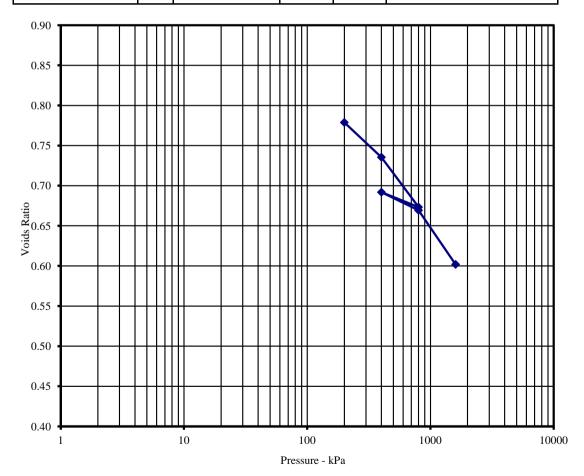




BS1377: Part 5: 1990

Client ref: 35180

Location: Edmonton Ecopark
Contract Number: 23719-010714


Hole/Sample Number: BH311

Depth (m): 8.50 - N/A

Sample Type: U

Hole Number: BH311 Depth (m): 8.50 to N/A

Initial Conditions		Pres	sure Ra	nge	Mv	Cv	Method of time fitting used
Moisture Content (%):	31		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.94	0	-	100	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.48	100	-	200	0.12	7.46	20'C
Voids Ratio:	0.7904	200	-	400	0.12	0.91	Location of specimen with sample
Degree of saturation:	105.2	400	-	800	0.09	0.53	top
Height (mm):	20.02	800	-	400	0.03	1.65	Remarks:
Diameter (mm)	50.05	400	-	800	0.03	0.83	
Particle Density (Mg/m3):	2.65	800	-	1600	0.05	0.78	
Assumed							



2003

21/07/14 Checked By Date

Bomp

21/07/14 Date

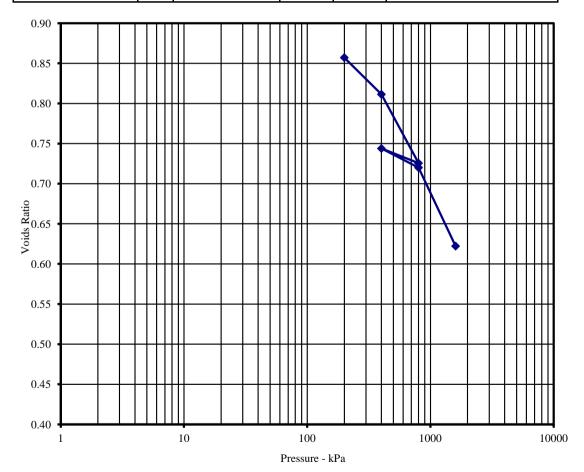


Approved By

BS1377: Part 5: 1990

35180 Client ref:

Location: **Edmonton Ecopark** 23719-010714 **Contract Number:** 


Hole/Sample Number: BH312

Depth (m): 13.50 -N/A

Sample Type: U

> Hole Number: BH312 Depth (m): 13.50 to N/A

Initial Conditions		Pres	sure Ra	inge	Mv	Cv	Method of time fitting used
Moisture Content (%):	33		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.90	0	-	100	Swelling	Stage	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.43	100	-	200	0.11	5.77	20'C
Voids Ratio:	0.8491	200	-	400	0.12	2.77	Location of specimen with sample
Degree of saturation:	101.8	400	-	800	0.12	1.56	top
Height (mm):	19.92	800	-	400	0.03	1.36	Remarks:
Diameter (mm)	50.02	400	-	800	0.03	1.55	
Particle Density (Mg/m3):	2.65	800	-	1600	0.07	0.57	
Assumed							



2P Grans

Checked By

21/07/14

Date

21/07/14 Date



**Approved By** 



## **Appendix B: Soil Generic Quantitative Risk Assessment**

Site:	Edmonton Ecopark EfW Additional SI	Project No:	29541
Data Description:	All Soils	SOM (%):	1.0%
Land Use:	Commercial	Completed By:	JG
Receptor:	Human Health	Checked By:	

Assessment Criteria Key
a) 2009 SGV (Res with Plant)
b) 2009 SGV (Allotment)
c) 2009 SGV (Commercial/Industrial)
d) EIC GAC (Res with Plant)

e) EIC GAC (Res without Plant) f) EIC GAC (Allotment) g) EIC GAC (Commercial/Ind) h) AMEC GAC (Res with Plant) i) AMEC GAC (Res without Plant) j) AMEC GAC (Allotment) k) AMEC GAC (Commercial/Ind) I) LQM CIEH GAC (Res with Plant) m) LQM CIEH GAC (Res without Plant) n) LQM CIEH GAC (Commercial/Ind) o) C4SL (Res with Plant) p) C4SL (Res without Plant)

q) C4SL (Allotment) r) (C4SL (Commercial) s) Dutch Intervention values t) Soil Code

u) BRE Special Digest v) Other Generic Criteria w) Site Specific Assessment Criteria x) Laboratory limit of detection

			Assess-	_			Sum	mary Stati	stics			Sample Ide	entifiers and	d Analytical	Data																	
Contaminant	Units	Method Detection	ment Criteria	Source	Total	Results					Number	BH401	BH401	BH401	BH402	BH402	BH402	BH403	BH403	BH403	BH403	BH403	BH403	BH403	BH403	BH403	BH404	BH404	BH404	BH404	BH404	BH404 BH404
		Limit	(AC)	(see key)	Number of Samples	Above Detection	Minimum	Maximum	Arithmetic Mean	Standard Deviation	of results	0.10-0.20 09/12/2014	0.40-0.50 09/12/2014	0.70-0.90 09/12/2014	0.10-0.20 08/12/2014	0.30-0.50 08/12/2014	0.60-0.80 08/12/2014	0.10-0.20 12/12/2014	0.50-0.60 12/12/2014		2.10-2.30 12/12/2014	3.50-3.80 12/12/2014	4.80-5.00 12/12/2014	6.50-7.00 12/12/2014	7.50-8.00 15/12/2014		0.40-0.60 15/12/2014		1.80-2.00 15/12/2014	3.50-3.70 15/12/2014	6.00-6.10 15/12/2014	6.70-6.80 9.00-9.4 15/12/2014 18/12/20
General Inorganics					0	Limit 0	0	0	-	-	0	MG	MG	MG	MG	MG	LG	LG	LG	MG	MG	MG	MG	MG	LG LG							
pH Total Cyanide	pH Units mg/kg	N/A 1	-		99 22	102	6.4	10.8 5	8.05858586 1.31818182	0.86920209 1.04135277	-	9.9	8.8 < 1	7.7	10	9.7	7.6 < 1	7.4 < 1	10.8	10.3	8.9 < 1	8.9 < 1	9.7	10.6	9.2	9.2	8.7 < 1	8.1 < 1	8.2 < 1	8.3 < 1	8.2 < 1	8.4 8.4 <1 <1
Free Cyanide	mg/kg	1	168	(k)	22	0	1	1	-	-	0	< 1	< 1	<1	<1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1 <1
Total Sulphate as SO4 Water Soluble Sulphate (Soil Equivalent)	mg/kg g/l	50 0.0025	-		83	80	0.0025	6.4	0.98824096	1.16467204	-	0.79	0.73	0.19	0.86	0.16	0.55	500 0.14	4800 1.8	2900 1.3	770 0.78	690 0.68	1000 0.62	2700 1.4	2100 1.9	960 0.78	2400 0.94	16000 3.9	1300 0.95	1900 1.4	1800 1.5	770 - 0.71 1.3
Water Soluble Sulphate as SO4 (2:1)	mg/kg	2.5	-		76	73	2.5	6400	1048.17105	1230.50503	-	790	730	190	860	160	550	140	1800	1300	780	680	620	1400	1900	780	940	3900	950	1400	1500	710 1300
Water Soluble Sulphate (2:1 Leachate Equivale Sulphide	g/l mg/kg	0.00125	-		28 91	31 84	0.072 1	3 220	0.65746429 34.2934066	0.67494672 51.3738624	-	0.4 32	0.37 5.6	0.097	0.43	0.08	0.27 20	0.072 1.4	0.91 1.3	0.65	0.39	0.34 33	0.31	0.72 22	0.94 45	0.39 87	0.47 6.4	1.9 2.6	0.48 19	0.72 23	0.73 21	0.36 0.65 79 140
Ammonium as NH4	mg/kg	5	-		20 20	14 12	5	240 120	24.085 13.22	51.752928 25.4400348	-	< 5.0	17 8.4	< 5.0 < 5.0	< 5.0	< 5.0 < 5.0	25 12	< 5.0	< 5.0	< 5.0	11 5.6	29 15	240 120	96 48	42 21	12 5.9	< 5.0	< 5.0	28 14	31 15	28 14	8.7 11 < 5.0 5.4
Ammonium as NH4 (leachate equivalent) Organic Matter	mg/l %	0.1	-		13	13	0.2	13	2.05384615	4.21932368	-	< 5.0		- 5.0	< 5.0	- 5.0	-	< 5.0	< 5.0	< 5.0	1.8	-	-	-	-	5.9	< 5.0 -	< 5.0 1.5	-	1.2	-	< 5.0 5.4
Asbestos in Soil Screen	-											-	Not-detected	-	Not-detected	-	-	-	-	Not-detected	-	-	-	-	Not-detected	-	Detected	-	Detected	-	-	
Asbestos Type	_																										Chrysotile- Loose fibres		Amosite- Loose fibres			
Asbestos quantification	%		-																								< 0.001		0.005			
Total Phenols Total Phenols (monohydric)	mg/kg	mg/kg	1		0 40	1	1	37	2.4	-	0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0
Speciated PAHs Naphthalene	mg/kg	0.05	200	(n)	98	0 25	0.05	14	0.26540816	1.42148475	0	0.21	0.2	< 0.05	< 0.05	< 0.05	0.12	< 0.05	< 0.05	0.39	< 0.05	< 0.05	-	0.13	0.19	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05
Acenaphthylene	mg/kg	0.1	84000 85000	(n)	98	4	0.1 0.1	5.7 6.6	0.23173469 0.24163265	0.56033316 0.75088771	0	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10	-	0.14	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10							
Acenaphthene Fluorene	mg/kg mg/kg	0.1 0.1	64000	(n) (n)	98 98	16	0.1	7.5	0.31602041	0.85895734	0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.43	< 0.10	0.2 0.23	-	0.52 0.57	0.25 0.31	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10 < 0.10
Phenanthrene Anthracene	mg/kg mg/kg	0.1 0.1	22000 530000	(n) (n)	98 98	47 37	0.1 0.1	58 14	1.39061224 0.44132653	5.96088761 1.60509154	0	0.39	1.3 0.22	< 0.10 < 0.10	0.19 < 0.10	< 0.10 < 0.10	0.66 0.11	< 0.10 < 0.10	< 0.10 < 0.10	4.3 0.68	1.3 0.27	2.2 0.44	-	2.8 0.68	2.3 0.59	< 0.10 < 0.10	0.59 0.11	0.5 0.1	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	0.63 < 0.10 0.19 < 0.10
Fluoranthene	mg/kg	0.1	23000	(n)	98	59	0.1	59	2.49857143	7.85033613	0	3.4	2	< 0.10	0.58	0.4	1.5	< 0.10	< 0.10	4.9	2.2	2.7	-	3.9	2.8	< 0.10	0.5	1.1	< 0.10	< 0.10	< 0.10	0.55 < 0.10
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.1	54000 90	(n) (n)	98 98	59 51	0.1 0.1	47 22	2.12591837 1.01010204	6.25708206 2.84944903	0	2.9 1.7	1.8	< 0.10 < 0.10	0.7	0.43	1.2 0.77	< 0.10 < 0.10	< 0.10 < 0.10	3.9	1.9 0.74	2.1 0.8	-	3.3 1.6	2.4	< 0.10 < 0.10	0.41 0.18	0.94	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	0.46 < 0.10 0.15 < 0.10
Chrysene	mg/kg	0.05	140	(n)	98	56	0.05	21	0.95214286	2.67988008	0	1.9	1.1	< 0.05	0.5	0.33	0.85	< 0.05	< 0.05	2.5	1.5	1.3	-	1.4	0.94	< 0.05	0.2	0.77	< 0.05	< 0.05	< 0.05	0.35 < 0.05
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	0.1	100 140	(n) (n)	98 98	50 43	0.1 0.1	30 11	1.17785714 0.6405102	3.45388807 1.4910775	0	2.5 0.89	1.4 0.86	< 0.10 < 0.10	0.61 0.31	0.36 0.18	1.1 0.49	< 0.10 < 0.10	< 0.10 < 0.10	2.2	1.3 0.8	0.88	-	1.4 0.75	0.89 0.49	< 0.10 < 0.10	< 0.10 < 0.10	0.71 0.45	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10
Benzo(a)pyrene	mg/kg	0.1	14	(n)	98	48	0.1	20	0.92877551	2.65286356	0	1.6	1.1	< 0.10	0.36	0.27	0.75	< 0.10	< 0.10	1.5	0.93	0.87	-	1.1	0.76	< 0.10	< 0.10	0.64	< 0.10	< 0.10	< 0.10	< 0.10 < 0.10
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg	0.1	60 13	(n) (n)	98 98	29	0.1	13	0.56693878 0.20142857	1.54326298 0.20687663	0	1.1	0.64 < 0.10	< 0.10 < 0.10	0.24 < 0.10	< 0.10 < 0.10	0.42 < 0.10	< 0.10	< 0.10 < 0.10	0.76 < 0.10	0.57	0.27 < 0.10	-	0.74 0.12	0.44 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	0.28 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10
Benzo(ghi)perylene	mg/kg	0.05	650	(n)	98	30	0.05	13	0.52540816	1.66039814	0	1.3	0.83	< 0.05	0.37	< 0.05	0.52	< 0.05	< 0.05	1.2	0.81	0.41	-	0.76	0.45	< 0.05	< 0.05	0.36	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05
Total PAH					0	0	0	0	-	-	0																					
Speciated Total EPA-16 PAHs	mg/kg	1.6	-		98	53	1.6	340	12.9497959	41.169774	-	20	12.6	< 1.60	4.19	2.29	8.42	< 1.60	< 1.60	26	12.4	13.1	-	19.9	13.9	< 1.60	1.99	6.36	< 1.60	< 1.60	< 1.60	2.33 < 1.60
Heavy Metals / Metalloids					0	0	0	0	-	-	0																					
Aluminium (aqua regia extractable)	mg/kg	30 1	640	(-)	83 99	86 101	740 1	66000 42	18840.241 12.1929293	13698.7845 6.95205523	- 0	11000 12	21000	25000 9.2	8000 9.6	9100 9.6	27000 15	2100 8.5	6800 8.4	12000 12	12000 11	15000 9.8	11000 14	21000 15	23000 11	18000 5.8	7000 21	14000 19	19000 9.1	18000 8.9	15000 8.8	20000 18000 4.8 4.2
Arsenic (aqua regia extractable)  Barium (aqua regia extractable)	mg/kg mg/kg	1	22000	(c) (g)	83	86	14	880	173.325301	161.221716	0	120	15 150	120	82	73	150	24	38	170	120	110	120	180	160	32	64	310	9.1 46	66	72	4.8 4.2 60 36
Boron (water soluble)  Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	19000 230	(n) (c)	91 99	82 64	0.2	65 64	4.49120879 3.25454545	8.78666475 9.33630474	0	3.3 < 0.2	3 < 0.2	1.8	1.6	1.7	3.6 0.3	< 0.2 0.2	1 < 0.2	0.5	0.8	1.7	3.7 2.9	2.2	9.2 0.7	1.7	< 0.2 < 0.2	1.3 0.4	2.8 0.5	1.9 0.4	1.3 0.3	1 2 0.4 0.2
Chromium (aqua regia extractable)	mg/kg	1	35	(n)	99	102	7.1	220	42.8060606	36.9523792	0	20	31	40	16	17	37	14	15	31	26	33	31	24	34	33	22	20	34	35	31	38 36
Copper (aqua regia extractable) Iron (aqua regia extractable)	mg/kg mg/kg	40	72000	(n)	99	102 86	3.4 8100	2800 220000	206.617172 40562.6506	445.058354 31774.6053	0	33 22000	47 32000	24 35000	27 17000	16 17000	66 37000	13 18000	54 19000	57 22000	65 28000	79 26000	130 23000	100 28000	51 34000	29 28000	19 49000	69 35000	45 32000	44 30000	41 26000	43 31 29000 25000
Lead (aqua regia extractable)	mg/kg	1	2330	(r)	99	102	3.6	2700	202.00202	348.75289	0	130	180	28	68	26	76	11	32	290	110	100	92	110	65	9.9	45	710	44	72	31	20 11
Mercury (aqua regia extractable)  Nickel (aqua regia extractable)	mg/kg mg/kg	0.3	3600 1800	(c)	99	102	0.3 6.6	4.1 280	0.55757576 39.969697	0.76024847 38.4762674	0	< 0.3	< 0.3 26	< 0.3	< 0.3	< 0.3 16	< 0.3 40	< 0.3 15	< 0.3	< 0.3 24	< 0.3 26	< 0.3 28	0.4 30	< 0.3	0.3	< 0.3	< 0.3 25	0.6 22	< 0.3 32	< 0.3 32	< 0.3 29	< 0.3 < 0.3 31 27
Selenium (aqua regia extractable)	mg/kg	1	13000	(c)	99	17	1	12	1.42828283		0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0
Zinc (aqua regia extractable)  Magnesium (aqua regia extractable)	mg/kg mg/kg	20	670000	(n)	99	102 6	15 1600	10000 12000	512.515152 6833.33333		0 -	98	130	78	67	- 48	140	49 -	87	210	200	230	280	180	130	- 66	91 1600	290 2300	110 9500	130 8600	82 7000	100 73 12000 -
Monoaromatics					0	0	0	0	_	_	0																					
Benzene	mg/kg	0.001	28	(k)	82	0	0.001	1	-	-	0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	-	< 0.001	-	< 0.001	-	< 0.001	-	-	< 0.001	-	< 0.001	-	-	-	
Toluene Ethylbenzene	mg/kg mg/kg	0.001 0.001	870 520	(k) (k)	82 82	0	0.001 0.001	1	0.86605	-	0	< 0.001 < 0.001	-	< 0.001 < 0.001	-	< 0.001 < 0.001	-	< 0.001 < 0.001	-	-	< 0.001 < 0.001	-	< 0.001 < 0.001	-	-	-						
p & m-xylene	mg/kg	0.001	480	(k)	82	1	0.001	1	0.86599756	-	0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	-	< 0.001	-	< 0.001	-	< 0.001	-	-	< 0.001	-	< 0.001	-	-	-	
o-xylene Total xylene	mg/kg mg/kg	0.001 0.002	480 480	(k)	82 74	0	0.001 0.002	1 2	-	-	0	< 0.001 < 0.002	-	< 0.001 < 0.002	-	< 0.001 < 0.002	-	< 0.001 < 0.002	-	-	< 0.001 < 0.002	-	< 0.001 < 0.002	-	-	-						
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.002	7900	(g)	82	0	0.002	1	-	-	0	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	-	< 0.002	-	< 0.002	-	< 0.002	-	-	< 0.002	-	< 0.002	-	-	-	
Petroleum Hydrocarbons					0	0	0	0	-	-	0																					
		0.5	245																									- 0 -				
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	0.1	3400 8300	(n) (n)	78 78	0	0.1 0.1	0.1	-		0	-	< 0.1 < 0.1	-	<u> </u>		< 0.1 < 0.1	<u> </u>	< 0.1 < 0.1		< 0.1 < 0.1	-	< 0.1 < 0.1	-	<u>-</u>	< 0.1 < 0.1		< 0.1 < 0.1	<u>-</u>			<u>-</u> -
TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	0.1	2100 10000	(n)	78	0 13	0.1	0.1 21	1.88717949	2.76402487	0	-	< 0.1 < 1.0	-	-	-	< 0.1 < 1.0	-	< 0.1 < 1.0	-	< 0.1 < 1.0	-	< 0.1 < 1.0	-	-	< 0.1 < 1.0	-	< 0.1 < 1.0	-	-	-	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg mg/kg	1 2	61000	(n) (n)	78 78	13 21	2	290	12.7192308	40.1320452	0	-	< 2.0	-	-	-	< 2.0	-	< 1.0 4.4	-	< 1.0 4.5	-	< 1.0 4.4	-	-	< 2.0	-	< 2.0	-	-	-	
TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	1600000 1600000	(n) (n)	78 78	24 30	8	3500 9200	87.4705128 267.294872	415.254432 1225.41309	0	-	< 8.0 32	-	-	-	< 8.0 < 8.0	-	28 120	-	18 61	-	37 170	-	-	< 8.0 < 8.0	-	9.1 21	-	-	-	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg mg/kg	10	-	(11)	78	30	10	13000	363.410256		-	-	32	-	-	-	< 10	-	150	-	84	-	210	-	-	< 10	-	30	-	-	-	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	7200	(n)	78	0	0.1	0.1	-	_	0	-	< 0.1	-	-	_	< 0.1	_	< 0.1	-	< 0.1	-	< 0.1	_	_	< 0.1	-	< 0.1	_	-	-	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	59000	(n)	78	0	0.1	0.1	-	-	0	-	< 0.1	-	-	-	< 0.1	-	< 0.1	-	< 0.1	-	< 0.1	-	-	< 0.1	-	< 0.1	-	-	-	
TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg mg/kg	0.1	3700 17000	(n) (n)	78 78	0 15	0.1	0.1 17	2.11025641	3.0004584	0	-	< 0.1 < 1.0	-	-	-	< 0.1 < 1.0	-	< 0.1 < 1.0	-	< 0.1 < 1.0	-	< 0.1 < 1.0	-	-	< 0.1 < 1.0	-	< 0.1 < 1.0	-	-	-	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	36000	(n)	78	18	2	49	3.65641026	5.9543412	0	-	3.7	-	-	-	< 2.0	-	< 2.0	-	2.4	-	< 2.0	-	-	< 2.0	-	< 2.0	-	-	-	
TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC21 - EC35	mg/kg mg/kg	10 10	28000 28000	(n) (n)	78 78	23 29	10 10	440 1200	30.6923077 80.7307692	62.7661725 198.774993	0	-	17 57	-	-	-	< 10 21	-	< 10 13	-	17 53	-	25 79	-	-	< 10 < 10	-	< 10 16	-	-	-	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	-	(n)	78	32	10	1400	106.846154		-	-	78	-	-	-	21	-	13	-	72	-	100	-	-	< 10	-	16	-	-	-	
SVOCs					0	0	0	0	-	_	0																					
Aniline	mg/kg	0.1	-	(0)	5 5	0	0.1	0.1	-	-	-	-	-	-	-	-	-	-	-	-	< 0.1	-	-	-	-	-	-	< 0.1	-	< 0.1	-	
Phenol 2-Chlorophenol	mg/kg mg/kg	0.2	3200	(c)	5	0	0.2 0.1	0.2 0.1	-	-	-	-	-	-	-		-	-		-	< 0.2 < 0.1	-	-	-	-	-	-	< 0.2 < 0.1	-	< 0.2 < 0.1	-	
Bis(2-chloroethyl)ether	mg/kg	0.2	35000 32	(g) (n)	5 5	0	0.2	0.2 0.2	-	-	0	-	-	-	-	-	-	-	-	-	< 0.2 < 0.2	-	-	-	-	-	-	< 0.2 < 0.2	-	< 0.2 < 0.2	-	
1,3-Dichlorobenzene	mg/kg	0.2	32	(n)	5	U	U.Z	∪.∠			U	· -		1	<u> </u>	<u> </u>	-	-	<u> </u>	1 -	< U.2	-	-	<del>-</del>	-	-		< U.∠	-	< U.2		_   -

Site:	Edmonton Ecopark EfW Additional SI	Project No:	29541
Data Description:	All Soils	SOM (%):	1.0%
Land Use:	Commercial	Completed By:	JG
Receptor:	Human Health	Checked By:	

Assessment Criteria Key
a) 2009 SGV (Res with Plant)
b) 2009 SGV (Allotment)
c) 2009 SGV (Commercial/Industrial) e) EIC GAC (Res without Plant) f) EIC GAC (Allotment) g) EIC GAC (Commercial/Ind) d) EIC GAC (Res with Plant) h) AMEC GAC (Res with Plant)

i) AMEC GAC (Res without Plant) j) AMEC GAC (Allotment) k) AMEC GAC (Commercial/Ind) I) LQM CIEH GAC (Res with Plant)

m) LQM CIEH GAC (Res without Plant) n) LQM CIEH GAC (Commercial/Ind) o) C4SL (Res with Plant) p) C4SL (Res without Plant)

q) C4SL (Allotment) r) (C4SL (Commercial) s) Dutch Intervention values t) Soil Code

u) BRE Special Digest v) Other Generic Criteria w) Site Specific Assessment Criteria x) Laboratory limit of detection

		Method	Assess-	Source			Su	mmary Stat	istics			Sample Ide	entifiers and	I Analytica	l Data																		
Contaminant	Units	Detection Limit	ment Criteria (AC)	(see key)	Total Number of	Results Above Detection	Minimum	Maximum	Arithmetic Mean	Standard Deviation	Number of results	BH401 0.10-0.20	BH401 0.40-0.50			BH402 0.30-0.50	BH402 0.60-0.80	BH403 0.10-0.20	BH403 0.50-0.60							BH403 10.00-10.40		BH404 0.80-1.00		BH404 3.50-3.70			_
					Samples	Limit			Weari	Deviation	>AC		09/12/2014		08/12/2014						1			12/12/2014		15/12/2014		1	1				
		<b>.</b>		<b>.</b>			<b>.</b>	<del> </del>	-			MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	LG	LG	LG	MG	MG	MG	MG	MG	LG	LG
2-Dichlorobenzene	mg/kg	0.1	2100 4500	(n)	5	0	0.1	0.1	-	-	0	-	-	-	-	-	-	-	-	-	< 0.1	-	-	-	-	-	-	< 0.1	-	< 0.1	-	-	-
4-Dichlorobenzene	mg/kg	0.2	4500	(n)	5	0	0.2		-	-	0	-	-	-	-	-	-	-	-	-	< 0.2	-	-	-	-	-	-	< 0.2	-	< 0.2 < 0.1	-	-	-
s(2-chloroisopropyl)ether	mg/kg	0.1	-		5		0.1	0.1	-	-	-	-	-	-	-	-	-	-	-	-	< 0.1	-	-	-	-	-	-	< 0.1	-		-	-	-
Methylphenol	mg/kg	0.3	-	( )	5	0	0.3	0.3	-	-	-	-	-	-	-	-	-	-	-	-	< 0.3	-	-	-	-	-	-	< 0.3	-	< 0.3	-	-	-
exachloroethane	mg/kg	0.05	22	(g)	5	0	0.05	0.3	-	-	0	-	-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-	< 0.05	-	< 0.05	-	-	-
itrobenzene	mg/kg	0.3				0	0.3	0.3	-	-	-	-	-	-	-	-	-	-	-	-	< 0.3	-	-	-	-	-	-	< 0.3	-	< 0.3	-	-	-
Methylphenol	mg/kg	0.2			5	0	0.2	0.2	-	-	-	-	-	-	-	-	-	-	-	-	< 0.2	-	-	-	-	-	-	< 0.2	-	< 0.2	-	-	+
ophorone	mg/kg	0.2	-		5	0	0.2	0.2	-	<del>-</del>	-	-	-	-	-	-	-	-	-	-	< 0.2	-	-	-	-	-	-	< 0.2	-	< 0.2 < 0.3	-	-	-
Nitrophenol	mg/kg	0.3	40000	(-)	5	0	0.3	0.3	-	<del>-</del> -	- 0	-	-	-	-	-	-	-	-	-	< 0.3 < 0.3	-	-	-	-	-	-	< 0.3	-		-	-	-
4-Dimethylphenol	mg/kg	0.3	16000	(g)	, ,	_ ·			-	-	-	-	-		-	-	-	-	-	-			-	-	-	-	-		-	< 0.3	-	-	-
s(2-chloroethoxy)methane	mg/kg	0.3	-	( )	5	0	0.3	0.3	-	-	-	-	-	-	-	-	-	-	-	-	< 0.3	-	-	-	-	-	-	< 0.3	-	< 0.3	-	-	-
2,4-Trichlorobenzene	mg/kg	0.3	230	(n)	5	0	0.3	0.3			0	-	-	-	-	-	-	-	-	-	< 0.3	-	-	-	-	-	-	< 0.3	-	< 0.3	-	-	-
aphthalene	mg/kg	0.1	200	(n)	5	2	0.05	0.5	0.19	0.20432817		-	-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-	< 0.05	-	< 0.05	-	-	-
4-Dichlorophenol	mg/kg	0.3	-		5	0	0.3	0.3	-	-	-	-	-	-	-	-	-	-	-	-	< 0.3 < 0.1	-	-	-	-	-	-	< 0.3	-	< 0.3 < 0.1	-	-	-
Chloroaniline	mg/kg	0.1	-		5	0			-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	1	-		-	-	-
exachlorobutadiene	mg/kg	0.1			5	0	0.1	0.1	-	-	-	-	-	-	-	-	-	-	-	-	< 0.1 < 0.1	-	-	-	-	-	-	< 0.1 < 0.1	-	< 0.1 < 0.1	-	-	-
Chloro-3-methylphenol	mg/kg	0.1			5	0	0.1	0.1	-	-	-		-					-	-	-	< 0.1	-	-			-	-	< 0.1	-	< 0.1		-	-
4,6-Trichlorophenol	mg/kg				5	0			-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-		-	_	-	-	-
4,5-Trichlorophenol	mg/kg	0.2			5	0	0.2	0.2	<del>-</del>	-	-	-	-	-	-			-	-	-	< 0.2	-	-	-	-	_	-	< 0.2	-	< 0.2		-	-
Methylnaphthalene	mg/kg	0.1		(a)	5	0	0.1	0.1	<del>-</del> -	-	0	-	-	-	-	-	-	-	-	-	< 0.1 < 0.1	-	-	-	-	-	-	< 0.1 < 0.1	-	< 0.1 < 0.1	-	-	-
Chloronaphthalene imethylphthalate	mg/kg	0.1	390	(g)	5	0	0.1	0.1	<del>-</del>	-	0	-	-	-				-	-	-	< 0.1	-	-	-	-	-	-	< 0.1	-	< 0.1	-	-	-
	mg/kg	0.1	1900	(a)	5	0	0.1	0.1	+ -	-	0	-	-	<u> </u>	-	-	-	-	-	-	< 0.1	-	-		-	-	-	< 0.1	-	< 0.1	-	-	-
6-Dinitrotoluene	mg/kg	0.1	84000	(g)	5	0	0.1	0.1	-	-	0	-	-	-	-	-	-	-	-	-	< 0.10	-	-	-	-	-	-	< 0.10	-	< 0.10	-	-	-
cenaphthylene	mg/kg	0.1	85000	(n)	5	1	0.1	0.2	0.18	-	0	-	-					-	-	-	< 0.10	-	-	-	-	-	-	< 0.10	-	< 0.10	-		
cenaphthene 4-Dinitrotoluene	mg/kg			(n)	5	0		0.5	0.18	-	0	-	-	-	-	-	-	-	-	-	< 0.10		-	-	-	-	-		-		-	-	-
	mg/kg	0.2	3700	(g)	5	1	0.2	0.2	0.22	-	-	-	-	-	-	-	-	-	-	-	< 0.2	-	-	-	-	-	-	< 0.2 < 0.2	-	< 0.2 < 0.2	-	-	-
benzofuran Chlorophenyl phenyl ether	mg/kg	0.2			5	0	0.2	0.3	0.22	-	-		-	-		-	-	-	-	-	< 0.2	-	-	-	-	-	-	< 0.2	-	< 0.2	-		-
ethyl phthalate	mg/kg	0.3	150000	(a)	5	0	0.3	0.3	-	-	0		-	-		-	-	-	-	-	< 0.3	-	-	-	-	-	-	< 0.3	-	< 0.3	-	-	-
Nitroaniline	mg/kg	0.2	-	(9)	5	0	0.2	0.2		-	-	-	-	-	-	-	-	-	-	-	< 0.2	-	-	-	-	-	-	< 0.2	-	< 0.2	-	-	-
	mg/kg	0.2	64000	(-)		1	0.2	0.2	0.2	-	0							-			< 0.10			1			-	< 0.10		< 0.10			
uorene	mg/kg	0.1	64000	(n)	5	0	0.1	0.5	0.2	-	- 0	-	-	-	-	-	-	-	-	-	< 0.10	-	-	-	-	-	-	< 0.10	-	< 0.10	-	-	-
zobenzene	mg/kg	+			5	0		0.3	+ -	<del>-</del>	-			-	-	-	-	-	-		< 0.3		-	-	-		-				-	-	-
omophenyl phenyl ether	mg/kg	0.2		(-)			0.2		-	-	- 0	-	-		_		-	-	-	-		-				-	-	< 0.2	-	< 0.2		-	_
exachlorobenzene	mg/kg	0.3	48 22000	(n)	5	0 4	0.3	0.3 2.7	1	1.04880885	<u> </u>	-	-	-	-	-	-	-	-	-	< 0.3	-	-	-	-	-	-	< 0.3 0.5	-	< 0.3 < 0.10	-	-	-
nenanthrene	mg/kg	1		(n)	5	3	0.1		<u> </u>	0.25996154	<del></del>	-	-	-	-	-	-	-	-	-	1.3 0.27	-	-	-	-	-	-	0.5	-	< 0.10	-	-	-
nthracene	mg/kg	0.1	530000	(n)	5	0	-	0.7	0.254	0.25990154	U	-	-			-	-	-	-	-		-				-	-	-	-		-	-	-
arbazole	mg/kg	0.3	45000	(-)	5		0.3	0.3	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	< 0.3	-	-	-	-	-	-	< 0.3	-	< 0.3	-	-	-
butyl phthalate	mg/kg	0.2	15000	(g)	J	0	0.2	0.2	-	-	0	-	-	-	-	-	-	-	-	-	< 0.2	-	-	-	-	-	-	< 0.2	-	< 0.2	-	-	-
nthraquinone	mg/kg	0.3	-		5	0	0.3	0.3	-	-	-	-	-	-	-	-	-	-	-	-	< 0.3	-	-	-	-	-	-	< 0.3	-	< 0.3	-	-	

Contaminant	Units	BH404 17-17.20	BH313 0.25-0.40		0.80-1.00	1.40-1.60		0.5	one Supplie	BH303-02 one Supplie	0.50-0.60	BH201 3.70-3.80	BH202 0.50-0.60	BH202 3.80-4.00		BH203 10.80-11.00		BH204 11.50-12.00		BH102 1.70-1.90	BH103 0.40-0.60	BH103 2.30-2.50	BH103 18.00-18.20	BH104 0.20-0.40	BH105 1.80-2.00	BH105 4.60-4.80	BH106 0.70-0.90	BH106 4.70-4.90	BH106 0.70-0.90	BH107 1.80-2.00	BH107 1.80-2.0
		18/12/2014 LG	21/05/2014 MG	29/05/2014 MG	4 29/05/2014 MG	29/05/2014 MG	4 30/05/2014 MG	4 04/06/2014 MG	03/06/2014 MG	02/06/2014 MG	06/12/2011 MG	07/12/2011 AL	06/12/2011 MG	07/12/2011 KPG	06/12/2011 MG	07/12/2011 LC	06/12/2011 MG	07/12/2011 LG	15/03/2011 MG	07/03/2011 MG	07/03/2011 MG	07/03/2011 MG	09/03/2011 LG	10/03/2011 MG	09/03/2011 MG	10/03/2011 KPG	22/03/2011 MG	22/03/2011 AL	22/03/2011 MG	18/03/2011 MG	18/03/20 MG
General Inorganics DH	pH Units	8.2	8.5	10.2	9	8.5	8.2	8.6	8.2	7.8	7.6	7.5	7.9	7.6	8.8	9	7.5	8.5	7.6	7.6	8.2	7.3	8.5	10	7.3	8	6.9	8.1	6.9	7.3	7.5
Total Cyanide	mg/kg	<1											< 1		5																
Free Cyanide Fotal Sulphate as SO4	mg/kg mg/kg	<1 -									3000	750	< 1 390	270	< 1 1100	540	2500	550	1200	7800	480	1100	860	3500	3000	270	210	1400	340	2700	550
Water Soluble Sulphate (Soil Equivalent) Water Soluble Sulphate as SO4 (2:1)	g/l mg/kg	1.1 1100									3000	480	370	130	1100	410	2300	440	0.8 800	6.4 6400	0.017 17	0.71	0.93	1.6 1600	3.1 3100	0.2	0.095 95	1.1	0.22 220	1.7 1700	0.43 430
Water Soluble Sulphate (2:1 Leachate Equivale	g/l	0.55									3	0.48	0.37	0.13	1.1	0.41	2.3	0.44	000	0400	17		-	1000	3100	-	90	-	220	1700	
Sulphide Ammonium as NH4	mg/kg mg/kg	140 8									35	110	13	51	88	210	13	170	20	7.7	3.1	3.2	51	8.8	14	7.9	1.3	1.7	1.4	43	44
Ammonium as NH4 (leachate equivalent)	mg/l	< 5.0																													
Organic Matter Asbestos in Soil Screen	%	-	Not-detected	d Not-detected	d Not-detected	Not-detected	d Not-detected	d Not-detected	Not-detected	Detected	Absent		Absent		Absent		Absent		- Absent	- Absent	- Absent	-	-	- Absent	- Absent	-	0.3 Absent	0.9	0.2 Absent	- Absent	- Absent
										Chrysotile -																					
Asbestos Type	- %									Loose fibres									-	-	-	-	-	-	-	-	-	-	-	-	-
Asbestos quantification otal Phenols	%																														
otal Phenols (monohydric)	mg/kg	< 1.0			1								< 2.0		< 2.0				-	-	-	-	-	-	-	-	-	-	-	-	-
peciated PAHs																															
laphthalene .cenaphthylene	mg/kg mg/kg	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 0.41	< 0.05 < 0.10	< 0.05 < 0.10	1 < 0.10	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	0.12 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20
cenaphthene	mg/kg	< 0.10	< 0.10	< 0.10	< 0.10	0.74	6.6	< 0.10	< 0.10	0.56	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
uorene nenanthrene	mg/kg mg/kg	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 0.96	0.68 3.1	4.5 12	< 0.10 < 0.10	< 0.10 0.47	< 0.10 4	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 2.8	< 0.20 < 0.20	0.25 3.1	< 0.20 < 0.20	< 0.20 0.86	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 0.26	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20
nthracene	mg/kg	< 0.10	< 0.10	< 0.10	0.23	1.9	14	< 0.10	< 0.10	1	< 0.10	< 0.10	< 0.10	< 0.10	0.47	< 0.10	0.98	< 0.10	0.4	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene Pyrene	mg/kg mg/kg	< 0.10 < 0.10	< 0.10 < 0.10	0.62 0.62	2.1 1.8	7.9 6.2	51 40	< 0.10 < 0.10	0.5 0.37	5.3 6.1	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	2.8	< 0.20 < 0.20	6.7 5.7	< 0.20 < 0.20	2.7	0.91	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	0.59 0.45	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20
Benzo(a)anthracene	mg/kg	< 0.10	< 0.10	0.3	0.95	2.4	18	< 0.10	< 0.10	2	< 0.20	< 0.20	< 0.20	< 0.20	0.75	< 0.20	2.7	< 0.20	1.5	0.64	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Chrysene Benzo(b)fluoranthene	mg/kg mg/kg	< 0.05 < 0.10	< 0.05 < 0.10	0.38	0.86	2.7	16 16	< 0.05 < 0.10	< 0.05 < 0.10	2.4	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	0.9	< 0.05 < 0.10	2.8 3.5	< 0.05 < 0.10	1.1 2.1	0.4	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	0.17 0.19	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10
Benzo(k)fluoranthene	mg/kg	< 0.10 < 0.10	< 0.10 < 0.10	0.3 0.24	0.77 0.97	1.5 2.1	11 17	< 0.10 < 0.10	< 0.10 < 0.10	1.3 2.6	< 0.20 < 0.10	< 0.20 < 0.10	< 0.20 < 0.10	< 0.20 < 0.10	0.46 0.6	< 0.20 < 0.10	1.6 2.4	< 0.20 < 0.10	1.2 1.9	0.32 0.56	< 0.20 < 0.10	< 0.20 < 0.10	< 0.20 < 0.10	< 0.20 < 0.10	< 0.20 < 0.10	< 0.20 < 0.10	< 0.20 < 0.10	< 0.20 0.18	< 0.20 < 0.10	< 0.20 < 0.10	< 0.20 < 0.10
Benzo(a)pyrene ndeno(1,2,3-cd)pyrene	mg/kg mg/kg	< 0.10	< 0.10	< 0.10	0.37	0.8	8.2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	1.7	< 0.10	1.3	< 0.20	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	< 0.10	< 0.10
bibenz(a,h)anthracene	mg/kg	< 0.10 < 0.05	< 0.10 < 0.05	< 0.10 < 0.05	< 0.10 0.59	< 0.10	1.9 9.8	< 0.10 < 0.05	< 0.10 < 0.05	< 0.10 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	0.24 1.8	< 0.20 < 0.05	< 0.20	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05
lenzo(ghi)perylene	mg/kg	< 0.05	< 0.05	< 0.05	0.59	1.1	9.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.0	< 0.05	1.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
otal PAH peciated Total EPA-16 PAHs	mg/kg	< 1.60	< 1.6	3	11	33	230	< 1.6	< 1.6	29	< 1.6	< 1.6	< 1.6	< 1.6	12	< 1.6	34	< 1.6	17	4.4	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	2	< 1.6	< 1.6	< 1.6
eavy Metals / Metalloids							1																								
luminium (aqua regia extractable)	mg/kg	12000																	14000	37000	6000	66000	31000	38000	45000	740	2000	37000	2900	20000	15000
Arsenic (aqua regia extractable) Barium (aqua regia extractable)	mg/kg mg/kg	7.6 28	2	4.4	7	8.5	11	10	18	18	9.7	11	9.2	6.4	14	7.9	18	5.6	17 320	9.4 96	7 77	13 290	5.7 45	400	9.8 46	3 15	12 17	6.5 260	7.9 15	20 37	11 220
Boron (water soluble)	mg/kg	1.7								45	1.7	8	< 0.2	< 0.2	5.9	2.5	4.1	0.3	13	4.8	< 0.2	11	1.6	3.1	3.6	< 0.2	< 0.2	6.5	< 0.2	3.2	2.6
Cadmium (aqua regia extractable) Chromium (aqua regia extractable)	mg/kg mg/kg	< 0.2 27	< 0.2 7.1	6 84	1.7	< 0.2	0.3 34	0.4	0.3	45 200	< 0.2 31	0.4 59	< 0.2 16	< 0.2 15	11 95	0.4 48	4.9	< 0.2 31	5.8 64	0.8 37	1.1 15	< 0.2 67	< 0.2 45	1.7 120	< 0.2 45	< 0.2 16	< 0.2 9.2	< 0.2 66	< 0.2 8.2	< 0.2 36	1.3
Copper (aqua regia extractable)	mg/kg	22 37000	11	2800	540	36	51	30	26	1000	24	47	24	6	320	35	310	23	250 40000	65 60000	46 34000	70	85	1400 220000	37 74000	20 8100	6.7 35000	58 43000	5.5 21000	23 67000	82
ron (aqua regia extractable) _ead (aqua regia extractable)	mg/kg mg/kg	8.1	5.1	1100	220	130	110	10	21	270	28	43	26	6.3	170	13	450	7.9	230	78	76	87000 41	71000 11	1400	16	3.6	5.9	12	4.9	15	31000 220
Mercury (aqua regia extractable)  Nickel (aqua regia extractable)	mg/kg mg/kg	< 0.3 23	< 0.3 6.6	< 0.3 120	< 0.3 37	< 0.3 28	< 0.3 27	< 0.3 22	< 0.3 27	3.9 200	< 0.3 25	< 0.3 40	< 0.3 15	< 0.3 12	0.4 56	< 0.3 31	1.1 50	< 0.3 19	3.4 51	< 0.3 32	< 0.3 15	< 0.3 45	< 0.3 22	< 0.3 48	< 0.3 37	< 0.3 12	< 0.3 16	< 0.3	< 0.3 15	< 0.3 46	< 0.3 25
Selenium (aqua regia extractable)	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	6.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.3	< 1.0	< 1.0	< 1.0	2.2
Zinc (aqua regia extractable)  Magnesium (aqua regia extractable)	mg/kg mg/kg	49	28	5300	780	95	170	56	60	1700	82	110	50	19	480	77	780	47	530	160	160	57	89	960	86	30	23	63	22	63	320
	gr.vg																														
Monoaromatics Benzene	mg/kg	< 0.001									< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	mg/kg	0.0061									< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene o & m-xylene	mg/kg mg/kg	< 0.001 0.0018									< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
-xylene	mg/kg	< 0.001									< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
otal xylene ITBE (Methyl Tertiary Butyl Ether)	mg/kg mg/kg	< 0.002 < 0.001									< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0
Petroleum Hydrocarbons					+																				-						
,																															
PH-CWG - Aliphatic >EC5 - EC6 PH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	< 0.1 < 0.1		1			-	+			< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
PH-CWG - Aliphatic >EC8 - EC10	mg/kg	< 0.1		1				1			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PH-CWG - Aliphatic >EC10 - EC12 PH-CWG - Aliphatic >EC12 - EC16	mg/kg mg/kg	< 1.0 < 2.0	1	1	+	1	+	+			< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 69	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	5.4 9.1	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0
PH-CWG - Aliphatic >EC16 - EC21	mg/kg	< 8.0									< 8.0	< 8.0	< 8.0	< 8.0	240	< 8.0	< 8.0	< 8.0	34	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	8.6	< 8.0	< 8.0	< 8.0
PH-CWG - Aliphatic >EC21 - EC35 PH-CWG - Aliphatic (EC5 - EC35)	mg/kg mg/kg	< 8.0 < 10		1			+				< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	980 1300	< 8.0 < 10	120 120	< 8.0 < 10	210 240	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	46 69	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10
			1	1		1		1																							
PH-CWG - Aromatic >EC5 - EC7 PH-CWG - Aromatic >EC7 - EC8	mg/kg mg/kg	< 0.1 < 0.1		1	+		+	+			< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
PH-CWG - Aromatic >EC8 - EC10	mg/kg	< 0.1									< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PH-CWG - Aromatic >EC10 - EC12 PH-CWG - Aromatic >EC12 - EC16	mg/kg mg/kg	< 1.0 < 2.0									< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 4.7	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0
PH-CWG - Aromatic >EC16 - EC21	mg/kg	< 10									< 10	< 10	< 10	< 10	110	< 10	18	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
PH-CWG - Aromatic >EC21 - EC35 PH-CWG - Aromatic (EC5 - EC35)	mg/kg mg/kg	< 10 < 10			<u> </u>						< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	210 320	< 10 < 10	33 51	< 10 < 10	75 75	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10
	·																														
VOCs niline	mg/kg	-																	-		-	-	-	-	-	-	-		-	-	-
henol	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorophenol s(2-chloroethyl)ether	mg/kg mg/kg	-			$\perp$		$\perp$												-	-	-	-	-	-	-	-	-	-	-	-	-
3-Dichlorobenzene	mg/kg		1	1	1	1	1				1		I	1 —					_	_		-	-	_	I -		-		_	1	-

Page 3 of 8

Contaminant	Units	BH404		BH302-01			BH301			BH303-02		BH201	BH202		BH203	BH203	BH204	BH204	BH101	BH102	BH103	BH103	BH103	BH104	BH105	BH105	BH106	BH106	BH106	BH107	BH107
				0.40-0.50						cone Suppli									2.20-2.40	1.70-1.90	0.40-0.60		18.00-18.20		1.80-2.00	4.60-4.80	0.70-0.90	4.70-4.90	0.70-0.90	1.80-2.00	1.80-2.00
																			15/03/2011	07/03/2011	07/03/2011		09/03/2011		09/03/2011	10/03/2011	22/03/2011	22/03/2011		18/03/2011	18/03/2011
		LG	MG	MG	MG	MG	MG	MG	MG	MG	MG	AL	MG	KPG	MG	LC	MG	LG	MG	MG	MG	MG	LG	MG	MG	KPG	MG	AL	MG	MG	MG
1,2-Dichlorobenzene	mg/kg	-				+	-		+	+					-				-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	mg/kg	-		_		+			+	+				-					-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Methylphenol	mg/kg	-	_			-			+	1									-	-	-	-	-	-	-	-	-	-	-	-	-
Hexachloroethane	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrobenzene	mg/kg	-	_			1													-	-	-	-	-	-	-	-	-	-	-	-	-
4-Methylphenol	mg/kg	-		_		1	1	_		1	-								-	-	-	-	-	-	-	-	-	-	-	-	-
Isophorone	mg/kg	-				1					-								-	-	-	-	-	-	-	-	-	-	-	-	-
2-Nitrophenol	mg/kg	-	_				1		1				ļ	1					-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dichlorophenol	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloroaniline	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
Hexachlorobutadiene	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Methylnaphthalene	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chloronaphthalene	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
Dimethylphthalate	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-
2,6-Dinitrotoluene	mg/kg	-																	-	-	-	_	-	-	_	-	_	-	-	_	-
Acenaphthylene	mg/kg	-																	_	_	-	-	-	-	_	-	_	-	-	_	-
Acenaphthene	mg/kg																		_	_	_	_	_	_	_	_	_	-	_	_	_
2.4-Dinitrotoluene	mg/kg																		-	_	_	_	_	_	_	_	_	_	_	_	_
Dibenzofuran	mg/kg																		_	_	_	_	_	_	_	_	_	_	_	_	-
4-Chlorophenyl phenyl ether	mg/kg								1	1									-	_	-	_	-	-	_	-	_	-	-	-	-
Diethyl phthalate	mg/kg								+	1										-		-	_	_	_	_	_	-	-	-	_
4-Nitroaniline	mg/kg	-		-		+	1		+	1	1								-	-		-	-		-	-		_	-	-	
Fluorene	mg/kg					1				1									-	-	-	+ -	-	-	-	-	-	-	-	-	
				+	+	+	1		+	+	+			+	<del>                                     </del>						-	<del>-</del>	-	-		<del>                                     </del>	-	-	-		-
Azobenzene	mg/kg	-	-		+				+										-	-	-		-	-	-	-		-		-	_
Bromophenyl phenyl ether	mg/kg	-	_		+	-	1		+	1									-	-	-	-	-	-	-	-	-	-	-	-	-
Hexachlorobenzene	mg/kg	-	_	-	+	+	1	_	+	+	-			1	<del>                                     </del>				-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	mg/kg	-	_	-	+	+	1	_	+	+	-		-		-				-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	mg/kg	-		-		1	1		+	1	1								-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole	mg/kg	-			-	1				1	-								-	-	-	-	-	-	-	-	-	-	-	-	-
Dibutyl phthalate	mg/kg	-							1	1									-	-	-	-	-	-	-	-	-	-	-	-	-
Anthraquinone	mg/kg	-																	-	-	-	-	-	-	-	-	-	-	-	-	-

Contaminant	Units	BH108 0.70-0.90	BH109 0.10-0.30	BH109 5.80-6.00	BH110 0.50-0.70	BH110 3.00-3.20	BH113 0.20-0.40	BH113 5.00-5.20	BH114 0.60-0.80	BH115 0.70-0.90	BH116 0.60-0.80	BH116 0.7	BH116 2.50-2.70	BH117 1.00-1.20	BH117 2.20-2.40	BH119 0.50-0.70	BH120 0.40-0.60	BH120 4.30-4.50	BH121 0.10-0.30	BH121 3.60-3.80	BH122 0.10-0.30	BH123 0.00-0.30	BH123 11.50-12.00	BH124 0.40-0.60	BH124 10.00-10.20	BH125 10.40-10.60	WS101 1.80-1.90	WS105 0.30-0.50
		14/03/2011 MG	15/03/2011 MG	16/03/2011 LC	22/03/2011 MG	22/03/2011 KPG	08/03/2011 MG	09/03/2011 KPG	10/03/2011 MG	08/03/2011 MG	07/03/2011 MG	07/03/2011 MG	07/03/2011 AL	10/03/2011 MG	10/03/2011 AL	22/03/2011 MG	22/03/2011 MG	23/03/2011 KPG	15/03/2011 MG	15/03/2011 AL	23/03/2011 MG	16/03/2011 MG	21/03/2011 LG	14/03/2011 MG	16/03/2011 LC	16/03/2011 LC	15/03/2011 MG	18/03/2011 MG
General Inorganics	pH Units	6.4	7.6	7.5	8	8.6	8.3	8	7.8	7.6	7.6	0	7.4	8	8.1	9.9	8	7.8	8.2	7.8	8.3	8	7	7.4	7.8	7.4	7.8	10.4
Total Cyanide	mg/kg	0.4	7.0	7.5	0	0.0	0.5	Ů	7.0	7.0	7.0	-	7.4	0	0.1	5.5	0	7.0	0.2	7.0	0.5		,	7.4	7.0	7.4	7.0	10.4
Free Cyanide Total Sulphate as SO4	mg/kg mg/kg	2800	3000	670	1600	550	820	< 100	2100	2900	4400	-	820	910	2900	7400	890	340	4900	1700	920	3100	800	530	1700	1100	1300	820
Water Soluble Sulphate (Soil Equivalent) Water Soluble Sulphate as SO4 (2:1)	g/l mg/kg	2.8 2800	0.067 67	0.48	0.77 770	0.46	0.22 220	0.023	0.87 870	1.5 1500	0.31 310	-	0.8	0.59 590	1.8	3.8 3800	0.25 250	0.2	3 3000	0.76	0.049	1.7 1700	0.5	0.041 41	1.7	0.88	1.3 1300	0.15 150
Water Soluble Sulphate (2:1 Leachate Equivale Sulphide	e g/l mg/kg	< 1.0	< 1.0	100	39	3.4	7.1	29	11	5.7	18	-	4.6	23	28	140	2.4	11	1.6	8.5	< 1.0	18	180	< 1.0	160	220	68	< 1.0
Ammonium as NH4	mg/kg	11.0	11.0	100	33	0.4	7.1	25		0.7	10		4.0	20	20	140	2.7		1.0	0.0	11.0	10	100	11.0	100	220	00	11.0
Ammonium as NH4 (leachate equivalent) Organic Matter	mg/l %	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.4	-	0.3	16	-	-	0.6	-	-	-	-	-
Asbestos in Soil Screen	-	Absent	Absent	-	Absent	-	Absent	-	Absent	Absent	Present	-	-	Absent	-	Absent	Absent	-	Absent	-	-	Absent	-	Absent	-	-	Absent	Absent
Asbestos Type	-	-	-	-	-	-	-	-	-	-	Chrysotile and Amosite	Chrysotile	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Asbestos quantification Total Phenols	%																											
Total Phenols (monohydric)	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	< 2.0	-	< 2.0	< 2.0	-	< 2.0	-	-	< 2.0	-	< 2.0	-	-	-	-
Speciated PAHs																												
Naphthalene Acenaphthylene	mg/kg mg/kg	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	14 5.7	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	-	< 0.05 < 0.20	0.15 < 0.20	0.54	< 0.05 < 0.20	0.23 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20	< 0.05 < 0.20				
Acenaphthene Fluorene	mg/kg mg/kg	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	3.6 7.5	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	-	< 0.10 < 0.20	0.52 0.31	1.1 0.88	< 0.10 < 0.20	0.22	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20				
Phenanthrene Anthracene	mg/kg	< 0.20	< 0.20	< 0.20	0.64	< 0.20 < 0.10	58	< 0.20	0.52	< 0.20	1.5	-	< 0.20	1.4	2.7	1.1	0.65	< 0.20	0.34	< 0.20	2.5	< 0.20	< 0.20 < 0.10	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Fluoranthene	mg/kg mg/kg	< 0.10 0.32	< 0.10	< 0.10 < 0.20	0.3	< 0.20	7.8 59	< 0.10 < 0.20	0.11	< 0.10	0.62 4.8	-	< 0.10	0.69 3.7	0.69 2.9	0.29 1.8	0.18 1.5	< 0.10 < 0.20	< 0.10 0.62	< 0.10 < 0.20	4.2	< 0.10 < 0.20	< 0.20	< 0.10 0.66	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.29	0.33	< 0.20 < 0.20	3.4 1.9	< 0.20 < 0.20	47 22	< 0.20 < 0.20	0.62	3.3 1.4	1.9	-	0.41	3 1.6	1.3	1.6 0.81	1.3 0.78	< 0.20 < 0.20	0.48 0.26	< 0.20 < 0.20	3.3	< 0.20 < 0.20	< 0.20 < 0.20	0.59 0.38	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20
Chrysene Benzo(b)fluoranthene	mg/kg mg/kg	0.17 0.24	0.18 0.18	< 0.05 < 0.10	1.9	< 0.05 < 0.10	21 30	< 0.05 < 0.10	0.35 0.33	1.3 1.9	2.1	-	0.38 0.61	1.5 1.5	1.8	0.76	0.73 0.92	< 0.05 < 0.10	0.27	< 0.05 < 0.10	1.8	< 0.05 < 0.10	< 0.05 < 0.10	0.33	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10
Benzo(k)fluoranthene	mg/kg	< 0.20	< 0.20	< 0.20	1.1	< 0.20	10	< 0.20	0.23	0.87	1.4	-	0.26	0.96	< 0.20	0.5	0.43	< 0.20	< 0.20	< 0.20	1.1	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	< 0.10 < 0.20	0.21 < 0.20	< 0.10 < 0.20	1.5 0.92	< 0.10 < 0.20	20 13	< 0.10 < 0.20	0.32 < 0.20	1.4 0.8	2.4 1.3	-	0.48 < 0.20	1.4 0.85	< 0.10 < 0.20	0.67 < 0.20	0.79 < 0.20	< 0.10 < 0.20	0.24 < 0.20	< 0.10 < 0.20	1.7 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20	< 0.10 < 0.20
Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20	< 0.20 < 0.05	1.2	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 0.94	< 0.20 1.8	-	< 0.20 < 0.05	< 0.20 0.84	< 0.20 < 0.05	< 0.20 0.62	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05	< 0.20 < 0.05					
Total PAH																												
Speciated Total EPA-16 PAHs	mg/kg	< 1.6	< 1.6	< 1.6	19	< 1.6	340	< 1.6	3.6	16	24	-	4.6	18	15	8.6	7.4	< 1.6	2.6	< 1.6	21	< 1.6	< 1.6	2	< 1.6	< 1.6	< 1.6	< 1.6
Heavy Metals / Metalloids																												
Aluminium (aqua regia extractable)  Arsenic (aqua regia extractable)	mg/kg mg/kg	24000 15	16000 6.6	33000 15	19000 20	6500 9.3	23000 12	1600 5.1	27000 6.9	20000	28000 42	-	47000 16	37000 14	26000 36	17000 12	6500 12	1700 7.3	10000 16	8600 4.9	15000 14	39000 < 1.0	11000 11	13000 8.8	14000 4.4	28000 8	43000 8.4	4200 9.1
Barium (aqua regia extractable) Boron (water soluble)	mg/kg	130 3.4	120 0.8	56 1.8	280 8.7	50 1.6	330 1.1	14 < 0.2	54 8.2	340 2.9	330 6	-	210 15	150 3.7	590 46	880 2.7	110 0.7	79 0.2	310 0.6	70 13	260 2.1	520 6.6	41 1.3	360 0.9	31 0.6	47 1.3	66 3.1	39 0.4
Cadmium (aqua regia extractable)	mg/kg mg/kg	2.1	0.3	< 0.2	6.5	< 0.2	3.3	< 0.2	0.4	2.8	6.8	-	0.5	0.8	64	0.8	0.8	< 0.2	4.5	< 0.2	1.9	2.8	< 0.2	4.9	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (aqua regia extractable)  Copper (aqua regia extractable)	mg/kg mg/kg	40 85	25 31	49 35	50 450	18 30	35 280	9.9	31 54	32 110	92 510	-	60 36	42 95	220 2300	23 130	20 69	9.3	48 300	14 15	40 150	110 1200	20 19	48 230	25 19	30 47	63 38	14 22
Iron (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg	63000 110	23000 73	56000 13	36000 380	14000 25	59000 520	8600 4.9	47000 33	43000 330	170000 690	-	22000 40	69000 190	40000 390	24000 490	18000 130	11000	31000 290	15000 3.7	29000 230	84000 660	85000 13	35000 160	46000 7.6	65000 8.9	56000 13	25000 21
Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg	< 0.3 67	< 0.3 21	< 0.3 49	1 71	< 0.3	< 0.3 44	< 0.3 7.8	< 0.3	< 0.3 28	< 0.3 81	-	< 0.3 40	< 0.3 43	4.1 280	< 0.3 20	0.6	< 0.3 12	1.3 52	< 0.3 19	0.9	< 0.3 100	< 0.3 21	< 0.3 52	< 0.3 19	< 0.3 25	< 0.3 45	< 0.3 20
Selenium (aqua regia extractable)	mg/kg	< 1.0	2.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	8.4	< 1.0	< 1.0	< 1.0	2	5.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)  Magnesium (aqua regia extractable)	mg/kg mg/kg	560	85	73	1100	63	1100	15	150	510	1400	-	180	250	3500	1900	260	31	700	45	450	1600	48	560	41	50	80	65
Monoaromatics																												
Benzene Toluene	mg/kg mg/kg	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0										
Ethylbenzene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene o-xylene	mg/kg mg/kg	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0										
Total xylene MTBE (Methyl Tertiary Butyl Ether)	mg/kg mg/kg	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	-	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0										
Petroleum Hydrocarbons																												
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	-	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1										
TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg mg/kg	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1	< 0.1 < 1.0	-	< 0.1 < 1.0	< 0.1 4.7	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0											
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	< 2.0	< 2.0	< 2.0	17	< 2.0	2	< 2.0	< 2.0	< 2.0	< 2.0	-	< 2.0	10	90	170	< 2.0	< 2.0	< 2.0	4.6	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg	12 57	< 8.0 < 8.0	< 8.0 < 8.0	95 400	< 8.0 < 8.0	10	< 8.0 < 8.0	< 8.0 < 8.0	40	< 8.0	-	< 8.0 66	20 62	1100 5800	300 87	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 19	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	69	< 10	< 10	520	< 10	27	< 10	< 10	49	20	-	66	92	7000	560	< 10	< 10	< 10	28	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8	mg/kg mg/kg	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	-	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1										
TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC12 - EC16	mg/kg mg/kg	2	< 1.0 < 2.0	< 1.0 < 2.0	< 2.0	< 1.0 < 2.0	10 49	< 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	-	< 2.0	< 1.0 < 2.0	< 1.0 5	< 1.0 19	< 1.0 < 2.0	< 2.0	< 1.0 < 2.0	< 1.0 < 2.0	4.6 4.5	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 2.0	< 1.0 < 2.0	< 1.0 < 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC21 - EC35	mg/kg mg/kg	< 10 140	< 10 < 10	< 10 < 10	17 87	< 10 < 10	260 240	< 10 < 10	< 10 < 10	14 57	< 10 20	-	< 10 < 10	< 10 16	220 1200	94 39	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	11 35	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	140	< 10	< 10	100	< 10	560	< 10	< 10	71	20	-	< 10	16	1400	150	< 10	< 10	< 10	< 10	56	< 10	< 10	< 10	< 10	< 10	< 10	< 10
SVOCs	F11																											
Aniline Phenol	mg/kg mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chlorophenol Bis(2-chloroethyl)ether	mg/kg mg/kg		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

V1.6

Page 5 of 8

				1					1			1																
Contaminant	Units	BH108	BH109	BH109	BH110	BH110	BH113	BH113	BH114	BH115	BH116	BH116	BH116	BH117	BH117	BH119	BH120	BH120	BH121	BH121	BH122	BH123	BH123	BH124	BH124	BH125	WS101	WS105
		0.70-0.90	0.10-0.30	5.80-6.00	0.50-0.70	3.00-3.20	0.20-0.40	5.00-5.20	0.60-0.80	0.70-0.90	0.60-0.80	0.7	2.50-2.70	1.00-1.20	2.20-2.40	0.50-0.70	0.40-0.60	4.30-4.50	0.10-0.30	3.60-3.80	0.10-0.30	0.00-0.30	11.50-12.00	0.40-0.60		10.40-10.60	1.80-1.90	0.30-0.50
		14/03/2011	15/03/2011	16/03/2011	22/03/2011			09/03/2011	10/03/2011	08/03/2011	07/03/2011	07/03/2011	07/03/2011	10/03/2011	10/03/2011		22/03/2011	23/03/2011	15/03/2011	15/03/2011		16/03/2011		14/03/2011	16/03/2011	16/03/2011	15/03/2011	18/03/2011
		MG	MG	LC	MG	KPG	MG	KPG	MG	MG	MG	MG	AL	MG	AL	MG	MG	KPG	MG	AL	MG	MG	LG	MG	LC	LC	MG	MG
1,2-Dichlorobenzene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Methylphenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hexachloroethane	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrobenzene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Methylphenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isophorone	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Nitrophenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dichlorophenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloroaniline	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hexachlorobutadiene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Methylnaphthalene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chloronaphthalene	mg/kg	-	_	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	_	_	-	_	-	-
Dimethylphthalate	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,6-Dinitrotoluene	mg/kg	-	_	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
Acenaphthylene	mg/kg	-	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	-	_	_	-	_
Acenaphthene	mg/kg		_	-	_	_	_	-	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2.4-Dinitrotoluene	mg/kg		_	_	_	_	_	_	_	_	-	_	_		_	_	_	_	_	_	_	_			_	_	_	_
Dibenzofuran	mg/kg			_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_		_	_	_	_
4-Chlorophenyl phenyl ether	mg/kg			-			_		_		_					-			_		_					-		-
Diethyl phthalate	mg/kg		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
4-Nitroaniline	mg/kg						_		_		_				_			_	_	_		_				_	_	_
Fluorene			-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-		-	-	_	-
	mg/kg	-		-	-	-	+ -	-	-		-	-	-		_	-		-	<u> </u>	-	-	-	-		-	-	_	-
Azobenzene  Promonhand phond other	mg/kg									-							-			<del>                                     </del>		-					-	
Bromophenyl phenyl ether	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-
Hexachlorobenzene Phananthrona	mg/kg	-	-	-	-	-	+ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<del>-</del>	-	-	-	-	-	-
Anthracene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<del>  -</del>	-	-	-	-	-	-	-	-
Dibutyl phthalate	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthraquinone	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Contaminant	Units	WS107 0.80-1.00 14/03/2011	WS109 0.20-0.40 18/03/2011	WS109 0.80-1.00 18/03/2011	WS110 0.30-0.50 17/03/2011	WS111 0.20-0.40 17/03/2011	WS112 1.00-1.10 16/03/2011	WS113 0.20-0.40 17/03/2011	WS115 1.40-1.50 14/03/2011	WS116 0.40-0.60 21/03/2011	WS117 0.30-0.50 21/03/2011	WS119 1.40-1.50 15/03/2011	WS121 1.50-1.60 17/03/2011	WS123 1.30-1.40 16/03/2011	WS124 1.35 16/03/2011	WS125 0.30-0.50 17/03/2011	WS127 0.10-0.30 18/03/2011	WS127 2.00-2.10 21/03/2011	WS128 0.00-0.20 16/03/2011	WS128 1.40-1.50 16/03/2011	WS130 0.20-0.40 18/03/2011	WS131 0.20-0.40 18/03/2011	WS131 1.60-1.70 21/03/2011	WS133 0.30-0.40 22/03/2011	WS134 0.50-0.60 15/03/2011	WS135 0.10-0.30 21/03/2011
		MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG												
General Inorganics pH	pH Units	7.3	7	7.7	7.5	7	7.4	8	7	7.7	7.9	7.4	8.2	7.7	-	8.2	8	7.8	7.3	7.2	6.8	7.6	7.7	6.5	7.8	7.6
Total Cyanide	mg/kg																									
Free Cyanide	mg/kg	. 100	2000	4000	4400	2000	050	2000	0000	7100	44000	540	1100	4000		500	000	4400	200	44000	4000	0400	050	1000	. 400	700
Total Sulphate as SO4 Water Soluble Sulphate (Soil Equivalent)	mg/kg g/l	< 100 0.089	2300 0.49	4300 0.45	1400	2000 0.38	350 0.15	2200 0.43	2300 0.42	7400 3.2	11000 3.4	510 0.29	1400	1000 0.34	-	520 0.43	620 < 0.0025	1400 0.22	880 < 0.0025	11000 4.6	1300 < 0.0025	2400 1.6	650 < 0.0025	1000	< 100 0.098	780 < 0.0025
Water Soluble Sulphate as SO4 (2:1)	mg/kg	89	490	450	1400	380	150	430	420	3200	3400	290	1300	340	-	430	< 2.5	220	< 2.5	4600	< 2.5	1600	< 2.5	< 2.5	97	< 2.5
Water Soluble Sulphate (2:1 Leachate Equivale	g/l																							<del></del>		
Sulphide Ammonium as NH4	mg/kg mg/kg	< 1.0	170	37	2	3.2	7.9	2.4	64	18	45	9.9	39	31	-	2.4	< 1.0	62	1.5	< 1.0	< 1.0	< 1.0	21	5.4	1.3	2.7
Ammonium as NH4 (leachate equivalent)	mg/l																							<del>-                                    </del>		
Organic Matter	%	-	-	-	-	-	-	-	-	0.7	1.1	-	-	-	-	-	0.7	-	-	-	-	-	-	-	-	-
Asbestos in Soil Screen	-	Absent	Present	Absent	Absent	Absent																				
																								i		
Asbestos Type Asbestos quantification	- %	-	-	-	-	-	-	-	-	-	-	-	-	-	Chrysotile	-	-	-	-	-	-	-	-	-	-	-
Fotal Phenois	70																									
Total Phenols (monohydric)	mg/kg	-	< 2.0	37	-	-	< 2.0	-	-	-	-	< 2.0	< 2.0	< 2.0	-	< 2.0	-	< 2.0	-	< 2.0	-	-	< 2.0	< 2.0	< 2.0	< 2.0
																								<u> </u>		
Speciated PAHs Naphthalene	mg/kg	< 0.05	< 0.05	2	0.34	0.42	< 0.05	0.17	0.06	< 0.05	0.25	< 0.05	< 0.05	< 0.05	_	< 0.05	0.13	0.5	< 0.05	< 0.05	0.41	0.26	0.27	0.27	< 0.05	0.22
Acenaphthylene	mg/kg	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	-	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
cenaphthene	mg/kg	< 0.10	0.31	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.14	< 0.10	< 0.10	< 0.10	-	< 0.10	< 0.10	0.49	< 0.10	< 0.10	0.27	0.1	< 0.10	< 0.10	< 0.10	< 0.10
luorene Phenanthrene	mg/kg	< 0.20 0.22	0.38 2.7	< 0.20	< 0.20 0.72	< 0.20 0.74	< 0.20 < 0.20	< 0.20 0.27	< 0.20 0.79	< 0.20 0.21	< 0.20 0.35	< 0.20 < 0.20	< 0.20	< 0.20 < 0.20	-	< 0.20 < 0.20	< 0.20	0.54 2.7	< 0.20 1.1	< 0.20 1.6	0.29 2.7	< 0.20 0.86	< 0.20 0.39	< 0.20 0.62	< 0.20 < 0.20	< 0.20 0.34
rhenanthrene Inthracene	mg/kg mg/kg	< 0.10	0.72	< 0.20 < 0.10	0.72	0.74	< 0.20	< 0.10	0.79	< 0.10	< 0.10	< 0.20	< 0.20 < 0.10	< 0.20 < 0.10	-	< 0.20	< 0.20 < 0.10	0.73	1.1 0.15	1.6 0.58	0.92	0.86	< 0.10	0.62	< 0.20	< 0.10
luoranthene	mg/kg	0.25	7.2	4.9	1.6	2.1	0.52	0.61	1.7	0.65	0.46	< 0.20	< 0.20	1.1	-	< 0.20	0.42	4.6	3.5	5.5	5	3	1.1	1.7	< 0.20	1.1
yrene	mg/kg	0.2	6.3	8.6	1.3	1.7	0.52	0.54	1.7	0.61	0.38	< 0.20	< 0.20	0.98	-	< 0.20	0.35	3.8	3	4.5	4.2	2.5	0.95	1.5	< 0.20	0.92
lenzo(a)anthracene Chrysene	mg/kg mg/kg	< 0.20 0.1	2.3	< 0.20 < 0.05	0.89	1.1 0.91	< 0.20 < 0.05	0.4 0.35	0.61	0.36 0.32	< 0.20 0.17	< 0.20 < 0.05	< 0.20 < 0.05	0.42 0.46	-	< 0.20 < 0.05	< 0.20 0.19	1.8 2.4	1.8 1.3	1.5	2.7	1.4 1.5	0.48 0.62	0.97	< 0.20 < 0.05	0.53
lenzo(b)fluoranthene	mg/kg	0.1	2.9	< 0.05	1.2	1.9	< 0.10	< 0.10	< 0.10	0.32	0.17	< 0.10	< 0.05	0.46	-	< 0.10	0.19	3.5	2.1	1.7	4.2	2.4	0.02	1.8	< 0.05	1.3
ienzo(k)fluoranthene	mg/kg	< 0.20	1.6	< 0.20	0.53	0.83	< 0.20	< 0.20	< 0.20	0.27	< 0.20	< 0.20	< 0.20	0.38	-	< 0.20	< 0.20	1.2	1.3	1.2	1.5	1.3	0.54	0.65	< 0.20	0.42
enzo(a)pyrene	mg/kg	< 0.10	1.9	< 0.10	0.81	1.2	< 0.10	< 0.10	< 0.10	0.42	0.24	< 0.10	< 0.10	0.52	-	< 0.10	0.2	2.2	1.9	1.6	2.7	1.8	0.69	1.2	< 0.10	0.76
ideno(1,2,3-cd)pyrene ibenz(a,h)anthracene	mg/kg	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	1.2 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	-	< 0.20 < 0.20	< 0.20 < 0.20	1.2 < 0.20	1.3	0.77 < 0.20	< 0.20	1.2 < 0.20	0.47 < 0.20	0.86 < 0.20	< 0.20 < 0.20	0.44 < 0.20
enzo(ghi)perylene	mg/kg mg/kg	< 0.20	< 0.20	< 0.20	< 0.20	1.1	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	-	< 0.20	< 0.20	1.2	1.3	0.99	1.8	1.2	0.41	0.67	< 0.20	0.53
,																										
otal PAH Deciated Total EPA-16 PAHs	mg/kg	< 1.6	29	16	8.2	13	< 1.6	2.4	6	3.4	2.4	< 1.6	< 1.6	4.6	-	< 1.6	< 1.6	27	19	22	31	18	6.8	11	< 1.6	7.2
																								<b></b>		
eavy Metals / Metalloids luminium (aqua regia extractable)	mg/kg	4000	7600	6300	20000	11000	39000	6600	52000	11000	18000	61000	27000	28000	_	12000	6900	25000	26000	18000	13000	17000	7700	14000	3900	12000
rsenic (aqua regia extractable)	mg/kg	23	5.4	5.3	12	26	10	13	16	15	17	15	7.5	20	-	31	11	21	15	13	25	30	12	13	6.6	14
arium (aqua regia extractable)	mg/kg	29	85	490	84	360	110	200	340	280	120	190	40	210	-	46	110	340	320	190	560	480	160	170	28	180
oron (water soluble) admium (aqua regia extractable)	mg/kg mg/kg	< 0.2 < 0.2	1.7	65 50	3 5.9	2.3 7.1	3.5 < 0.2	1.6	21 12	2.6 0.3	1.2	8.2 0.5	2.7 0.2	5.8 9	-	0.2 < 0.2	< 0.2 0.7	21 12	3.7	3.5	2.1 6.1	6.4	6.2 1.4	0.7 1.7	< 0.2 < 0.2	1.8
Chromium (aqua regia extractable)	mg/kg	18	24	190	42	55	64	15	110	19	23	77	37	67	-	34	18	85	45	30	50	70	21	28	8.1	26
Copper (aqua regia extractable)	mg/kg	3.9	14	1800	240	430	38	88	370	30	50	29	27	440	-	15	64	490	260	110	500	500	94	140	8.6	88
on (aqua regia extractable) ead (aqua regia extractable)	mg/kg mg/kg	53000 10	13000 49	10000 280	18000 330	18000 280	57000 82	11000 370	71000 160	22000 720	32000 340	69000 22	46000 28	55000 2700	-	80000 23	17000 180	20000 240	32000 240	31000 300	18000 610	55000 590	25000 230	36000 280	18000 7.3	35000 280
Mercury (aqua regia extractable)	mg/kg	< 0.3	< 0.3	3.9	< 0.3	0.4	< 0.3	0.3	0.9	< 0.3	< 0.3	< 0.3	< 0.3	0.9	-	< 0.3	< 0.3	1.1	0.9	0.4	2.5	2.2	0.9	< 0.3	< 0.3	< 0.3
lickel (aqua regia extractable)	mg/kg	23	17	160	43	79	52	22	85	15	21	48	27	92	-	35	19	84	44	26	57	77	25	32	9.6	29
elenium (aqua regia extractable)	mg/kg	< 1.0	1.8	12	< 1.0	1.3	< 1.0	2.1	1.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	2.7	< 1.0	< 1.0	2.5	< 1.0	< 1.0	1.3	< 1.0	< 1.0
inc (aqua regia extractable)  flagnesium (aqua regia extractable)	mg/kg mg/kg	29	45	2000	10000	1300	120	320	910	260	150	230	67	500	-	87	180	790	650	330	940	1000	290	440	26	320
nagriculari (aqua regia extractable)	mg/kg																									
Monoaromatics																										
Senzene Foluene	mg/kg	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0																				
oluene thylbenzene	mg/kg mg/kg	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0																				
& m-xylene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
-xylene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
otal xylene TBE (Methyl Tertiary Butyl Ether)	mg/kg mg/kg	< 2.0 < 1.0	-	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0																				
	ingrity	- 1.0	- 1.0	- 1.0	- 1.0	- 1.0	- 1.0	- 1.0	- 1.0	- 1.0	- 1.0	. 1.0	7 1.0	. 1.0		- 1.0	- 1.0	- 1.0	- 1.0	7 1.0	. 1.0	- 1.0	- 1.0	. 1.0	7 1.0	- 1.0
etroleum Hydrocarbons																										
PH-CWG - Aliphatic >EC5 - EC6	mc/l/c	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PH-CWG - Aliphatic >EC5 - EC6 PH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	-	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1
PH-CWG - Aliphatic >EC8 - EC10	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PH-CWG - Aliphatic >EC10 - EC12	mg/kg	< 1.0	< 1.0	21	< 1.0	4.9	< 1.0	< 1.0	4	< 1.0	< 1.0	< 1.0	< 1.0	7.2	-	< 1.0	< 1.0	9	< 1.0	< 1.0	6.2	2.9	4.5	6.9	< 1.0	4.5
PH-CWG - Aliphatic >EC12 - EC16	mg/kg	< 2.0	< 2.0	290	< 2.0	8.6	< 2.0	< 2.0	53	< 2.0	< 2.0	< 2.0	< 2.0	33	-	< 2.0	< 2.0	76	< 2.0	< 2.0	5.3	3.8	5.9	11	< 2.0	6.5
PH-CWG - Aliphatic >EC16 - EC21 PH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg	< 8.0 < 8.0	12 140	3500 9200	< 8.0 < 8.0	41 160	< 8.0 < 8.0	< 8.0 < 8.0	230 770	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	110 320	-	< 8.0 < 8.0	< 8.0 < 8.0	420 910	< 8.0 < 8.0	< 8.0 < 8.0	35 160	25 110	< 8.0 39	48 200	< 8.0 < 8.0	49 130
PH-CWG - Aliphatic (EC5 - EC35)	mg/kg	< 10	160	13000	< 10	220	< 10	< 10	1100	< 10	< 10	< 10	< 10	470	-	< 10	< 10	1400	< 10	< 10	200	140	50	270	< 10	190
PH-CWG - Aromatic >EC5 - EC7	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	- 7	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PH-CWG - Aromatic >EC7 - EC8 PH-CWG - Aromatic >EC8 - EC10	mg/kg mg/kg	< 0.1 < 0.1	-	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1																				
	mg/kg	< 1.0	5.6	2.5	1.5	17	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	13	10	8.6	3.7	9.4	2.4	6.4	< 1.0	5.9
PH-CWG - Aromatic >EC10 - EC12	mg/kg	< 2.0	12	< 2.0	< 2.0	13	< 2.0	< 2.0	6	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	-	< 2.0	< 2.0	5.8	11	7.7	6.1	8.1	< 2.0	2	< 2.0	3.2
PH-CWG - Aromatic >EC12 - EC16	mg/kg	< 10	45	14	< 10	110	< 10	< 10	71	< 10	< 10	< 10	< 10	60	-	< 10	< 10	440	64	61	47	52	< 10	38	< 10	39
H-CWG - Aromatic >EC12 - EC16 H-CWG - Aromatic >EC16 - EC21		< 10	< 10 63	< 10 17	18 20	310 450	< 10 < 10	< 10 < 10	210 290	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	420 480	-	< 10 < 10	< 10 < 10	950 1400	480 570	670 740	30 87	190 260	18 20	120 170	< 10 < 10	< 10 48
PH-CWG - Aromatic >EC12 - EC16 PH-CWG - Aromatic >EC16 - EC21 PH-CWG - Aromatic >EC21 - EC35	mg/kg	< 10	00	17	20	400	> 10	10	250	10	> 10	` 10	* 10	400		> 10	7 10	1400	310	740	UI .	200	20	170	* 10	40
PH-CWG - Aromatic >EC12 - EC16 PH-CWG - Aromatic >EC16 - EC21 PH-CWG - Aromatic >EC21 - EC35		< 10																								
PH-CWG - Aromatic >EC12 - EC16 PH-CWG - Aromatic >EC16 - EC21 PH-CWG - Aromatic >EC21 - EC35 PH-CWG - Aromatic (EC5 - EC35) VOCs	mg/kg	< 10																								
PH-CWG - Aromatic >EC12 - EC16 PH-CWG - Aromatic >EC16 - EC21 PH-CWG - Aromatic >EC21 - EC35 PH-CWG - Aromatic (EC5 - EC35)  VOCs niline	mg/kg mg/kg mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-
PH-CWG - Aromatic >EC10 - EC12 PH-CWG - Aromatic >EC12 - EC16 PH-CWG - Aromatic >EC16 - EC21 PH-CWG - Aromatic >EC16 - EC25 PH-CWG - Aromatic >EC25 - EC35 PH-CWG - Aromatic (EC5 - EC35)  VOCs niline henol	mg/kg mg/kg mg/kg mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.2	-	-	-	-	< 0.2	-	-	-
PH-CWG - Aromatic >EC12 - EC16 PH-CWG - Aromatic >EC16 - EC21 PH-CWG - Aromatic >EC21 - EC35 PH-CWG - Aromatic (EC5 - EC35)  VOCs niline	mg/kg mg/kg mg/kg	-					1			- - -					- - -								-			

Contaminant	Units	WS107	WS109	WS109	WS110	WS111	WS112	WS113	WS115	WS116	WS117	WS119	WS121	WS123	WS124	WS125	WS127	WS127	WS128	WS128	WS130	WS131	WS131	WS133	WS134	WS135
Contaminant	Units	0.80-1.00	0.20-0.40	0.80-1.00	0.30-0.50	0.20-0.40	1.00-1.10	0.20-0.40	1.40-1.50	0.40-0.60	0.30-0.50	1.40-1.50	1.50-1.60	1.30-1.40	1.35	0.30-0.50	0.10-0.30	2.00-2.10	0.00-0.20	1.40-1.50	0.20-0.40	0.20-0.40	1.60-1.70	0.30-0.40	0.50-0.60	0.10-0.30
		14/03/2011	18/03/2011	18/03/2011	17/03/2011	17/03/2011	16/03/2011	17/03/2011	14/03/2011	21/03/2011	21/03/2011	15/03/2011	17/03/2011	16/03/2011	16/03/2011	17/03/2011	18/03/2011	21/03/2011	16/03/2011	16/03/2011	18/03/2011	18/03/2011	21/03/2011	22/03/2011	15/03/2011	21/03/2011
		MG																								
.2-Dichlorobenzene	mg/kg	- IVIG	IVIG	IVIG	- WIG	IVIG	IVIG	IVIG	- IVIG	IVIG	- WG	IVIG	IVIG	IVIG	I WIG	- IVIG	IVIG	< 0.1	IVIG	- IVIG	IVIG	IVIG	< 0.1	- WIG	IVIG	IVIG
,4-Dichlorobenzene	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.2	-	-	-	-	< 0.1		-	-
is(2-chloroisopropyl)ether	mg/kg		-	-	-	-	-	-	-		-		-	-	-	-	-	< 0.1	-	-	-	-	< 0.1		-	-
Methylphenol	mg/kg		-	-	-	-	-	-	-	-		-		-	-		-	< 0.3	-		_	-	< 0.1		-	-
exachloroethane	mg/kg		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.3	-	-	_	-	< 0.3	-	-	-
litrobenzene	mg/kg		-	-	-	-	-	_	-		-		-	-	-	-	-	< 0.3	-		-	-	< 0.3		-	<del>-</del>
-Methylphenol	mg/kg		-	-	-	-	-		-		-	-		_	-	-	-	< 0.2	-	-	-	-	< 0.2		-	-
ophorone	mg/kg		-	-	-	-	-	-	-		-			-	-		-	< 0.2	-	-		-	< 0.2	-	-	1 -
-Nitrophenol	mg/kg		-	-	-	-	-	-	-		-			-	-	-	-	< 0.3	-	-	-	-	< 0.3		-	-
,4-Dimethylphenol	mg/kg		-	-		-	-		-					-	-		-	< 0.3	-		-	-	< 0.3		-	-
is(2-chloroethoxy)methane	mg/kg		_	-	-	-	-		-		-	_	_	_	-	-	-	< 0.3	-	-		-	< 0.3		-	-
2,4-Trichlorobenzene	mg/kg		-	-	-	-	-	-	-		-	-	-	-	-	-	-	< 0.3	-		-	-	< 0.3		-	<del>-</del>
aphthalene	mg/kg		_	-		-	_	_	_	_	_	-		_	_	-	_	0.5	_	-	_	-	0.3		-	-
4-Dichlorophenol	mg/kg		_	_		-	-		-		-					-	_	< 0.3	-	-		-	< 0.3	-	-	-
Chloroaniline	mg/kg		_	-	_	-	_		-		-	_	_	_	_	-	-	< 0.1	_	-		-	< 0.1	-	-	-
exachlorobutadiene	mg/kg		_	_	_	_		_				_		_	_	_	_	< 0.1	_			_	< 0.1			
Chloro-3-methylphenol	mg/kg	_	_	-	_	-	-	_	-	_	-	_	_	_	_	-	_	< 0.1	-	-	_	-	< 0.1	_	-	-
4,6-Trichlorophenol	mg/kg		_	_	_	_	_	_	_		_	_	_	_	_	_	_	< 0.1	_	_	_	_	< 0.1		_	_
4,5-Trichlorophenol	mg/kg	-	_	-	_	-	-	_	-	_	-	-	_	-	_	-	-	< 0.2	-	-	_	-	< 0.2	-	-	-
Methylnaphthalene	mg/kg	-	_	_	_	_	_	_	-	_	-	_	_	_	_	-	_	< 0.1	-	-	_	-	< 0.1	-	_	-
-Chloronaphthalene	mg/kg		_	_	_	_	_	_	_	_	_	_	_	_	_		_	< 0.1	_	_	_	_	< 0.1		_	_
imethylphthalate	mg/kg	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	< 0.1	-	-	-	-	< 0.1	_	-	-
.6-Dinitrotoluene	mg/kg	-	_	-	_	-	-	_	-	_	-	_	_	-	_	_	_	< 0.1	-	_	-	-	< 0.1	_	-	-
cenaphthylene	mg/kg		_	-	_	-	-	_	_	_	_	_	_	-	_	_	_	< 0.2	_	_	_	-	< 0.2	_	-	_
cenaphthene	mg/kg		_	-	_	-	-	_	-	_	_	_	_	-	_	_	_	0.5	_	_	_	-	< 0.1	_	-	_
.4-Dinitrotoluene	mg/kg	-	_	-	_	_	_	_	-		-	_	_	_	_		_	< 0.2	-	-	_	-	< 0.2	-	_	-
ibenzofuran	mg/kg		_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	0.3	_	_	_	_	< 0.2		_	_
-Chlorophenyl phenyl ether	mg/kg	-	_	-	-	-	-	-	-	_	-	_	-	-	_	_	-	< 0.3	-	-	-	-	< 0.3	_	-	_
iethyl phthalate	mg/kg	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	< 0.2	-	-	-	-	< 0.2	-	-	-
-Nitroaniline	mg/kg		_	-	_	-	_	_	-	_	-	_	_	-	_	_	_	< 0.2	_	_	-	-	< 0.2	_	-	_
uorene	mg/kg	-	_	-	_	-	-	_	-	_	-	-	_	-	_	-	_	0.5	-	-	_	-	< 0.2	-	-	-
zobenzene	mg/kg		-	_	_	-	_	_	-	_	-	-	_	_	_		_	< 0.3	-	-	_	-	< 0.3	-	-	-
romophenyl phenyl ether	mg/kg		-	-	_	-	_	_		_	_	-	_	_	_	-	_	< 0.2	_	-	_	-	< 0.2		-	-
exachlorobenzene	mg/kg		_	-	_	-	_	-	_	_	_	-	_	-	_	-	_	< 0.3	_	-	_	-	< 0.3		-	-
nenanthrene	mg/kg		_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	2.7	-	-	-	-	0.4	-	-	_
nthracene	mg/kg	-	-	-	_	-	-	-	-	_	-	-	_	-	_	-	-	0.7	-	-	-	-	< 0.1	-	-	-
arbazole	mg/kg		_	-	_	-	_	_	_	_	_	-	_	-	_	-	_	< 0.3	_	-	_	-	< 0.3	-	-	-
ibutyl phthalate	mg/kg		-	-	_	-	_	_	_	_	_	-	_	_	_		_	< 0.2	_	-	_	_	< 0.2	-	-	-
nthraquinone	mg/kg		-	-	-	-	-	_			-	_	_	_		_		< 0.3	-		-	-	< 0.3			1

# **Appendix C: Groundwater and surface water analytical results**

Site:	NLWA Edmonton	Project No:	29541
Data Description:	Borehole Samples	SOM (%):	
Land Use:	Commerical	Completed By:	JG
Receptor:	Groundwater	Checked By:	BF

 Assessment Criteria Key

 a) UK DWS
 e)
 i)
 m)
 q)
 u)

 b)
 f)
 j)
 n)
 r)
 v)

 c)
 g)
 k)
 o)
 s)
 w) Site Specific Assessment Criteria

 d)
 h)
 l)
 p)
 t)
 x) Laboratory limit of detection

		Method	Assess-	Saures	Summary Statistics Sample Identifiers and Analytical Data																											
Contaminant	Units	Detection Limit	ment Criteria	Source (see key)	Total	Results Above	Minimum	Maximum Arithmetic	Standard	Number	BH101 29/05/2014	BH 101 05/11/14	BH106 29/05/2014	BH 106 05/11/14	BH107 29/05/2014	BH 107 05/11/14	BH109 29/05/2014	BH109 05/11/14	BH110 29/05/2014	BH 110 05/11/14	BH113 29/05/2014	BH 113 05/11/14	BH114 29/05/2014	BH 114 05/11/14	BH115 29/05/2014	BH115 05/11/14	BH116 29/05/2014	BH116 05/11/14	BH117 29/05/2014	BH117 05/11/14	_	BH118
			(AC)		Number of Samples	Detection Limit	Minimum	Maximum Mean	Deviation	of results >AC	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG
General Inorganics					0	0	0	0 -	-	0																						
н	pH Units	N/A	-		170	170	6.4		0.2457923	-	7.3	6.9	7.1	6.9	7.3	7	7.3	7	7.2	6.9	7.2	7	7.1	7	7.1	7.1	7	6.9	7	7.1	7.1	7.2
Electrical Conductivity Sulphate as SO4	μS/cm ug/l	10 45	- 250000	DWS	19 171	19 171	990 51200		410.590076 93111.0689	34	129000	116000	177000	186000	114000	99200	276000	317000	151000	153000	138000	150000	217000	137000	219000	165000	147000	331000	178000	198000	105000	82900
Sulphide	µg/l	5	-	DWS	170	0	5	5 -	-	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloride	mg/l	4	250	DWS	171	171	16	660 218.923977		54	120	110	180	170	73	70	260	330	320	170	220	110	270	110	120	80	130	120	170	220	280	170
Ammonium as NH4  Nitrate as N	μg/l mg/l	15	500	DWS	171 170	170	15 0.3	40000 5869.81287 17 0.94235294		164	2500 < 0.3	2400 < 0.3	5300 < 0.3	5500 < 0.3	410 < 0.3	2400 < 0.3	0.3	2300 < 0.3	8400 < 0.3	6200 < 0.3	9300	5500 < 0.3	8800 < 0.3	2100 < 0.3	6700 < 0.3	4100 < 0.3	5000 0.3	9800	6300 < 0.3	7200 < 0.3	8600 0.4	5100 < 0.3
Nitrate as NO3	mg/l	5	50	DWS	41	4	5	0.0.1200201	1.75692359	0	\ 0.5	V 0.5	V 0.5	V 0.5	V 0.5	V 0.5	0.3	V 0.5	V 0.5	V 0.5	<b>~</b> 0.3	V 0.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V 0.5	V 0.5	V 0.5	0.5	V 0.5	7 0.5	(0.5	0.4	V 0.3
Chemical Oxygen Demand (Total)	mg/l	3	-		170	154	2	830 42.1617647		-	9.4	17	15	23	2.1	44	28	24	18	19	13	13	33	5.4	20	17	25	31	28	29	20	23
Hardness - Total	mgCaCO3/I	1	-		171	171	25.8	1130 522.42807	176.550311	-	423	296	676	518	363	313	602	761	392	339	323	302	565	327	519	453	505	805	618	730	428	394
Heavy Metals / Metalloids					0	0	0	0 -	-	0																						
Aluminium (dissolved)	mg/l	0.012	0.2	DWS	142	110	0.001	1.6 0.17026761		31		< 0.0010		< 0.0010		< 0.0010		0.0081		< 0.0010		< 0.0010		< 0.0010		0.0115		0.0188		0.0016		< 0.0010
Arsenic (dissolved) Barium (dissolved)	μg/l	1	10	DWS	171	158	0.19	27 7.46725146 140 51.9099415	5.50972072 25.5934474	46	10	8.3	3.5 62	1.22	< 1.0 28	0.72 30	2.5 67	3.22 71	3.3	4.77	3.8	4.67	1.4	1.16	< 1.0 69	1.7 43	1.4	6.11	< 1.0 93	0.26 96	1.3 27	0.31
Boron (dissolved)	μg/l μg/l	0.05 10	1000	DWS	171	171	91		180.172001	3	210	120	340	370	140	190	390	310	28 270	250	29 250	20 210	470	21 120	380	220	450	61 410	460	440	290	260
Cadmium (dissolved)	μg/l	0.1	5	DWS	171	0	0.02	0.1 -	-	0	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02
Chromium (dissolved)	μg/l	0.4	50	DWS	171	84	0.2		0.68016115	0	< 0.4	0.2	< 0.4	0.5	< 0.4	0.3	< 0.4	< 0.2	< 0.4	0.4	< 0.4	0.4	< 0.4	< 0.2	< 0.4	0.3	< 0.4	0.3	< 0.4	0.5	< 0.4	1
Copper (dissolved)  Iron (dissolved)	μg/l mg/l	0.7	0.2	DWS	171 142	135 140	0.5	7.4 3.54327485 7.4 0.69902817	4.40958833 1.23539747	0 85	3.6	< 0.5 0.013	2.4	0.7 < 0.005	2.1	4.6 0.011	3.9	0.9	1.3	4.8 0.021	2.5	5.3 0.013	1.9	5.2 < 0.005	2.5	0.6 0.13	3.1	3.2 0.033	2.8	< 0.5 0.098	4.3	6.5 0.11
Lead (dissolved)	µg/l	1	10	DWS	171	54	0.2		0.92305188	0	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2
Mercury (dissolved)	μg/l	0.5	1	DWS	171	4	0.05		0.12251215	0	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	0.19
Nickel (dissolved) Selenium (dissolved)	μg/l μg/l	0.3	20 10	DWS	171	167 15	0.3		4.42941158 1.75644942	3	11 < 4.0	4.3 < 0.6	23 < 4.0	15 0.8	6.5 < 4.0	11 < 0.6	5.2 < 4.0	8.5 1.2	6.8	3.8 0.8	8.8 < 4.0	5.6 < 0.6	9.1	4.9 0.8	9.3	4.1 < 0.6	8.4 < 4.0	8.5 1.5	9.8	6.3 1.4	8.2 < 4.0	4.5
Zinc (dissolved)	μg/l	0.4	-	BWO	171	111	0.4		4.62255103	-	6.4	< 0.5	5.8	2.5	4.7	13	3.8	< 0.5	1.3	< 0.5	4.2	0.6	3.5	1	2	< 0.5	2.1	< 0.5	2	< 0.5	4.6	< 0.5
Calcium (dissolved)	mg/l	0.012	-		171	171	5.5	410 184.663743		-	150	105	230	175	130	111	220	276	140	121	110	106	200	117	190	163	180	285	220	259	150	143
Magnesium (dissolved)	mg/l	0.005	-		171	171	2.9	68 14.774269	7.94152407	-	12	8.2	26	20	8.7	8.9	13	17	10	8.8	11	9.2	19	8.3	13	11	13	22	17	20	10	9
Total Phenols					0	0	0	0 -	-	0																						
Total Phenols (monohydric)	μg/l	10	0.5	DWS	170	8	10	42 10.5235294	3.18502959	170	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
10Ca					0	0	0	0		0																						
VOCs Chloromethane	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride  Trichlorofluoromethane	μg/l μg/l	1	0.5	DWS	171	1 0	1	10.4 5.10760234	-	171	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0										
1,1-dichloroethene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether)	μg/l μg/l	1	-		171	0	1 1	1 -	-	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0												
1,1-dichloroethane	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
1,1,1-Trichloroethane 1,2-dichloroethane	μg/l μg/l	1	3	DWS	171	0	1	1 -	-	0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene Tetrachloromethane	μg/l μg/l	1	3	DWS	171	0	1	1 -	-	0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0												
1,2-dichloropropane	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	μg/l	1	10	DWS	171	0	1	1 -	-	0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane Bromodichloromethane	μg/l μg/l	1	-		171	0	1 1	1 -	-	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0												
Cis-1,3-dichloropropene	μg/l	1	-		171	0	1	1 -	-		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene 1,1,2-Trichloroethane	μg/l	1	-		171 171	0	1	1 -	-	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0												
1,3-Dichloropropane	μg/l μg/l	1	_		171	0	1	1 -	-		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene 1,2-Dibromoethane	μg/l	1	-		171 171	0	1	1 -	-	-	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0
1,2-Dibromoetnane Chlorobenzene	μg/l μg/l	1	-		171	0	1	1 -	-	-	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0												
1,1,1,2-Tetrachloroethane	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene Styrene	μg/l μg/l	1	-		171 171	0	1 1	1 -	-	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0												
Tribromomethane	μg/l	1	-		171	0	11	1 -	-		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/l	1	-		171 171	0	1 1	1 -	-	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0												
Isopropylbenzene Bromobenzene	μg/l μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0
N-Propylbenzene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/l μg/l	1	-		171	0	1 1	1 -	-	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0												
Tert-Butylbenzene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene	μg/l	1	-		171	0	1 1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-dichlorobenzene P-Isopropyltoluene	μg/l μg/l	1	-		171	0	1 1	1 -	-	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0												
	μg/l	1	-		171	0	1	1 -	-		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-dichlorobenzene	μ9/1																						. —									1
1,4-dichlorobenzene	μg/l	1	-		171	0	1	1 -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	<del>                                     </del>	1 1	-		171 171 171	0 0	1 1	1 - 1 1 -	-	-	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0

Site:	NLWA Edmonton	Project No:	35180
Data Description:	Borehole Samples	SOM (%):	
Land Use:	Industrial	Completed By:	JG
Recentor:	Groundwater	Chackad By:	DE

Assessi	ment Criteria Key					
a)	EQS FW	e)	i)	m)	q)	u)
b)	WFD	f)	j)	n)	r)	v)
c)		g)	k)	0)	s)	w) Site Specific Assessment Criteria
d)		h)	I)	n)	<b>t</b> )	v) Laboratory limit of detection

					Summary Statistics Sample Identifiers and Analytical Data																												
Contaminant	Units	Method Detection	Assess- ment	Source		Results	1	T	1			BH101	BH 101	BH106	BH 106	BH107	BH 107	BH109	BH109	BH110	BH 110	BH113	BH 113	BH114	BH 114	BH115	BH115	BH116	BH116	BH117	BH117	BH118	BH118
<b>5</b> 5 <b>.</b>		Limit	Criteria (AC)	(see key)	Total Number of	Above Detection	Minimum	Maximum	Arithmetic Mean	Standard Deviation	Number of results >AC			29/05/2014						29/05/2014		29/05/2014		29/05/2014		29/05/2014		29/05/2014		_			
					Samples	Limit		-			>AC	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG	KPG
Conoral Ingraphics					0	0	0	0			0																						
pH	pH Units	N/A	-		178	178	6.4	8.5	7.2	0.24540984		7.3	6.9	7.1	6.9	7.3	7	7.3	7	7.2	6.9	7.2	7	7.1	7	7.1	7.1	7	6.9	7	7.1	7.1	7.2
Electrical Conductivity	μS/cm	10	400000	FOC FW	19	19	990	2200	1667.89474		0	400000	440000	477000	400000	444000	00000	070000	247000	454000	452000	420000	450000	047000	407000	040000	405000	447000	224000	470000	400000	405000	00000
Sulphate as SO4 Sulphide	ug/l µg/l	45 5	400000 250	EQS FW	175 174	175	51200 5	650000	187178.286	93245.1046	0	129000	116000 < 5.0	177000 < 5.0	186000 < 5.0	114000 < 5.0	99200	276000 < 5.0	317000 < 5.0	151000 < 5.0	153000 < 5.0	138000 < 5.0	150000 < 5.0	217000 < 5.0	137000 < 5.0	219000 < 5.0	165000 < 5.0	147000 < 5.0	331000 < 5.0	178000 < 5.0	198000 < 5.0	105000	82900 < 5.0
Chloride	mg/l	4	250	EQS FW	175	175	16	660	215.685714	101.812079	54	120	110	180	170	73	70	260	330	320	170	220	110	270	110	120	80	130	120	170	220	280	170
Ammonium as NH4	μg/l	15	-		175	174	15	40000	5778.67429	_	-	2500	2400	5300	5500	410	2400	1000	2300	8400	6200	9300	5500	8800	2100	6700	4100	5000	9800	6300	7200	8600	5100
Nitrate as N Nitrate as NO3	mg/l mg/l	5	-		174 41	17	0.3 5	20	1.17528736 5.41463415		- 0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3	< 0.3	< 0.3	< 0.3	0.4	< 0.3
Chemical Oxygen Demand (Total)	mg/l	3	-		178	162	2	830	41.7050562		-	9.4	17	15	23	2.1	44	28	24	18	19	13	13	33	5.4	20	17	25	31	28	29	20	23
Hardness - Total	mgCaCO3/I	1	-		179	179	25.8	1130	513.07933	178.041387	-	423	296	676	518	363	313	602	761	392	339	323	302	565	327	519	453	505	805	618	730	428	394
Heavy Metals / Metalloids					0	0	0	0	-	-	0																						
Aluminium (dissolved)	mg/l	0.012	-		150	110	0.001	1.6	0.16257267	0.26482869	-		< 0.0010		< 0.0010		< 0.0010		0.0081		< 0.0010		< 0.0010		< 0.0010		0.0115		0.0188		0.0016		< 0.0010
Arsenic (dissolved)	μg/l	1	50	WFD	179	158	0.19	27	7.37703911		0	10 16	8.3 14	3.5	1.22	< 1.0	0.72	2.5	3.22 71	3.3	4.77	3.8	4.67	1.4	1.16	< 1.0	1.7	1.4	6.11	< 1.0	0.26	1.3	0.31
Barium (dissolved) Boron (dissolved)	µg/l µg/l	0.05	2000		179 179	175 175	5.9 91	140 1400	50.903352 331.011173		0	210	120	62 340	48 370	28 140	30 190	67 390	310	28 270	250	29 250	20 210	27 470	21 120	69 380	43 220	24 450	410	93 460	96 440	27 290	27 260
Cadmium (dissolved)	μg/l	0.1	0.25	WFD	179	0	0.02	0.5	-	-	4	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02	< 0.08	< 0.02
Chromium (dissolved)	μg/l	0.4	3.4	QS FW (Cr V	/ 179	84	0.2	5.8	0.72290503		2	< 0.4	0.2	< 0.4	0.5	< 0.4	0.3	< 0.4	< 0.2	< 0.4	0.4	< 0.4	0.4	< 0.4	< 0.2	< 0.4	0.3	< 0.4	0.3	< 0.4	0.5	< 0.4	1
Copper (dissolved) Iron (dissolved)	μg/l mg/l	0.7	28	EQS FW EQS FW	179 150	139 140	0.5	7.4	3.97094972 0.66744	2 5.1500676 1.2093642	2 21	3.6	< 0.5 0.013	2.4	0.7 < 0.005	2.1	4.6 0.011	3.9	0.9	1.3	4.8 0.021	2.5	5.3 0.013	1.9	5.2 < 0.005	2.5	0.6 0.13	3.1	3.2 0.033	2.8	< 0.5	4.3	6.5 0.11
Lead (dissolved)	mg/l μg/l	1	7.2	WFD	150	54	0.005	5.3	1.40167598	_	0	< 1.0	< 0.2	< 1.0	< 0.005	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.005	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2	< 1.0	< 0.2
Mercury (dissolved)	μg/l	0.5	0.05	EQS FW	179	4	0.05	1.5	0.47642458	0.20531028	163	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	0.19
Nickel (dissolved)	μg/l	0.3	20	WFD	179	171	0.3	23	5.64189944		3	11	4.3	23	15	6.5	11	5.2	8.5	6.8	3.8	8.8	5.6	9.1	4.9	9.3	4.1	8.4	8.5	9.8	6.3	8.2	4.5
Selenium (dissolved) Zinc (dissolved)	μg/l μg/l	0.4	125	EQS FW	179 179	15 115	0.6	20 40	3.96703911 4.89888268		- 0	< 4.0 6.4	< 0.6 < 0.5	< 4.0 5.8	0.8 2.5	< 4.0 4.7	< 0.6	< 4.0 3.8	1.2 < 0.5	20 1.3	0.8 < 0.5	< 4.0 4.2	< 0.6 0.6	< 4.0 3.5	0.8	< 4.0	< 0.6 < 0.5	< 4.0 2.1	1.5	< 4.0	1.4	< 4.0 4.6	1 < 0.5
Calcium (dissolved)	mg/l	0.4	-	LQSFW	179	175	5.5	410		64.2298148	-	150	105	230	175	130	111	220	276	1.3	121	110	106	200	117	190	163	180	285	220	259	150	143
Magnesium (dissolved)	mg/l	0.005	-		179	175	2.9	68	14.5273743		-	12	8.2	26	20	8.7	8.9	13	17	10	8.8	11	9.2	19	8.3	13	11	13	22	17	20	10	9
Total Phenols					0	0	0	0			0																						
Total Phenois (monohydric)	μg/l	10	7.7	EQS FW	_	8	10	42	10.5114943	3.14897636		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
V00-					0	0	0	0																									
VOCs Chloromethane	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride Trichlorofluoromethane	μg/l μg/l	1	-		175 175	1 0	1 1	10.4	5.01371429	-	-	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0	< 10.0 < 1.0	< 1.0 < 1.0
1,1-dichloroethene	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)  1,1-dichloroethane	μg/l μg/l	1	-		175 175	0	1	1	-	-	-	< 1.0 < 1.0   < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0						
2,2-Dichloropropane	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	-	=	175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane 1,2-dichloroethane	μg/l μg/l	1	100	WFD	175 175	0	1	1	-	-	0	< 1.0 < 1.0   < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0						
1,1-Dichloropropene	µg/l	1	-	WID	175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	μg/l	1	10	WFD	175	0	1	1	-	-	0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane 1,2-dichloropropane	μg/l μg/l	1	-		175 175	0	1	1	-	-	-	< 1.0 < 1.0   < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0						
Trichloroethene	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane Cis-1,3-dichloropropene	μg/l μg/l	1	-		175 175	0	1	1	-	-	-	< 1.0 < 1.0   < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0						
Trans-1,3-dichloropropene	μg/l μg/l	1			175	0	1	1	-	<u> </u>		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	50	EQS FW	175	0	1	1	-	-	0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/l	1	-		175 175	0	1 1	1	-	-	-	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane Dibromochloromethane	μg/l μg/l	1	-		175	0	1	1	-	-	-	< 1.0 < 1.0   < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0						
Tetrachloroethene	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene 1,1,1,2-Tetrachloroethane	μg/l μg/l	1	-		175 175	0	1	1	-	-	-	< 1.0 < 1.0   < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0						
Ethylbenzene	μg/l	1			175	0	1	1				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	30	WFD	175	0	1	1	-	-	0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene Tribromomethane	μg/l	1	-		175	0	1 1	1 1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane o-xylene	μg/l μg/l	1	30	WFD	175 175	0	1	1	-	-	0	< 1.0 < 1.0   < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0						
1,1,2,2-Tetrachloroethane	μg/l	1	-		175	0	1	1				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	μg/l	1	-		175	0	1	1	-	-	-	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
N-Propylbenzene 2-Chlorotoluene	µg/l µg/l	1	-		175 175	0	1	1	-	1	-	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
4-Chlorotoluene	µg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene 1,2,4-Trimethylbenzene	μg/l	1	-		175 175	0	1	1 1	-	-	-	< 1.0 < 1.0   < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0						
Sec-Butylbenzene	μg/l μg/l	1	-		175	0	1	1	+ -	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-dichlorobenzene	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
P-Isopropyltoluene	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-dichlorobenzene 1,4-dichlorobenzene	μg/l μg/l	1	-		175 175	0	1 1	1 1	-	-	-	< 1.0 < 1.0   < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0						
Butylbenzene	μg/l	1	-		175	0	1	1				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dibromo-3-chloropropane	μg/l	1	-		175	0	1	1	-	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1			175	0	1 1	1				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Site:	NLWA Edmonton	Project No:	35180
Data Description:	Borehole Samples	SOM (%):	
Land Use:	Industrial	Completed By:	JG
Receptor:	Groundwater	Checked By:	DE

Assess	ment Criteria Key					
a)	EQS FW	e)	i)	m)	q)	u)
b)	WFD	f)	j)	n)	r)	v)
c)		g)	k)	0)	s)	w) Site Specific Assessment Criteria
d١		b)	N.	n)	+\	v) Laboraton limit of dataction

	Maked Assess-								stics			Sample Id	entifiers a	nd Analytic	al Data													
Contaminant	Units	Method Detection	ment	Source		T	1	1 1		1		BH101	BH104	BH110	BH113	BH117	BH122	WS107	WS115	WS128	WS130							
Contaminant	Onits	Limit	Criteria	(see key)	Total	Results Above		Maximum	Arithmetic	Standard	Number									GL-0.20								
			(AC)		Number of Samples	Detection	Minimum	Waxiiiuiii	Mean	Deviation	of results >AC	15/3/11	10/3/11	22/3/11	8/3/11	10/3/11	23/3/11	14/3/11	14/3/11	16/3/11	18/3/11							
						Limit																						
General Inorganics					0	0	0	0	-	-	0																	
pH	pH Units	N/A	-		10	10	5.9	7.8	6.8	0.5868939	-	6.4	7.1	6.1	6.7	7	6.8	6.7	7.5	7.8	5.9							
Electrical Conductivity Sulphate as SO4	μS/cm ug/l	10 45	400000	EQS FW	10	10	0 8.7	910	325.27	351.913178	0	290	17	530	57	760	8.7	17	630	910	33							
Sulphide	μg/l	5	250	EQS FW	10	0	5	5	- 325.21	- 351.913178	0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0							
Chloride	mg/l	4	250	EQS FW	0	0	0	0	-	-	0																	
Ammonium as NH4	μg/l	15	-		10	10	91.2857143	92571.4286	10761.6857	28928.6871	-	733	91	347	117	92571	669	553	10800	1543	193							
Nitrate as N	mg/l	1 5	-		0	0	0	0	-	-	-																	
Nitrate as NO3 Chemical Oxygen Demand (Total)	mg/l mg/l	5	_		0	0	0	0		-	0																	
Hardness - Total	mgCaCO3/		-		0	0	0	0	-	-	-																	
Heavy Metals / Metalloids		0.040			10	9	0	0	4.50	- 0.00004004	0	0.5	4.0	101	0.0	0.4	0.0	0.4	0.0	4.0	0.0							
Aluminium (dissolved) Arsenic (dissolved)	mg/l μg/l	0.012	50	WFD	10	2	0.1 10	6.3 46	1.52 14.7	2.22001001 11.5282262	0	0.5 46	1.6	< 0.1 < 10	0.2 < 10	0.1 21	0.8 < 10	0.4 < 10	0.3 < 10	4.9 < 10	6.3 < 10							
Barium (dissolved)	µg/l	0.05	-		10	10	38	200	110.9	54.2103926	-	130	58	170	75	120	48	38	200	140	130							
Boron (dissolved)	μg/l	10	2000		10	10	40	4700	921.7	1414.34555		1100	160	790	87	4700	110	40	1500	440	290							
Cadmium (dissolved)	μg/l	0.1	0.25	WFD	10	4	0.5	3.5	0.91	0.93148627	10	0.8	< 0.5	0.7	< 0.5	3.5	< 0.5	< 0.5	1.1	< 0.5	< 0.5							
Chromium (dissolved) Copper (dissolved)	μg/l μg/l	0.4	3.4 28	EQS FW (Cr V	V 10	6 10	5.9	18 210	4.25 75.49	5.28609287 66.9464205	7	2.6 82	5.3 81	< 1.0 20	7.5 26	2.6 170	< 1.0 48	< 1.0 5.9	< 1.0 30	2.5 82	18 210			+				
Iron (dissolved)	mg/l	0.004	1	EQS FW		6	0.2	5.6	0.96	1.67544356		0.4	1.4	< 0.2	< 0.2	< 0.2	0.8	0.4	0.2	< 0.2	5.6							+
Lead (dissolved)	μg/l	1	7.2	WFD	10	5	5	120	20.64	35.5441259	5	11	17	< 5.0	< 5.0	< 5.0	8.4	< 5.0	< 5.0	25	120							
Mercury (dissolved)	μg/l	0.5	0.05	EQS FW	10	0	1.5	1.5	-		10	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5							
Nickel (dissolved) Selenium (dissolved)	μg/l μg/l	0.3	20	WFD	10	10	1.1	110 10	21.63	32.7141848	3	30 < 10	7.7 < 10	15 < 10	1.1	110 < 10	5.7 < 10	1.5 < 10	27 < 10	2.3	16 < 10			+				
Zinc (dissolved)	µg/I µg/I	0.4	125	EQS FW	10	10	1.8	210	70.58	60.3009821	1	< 10 77	< 10 51	77	12	210	25	1.8	120	< 10 59	73			+				
Calcium (dissolved)	mg/l	0.012	-		0	0	0	0		-	-																	
Magnesium (dissolved)	mg/l	0.005	-		0	0	0	0	-	-	-			1										1				
Total Dhanala					0			0			0																	
Total Phenols Total Phenols (monohydric)	μg/l	10	7.7	EQS FW	0	0	0	0		-	0																	
(,	F5:				_						-																	
VOCs					0	0	0	0	-	-	0																	
Chloromethane	μg/l	1	-		0	0	0	0	-	-	-																	
Chloroethane Bromomethane	μg/l μg/l	1	-		0	0	0	0		-	-																	
Vinyl Chloride	µg/l	1	-		0	0	0	0	-	-	-																	
Trichlorofluoromethane	μg/l	1	-		0	0	0	0	-	-	-																	
1,1-dichloroethene	μg/l	1	-		0	0	0	0	-	-	-			-			-							-				
1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene	μg/l μg/l	1	-		0	0	0	0		-	-																	
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	-		0	0	0	0	-	-	-																	
1,1-dichloroethane	μg/l	1	-		0	0	0	0	-	-	-																	
2,2-Dichloropropane	μg/l	1	-		0	0	0	0	-	-	-																	
Trichloromethane 1,1,1-Trichloroethane	μg/l μg/l	1	100	WFD	0	0	0	0	-	-	- 0																	
1,2-dichloroethane	μg/l	1	100	WFD	0	0	0	0		-	0																	
1,1-Dichloropropene	μg/l	1	-		0	0	0	0	-	-	-																	
Trans-1,2-dichloroethene	μg/l	1	-		0	0	0	0	-	-	-																	
Benzene Tetrachloromethane	µg/l µg/l	1	10	WFD	0	0	0	0	-	-	0																	
1,2-dichloropropane	µg/l	1	-		0	0	0	0		-	-																	
Trichloroethene	μg/l	1	-		0	0	0	0	-	-	-																	
Dibromomethane	μg/l	1	-		0	0	0	0	-	-	-																	
Bromodichloromethane Cis-1,3-dichloropropene	μg/l μg/l	1	-		0	0	0	0	-	-	-	-		+			1							+	+ + -			
Trans-1,3-dichloropropene	µg/l	1	-		0	0	0	0			-																	
Toluene	μg/l	1	50	EQS FW		0	0	0	-	-	0																	
1,1,2-Trichloroethane	µg/l	1 1	-		0	0	0	0	-	-	-	-		1		-	1						<del>                                     </del>	1			<del>                                     </del>	
1,3-Dichloropropane Dibromochloromethane	μg/l μg/l	1	-		0	0	0	0	-	<del></del>	-	<del>                                     </del>		<del>                                     </del>		<u> </u>	<del>                                     </del>							+	<del>                                     </del>	1		<del>-  </del>
Tetrachloroethene	μg/l	1	-		0	0	0	0		-	-																	
1,2-Dibromoethane	μg/l	1	-		0	0	0	0	-	-	-					L								<del>                                     </del>				
Chlorobenzene	µg/l	1	-		0	0	0	0	-	-	-	1		1		-	1							+		1		
1,1,1,2-Tetrachloroethane Ethylbenzene	µg/l µg/l	1	-		0	0	0	0	-	<del>-</del>	-	<b>-</b>		<b>†</b>		<u> </u>	<b>†</b>							+	<del>                                     </del>	1		
p & m-xylene	μg/l	1	30	WFD	0	0	0	0	-	-	0																	
Styrene	μg/l	1	-		0	0	0	0		-	-																	
Tribromomethane	µg/l	1	-	14/55	0	0	0	0	-	-	-			1			1											
o-xylene 1,1,2,2-Tetrachloroethane	μg/l μg/l	1	30	WFD	0	0	0	0	-	-	0 -	-		1									<del>                                     </del>	1	+ + +			
Isopropylbenzene	µg/l	1	-		0	0	0	0	-	-	-																	<del>-  </del>
Bromobenzene	μg/l	1	-		0	0	0	0	-	-	-																	
N-Propylbenzene	μg/l	1	-		0	0	0	0	-	-	-																	
2-Chlorotoluene	μg/l	1	-		0	0	0	0	-	-	-	-		-			1											
4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/l μg/l	1	-		0	0	0	0	-	-	-			1			1											
Tert-Butylbenzene	μg/l	1	-		0	0	0	0	-	-	-																	
1,2,4-Trimethylbenzene	μg/l	1	-		0	0	0	0	-	-	-																	
Sec-Butylbenzene	µg/l	1	-		0	0	0	0	-	-	-	-		1		-	1							+				
1,3-dichlorobenzene P-lsopropyltoluene	μg/l μg/l	1	-		0	0	0	0	-	-	-			+			+							1				
1,2-dichlorobenzene	µg/l	1	-		0	0	0	0		_	_																	
1,4-dichlorobenzene	μg/l	1	-		0	0	0	0	-	-	-																	
Butylbenzene	µg/l	1	-		0	0	0	0	-	-	-	-	-	+		-	1							+				
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	μg/l μg/l	1	-		0	0	0	0	-	-	-	1	-	+		1	<del>                                     </del>							+	+ +			
.,2, i monorobonzono	μg/1								-			1	i					1	L	1	1	L		1	1 1	1	1 1	 

Site:	NLWA Edmonton	Project No:	35180
Data Description:	Borehole Samples	SOM (%):	
Land Use:		Completed By:	JG
Docontor:	Croundwater	Chackad By:	DE

Assessment Cr	iteria Key					
a)	DWS	e)	i)	m)	q)	u)
b)		f)	j)	n)	r)	v)
c)		g)	k)	0)	s)	w) Site Specific Assessment Criteria
d)		h)	D.	n)	+\	v) Laboratory limit of detection

			Accocc-				Sun	nmary Stati	istics			Sample Id	lentifiers a	nd Analytic	al Data												
Contaminant	Units	Method Detection	Assess- ment	Source		Results	1		1		1	BH101	BH104	BH110	BH113	BH117	BH122	WS107	WS115	WS128	WS130						
•		Limit	Criteria (AC)	(see key)	Total Number of	Above	Minimum	Maximum	Arithmetic		Number of results	2.20-2.40	0.20-0.40	0.50-0.70	0.20-0.40	2.20-2.40	0.10-0.30	0.80-1.00	1.40-1.50	GL-0.20	0.20-0.40						
			,		Samples	Detection Limit			Mean	Deviation	>AC	15/3/11	10/3/11	22/3/11	8/3/11	10/3/11	23/3/11	14/3/11	14/3/11	16/3/11	18/3/11						
General Inorganics					0	0	0	0	-	-	0																
рН	pH Units	N/A	-		10	10	5.9	7.8	6.8	0.5868939	-	6.4	7.1	6.1	6.7	7	6.8	6.7	7.5	7.8	5.9						
Electrical Conductivity Sulphate as SO4	μS/cm ug/l	10 45	250000	DWS	10	10	0 8.7	910	325.27	351.913178	- 0	290	17	530	57	760	8.7	17	630	910	33						
Sulphide Sulphide	ug/l μg/l	5	-	DWS	10	0	5	5	-	-	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0						
Chloride	mg/l	4	250	DWS	0	0	0	0	- 40704 0057	- 20000 0074	0	700	04	247	447	00574	000	550	40000	4540	400						
Ammonium as NH4 Nitrate as N	μg/l mg/l	15 1	500	DWS	10 0	10 0	91.2857143 0	0	- 10/61.685/	28928.6871	-	733	91	347	117	92571	669	553	10800	1543	193						
Nitrate as NO3	mg/l	5	50	DWS	0	0	0	0	-	-	0																
Chemical Oxygen Demand (Total) Hardness - Total	mg/l mgCaCO3/l	3	-		0	0	0	0	-	-	-																
	Ţ																										
Heavy Metals / Metalloids Aluminium (dissolved)	mg/l	0.012	0.2	DWS	10	9	0.1	6.3	1.52	2.22001001	7	0.5	1.6	< 0.1	0.2	0.1	0.8	0.4	0.3	4.9	6.3						
Arsenic (dissolved)	μg/l	1	10	DWS	10	2	10	46	14.7	11.5282262	2	46	< 10	< 10	< 10	21	< 10	< 10	< 10	< 10	< 10						
Barium (dissolved)	μg/l	0.05	- 4000	DWG	10 10	10	38	200	110.9	54.2103926 1414.34555		130	58	170	75	120	48	38	200	140	130						
Boron (dissolved)  Cadmium (dissolved)	μg/l μg/l	0.1	1000 5	DWS DWS	10	10 4	40 0.5	4700 3.5	921.7 0.91	0.93148627		1100 0.8	160 < 0.5	790 0.7	87 < 0.5	4700 3.5	110 < 0.5	40 < 0.5	1500 1.1	440 < 0.5	290 < 0.5						
Chromium (dissolved)	μg/l	0.4	50	DWS	10	6	1	18	4.25	5.28609287		2.6	5.3	< 1.0	7.5	2.6	< 1.0	< 1.0	< 1.0	2.5	18						
Copper (dissolved) Iron (dissolved)	μg/l mg/l	0.7	2000	DWS DWS	10 10	10 6	5.9 0.2	210 5.6	75.49 0.96	66.9464205 1.67544356		82 0.4	81 1.4	20 < 0.2	26 < 0.2	170 < 0.2	48 0.8	5.9 0.4	30 0.2	82 < 0.2	210 5.6		-				
Lead (dissolved)	µg/l	1	10	DWS	10	5	5	120	20.64	35.5441259		11	17	< 5.0	< 5.0	< 5.0	8.4	< 5.0	< 5.0	25	120						
Mercury (dissolved)	μg/l	0.5	1	DWS	10	0	1.5	1.5	- 04.00	20.7441017	10	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5						
Nickel (dissolved) Selenium (dissolved)	μg/l μg/l	0.3	20 10	DWS DWS	10 10	10 0	1.1 10	110 10	21.63	32.7141848	0	30 < 10	7.7 < 10	15 < 10	1.1 < 10	110 < 10	5.7 < 10	1.5 < 10	27 < 10	2.3 < 10	16 < 10						
Zinc (dissolved)	μg/l	0.4	-		10	10	1.8	210	70.58	60.3009821	-	77	51	77	12	210	25	1.8	120	59	73						
Calcium (dissolved) Magnesium (dissolved)	mg/l mg/l	0.012 0.005	-		0	0	0	0	-	+ -	-																
	mg/i	3.003			Ľ		Ŭ		_		-																
Total Phenois		40		DIMO	0	0	0	0	-	-	0																
Total Phenols (monohydric)	μg/l	10	0.5	DWS	0	0	0	0	<del>                                     </del>	-	0																
VOCs					0	0	0	0	-	-	0																
Chloromethane Chloroethane	μg/l	1	-		0	0	0	0	-	-	-																
Bromomethane	μg/l μg/l	1	-		0	0	0	0	-	-	-																
Vinyl Chloride	μg/l	1	0.5	DWS	0	0	0	0	-	-	0																
Trichlorofluoromethane 1,1-dichloroethene	μg/l μg/l	1	-		0	0	0	0	-	-	-																
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/l	1	-		0	0	0	0	-	-	-																
Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	-		0	0	0	0	-	-	-																
1,1-dichloroethane	μg/l μg/l	1	-		0	0	0	0	-	-	-																
2,2-Dichloropropane	μg/l	1	-		0	0	0	0	-	-	-																
Trichloromethane 1,1,1-Trichloroethane	μg/l μg/l	1	-		0	0	0	0	-	-	-																
1,2-dichloroethane	µg/l	1	3	DWS	0	0	0	0	-	-	0																
1,1-Dichloropropene Trans-1,2-dichloroethene	μg/l	1	-		0	0	0	0	-	-	-																
Benzene	μg/l μg/l	1	-		0	0	0	0	-	-	-																
Tetrachloromethane	μg/l	1	3	DWS	0	0	0	0	-	-	0																
1,2-dichloropropane Trichloroethene	μg/l μg/l	1	10	DWS	0	0	0	0	-	-	- 0																
Dibromomethane	μg/l	1	-		0	0	0	0	-	-	-																
Bromodichloromethane Cis-1 3-dichloropropene	μg/l μg/l	1	-		0	0	0	0	-	-	-	1	-										-				
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	μg/l μg/l	1			0	0	0	0					<u>L</u>	<u>L</u>													
Toluene	μg/l	1	-		0	0	0	0	-		-																
1,1,2-Trichloroethane 1,3-Dichloropropane	μg/l μg/l	1	-		0	0	0	0	-	-	-	+									+		-	<del>                                     </del>			
Dibromochloromethane	μg/l	1	-		0	0	0	0	-	-	-																
Tetrachloroethene 1,2-Dibromoethane	μg/l μg/l	1	-		0	0	0	0	+ -	-	-	1	-	-							-		-				
Chlorobenzene	μg/l	1	-		0	0	0	0	-	-	-																
1,1,1,2-Tetrachloroethane	μg/l	1	-		0	0	0	0	-	<u> </u>	-	1	1							1			1		<del>                                     </del>	1	
Ethylbenzene p & m-xylene	μg/l μg/l	1 1	-		0	0	0	0	1 -	-	-	1									+						
Styrene	μg/l	1	-		0	0	0	0	-	-	-																
Tribromomethane o-xylene	μg/l μg/l	1	-		0	0	0	0	-	-	-	1									-						
1,1,2,2-Tetrachloroethane	µg/l	1	-		0	0	0	0	-	-	-																
Isopropylbenzene	μg/l	1	-		0	0	0	0	-	-	-																
Bromobenzene N-Propylbenzene	μg/l μg/l	1	-		0	0	0	0	-	-	-	+	-										-	<del>                                     </del>			
2-Chlorotoluene	μg/l	1	-		0	0	0	0	-	-	-																
4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/l μg/l	1	-		0	0	0	0	-	-	-	1											-				
1,3,5-1 nmetnylbenzene Tert-Butylbenzene	μg/I μg/I	1	-		0	0	0	0	-	-	-																
1,2,4-Trimethylbenzene	μg/l	1	-		0	0	0	0	-	-	-																
Sec-Butylbenzene 1,3-dichlorobenzene	μg/l μg/l	1	-		0	0	0	0	-	-	-	+	-	-							-		-				
P-Isopropyltoluene	µд/I µд/I	1	-		0	0	0	0	-	-	-																
1,2-dichlorobenzene	μg/l	1	-		0	0	0	0	-	-	-																
1,4-dichlorobenzene Butylbenzene	μg/l μg/l	1	-		0	0	0	0	-	-	-																
1,2-Dibromo-3-chloropropane	μg/l	1	-		0	0	0	0	-	-	-																
1,2,4-Trichlorobenzene	μg/l	1			0	0	0	0		1	-		i	1								1	1	i l	1		. 1

									Appendix 62
	Groundwater O	bservations							
Project Numb	oer:	29541		Site:	NI WA Edn	nonton - EP	monitoring	Date:	26/04/2012
1 TOJECT Name		29341		one.	INLVVA LUII	HOHIOH - LI	Inomioning	Date.	20/04/2012
Monitoring Point	DTW	DTB	Water Column	Purge Vol	рН	EC	DO	Temp.	Notes
	(mbgl)	(mbgl)	(m)	(I)		(µS)	(mg/l)	(°C)	
BH101	2.60	6.89	4.29	26		998	4.14	14.7	Clear slightly brown purge
BH102	3.50	5.87	2.37	14	-	-	-	-	Clear slightly brown purge
BH103									No Access - Covered by Roll on/off skip
BH104									No Access - New sorting facility conveyor in place
BH105									No Access - New Wood storage area (for chipping)
BH106	4.45	8.07	3.62	22					Clear slightly brown purge
BH107	2.20	5.60	3.40	20	4.20	1205	5.39	12.2	Clear slightly brown purge
BH108									Not Installed
BH109	2.00	4.60	2.60						Grey slightly silty purge
BH110	3.00	6.65	3.65	22	7.53	1508	4.25	13.9	Clear slightly brown purge
BH111						'			Not drilled
BH112									Not drilled
BH113	2.27	6.30	4.03	24	5.70	1584	4.59	15.7	Clear slightly brown purge, slight sewage odour
BH114	1.80	6.85	5.05	30	6.35	1682	4.16	12.0	Clear slightly brown purge
BH115	2.70	7.07	4.37	26	6.25	1532	4.92	11.6	Clear slightly brown purge
BH116	2.77	5.80	3.03	18	6.95	1170	4.98	11.9	Clear slightly grey purge
BH117	2.69	9.95	7.26	44	7.21	1356	4.35	12.0	Clear slightly brown purge
BH118	3.68	5.75	2.07	12.4	6.97	1571	3.55	11.7	Clear purge
BH119	3.73	5.97	2.24	13	6.95	1907	3.69		Clear purge
BH120	3.83	7.14	3.31	20	6.26	1516	3.61	12.8	Clear purge
BH121	4.05	6.25	2.20	13	7.24	971	4.00		Clear slightly brown purge. Cover needs reconcreting
BH122	5.46	8.85	3.39	20	6.60	1171	3.80		Clear slightly grey purge
BH123	2.85	6.95	4.10	25		1377		12.8	Clear slightly grey purge. Duplicate sample taken
BH124	3.90	7.05	3.15	19		1120			Clear slightly brown purge. New watterra valve fitted
BH201	7.20	22.10	14.90	89	5.54	672	5.04	14.0	Grey, silty purge. Dry @30litres
BH201	2.65	19.85	17.20	103					
BH202 BH203	2.65 6.97	23.07	16.10	97					Grey, silty purge. Dry @30litres
BH203 BH204			4.20	25					Grey, silty purge. Dry @30litres
B⊓204	8.70	12.90	4.20	25	7.99	1070	3.51	12.7	Grey, silty purge

									дреник од
	Groundwater O	bservations							
Project Numl	ber:	29541		Site:	NLWA Edmo	onton - EP m	nonitoring	Date:	12/07/2012
Monitoring Point	DTW	DTB	Column	Purge Vol	рН	EC	DO	Temp.	Notes
	(mbgl)	(mbgl)	(m)	(I)		(μS)	(mg/l)	(°C)	
BH101	2.60				5.75	1098			Clear sample
BH102	3.49	7.82	4.33		5.96	977		16.4	Cover damaged, 1 bolt missing
BH103									No Access - Covered by Roll on/off skip
BH104									No Access - New sorting facility conveyor in place
BH105						ļ.			No Access - New Wood storage area (for chipping)
BH106	4.47	8.03	3.56		4.44	1132			Clear, silty brown purge
BH107	2.24	5.54	3.30		5.36	1257		14.1	Cover damaged, 2 bolts missing - replacement required
BH108									Not Installed
BH109	1.58				6.22	1882			Clear silty brown purge
BH110	2.74	6.60	3.89		6.66	1339		16.5	Clear purge
BH111					·	· ·			Not drilled
BH112									Not drilled
BH113	2.24	6.24	4.00		5.92	1484		17.1	Brown silty cloudy purge
BH114	1.79	6.80	5.01		6.19	1494		13.9	Clear silty brown purge
BH115	2.56	7.05	4.49		6.64	1489		14.3	Clear silty brown purge
BH116	2.67	5.80	3.13		6.57	1096		13.3	Clear silty brown purge
BH117	2.66	5.93	3.27		6.70	1302		15.3	Clear silty brown purge
BH118						,			Could not locate due to grass
BH119	3.35	5.95	2.60		6.33	1733			Clear purge
BH120	3.45	7.12	3.67		6.19	1502		14.8	Clear purge
BH121	3.60	6.25	2.65		7.06	895			Clear silty brown purge
BH122	4.95	8.83	3.88		6.43	1068			Clear purge
BH123	3.38		3.65		6.09	1420			Clear
BH124	3.43	7.03	3.60		6.18	903			Clear
BH201									
BH202									
BH203									
BH204									
- '									
L	1							1	

	One we devete a O	h							
	Groundwater O	bservations							
Project Numb	per:	29541		Site:	NLWA Edi	monton - EP	monitoring	Date:	30/10/2012
Monitoring Point	DTW	DTB	Water Column	Purge Vol	рН	EC	DO	Temp.	Notes
	(mbgl)	(mbgl)	(m)	(I)		(μS)	(mg/l)	(°C)	
BH101	2.88	6.88	4.00				4.76		Clear sample - good condition
BH102	3.74	6.78	3.00	181			3.28	14.8	Clear sample - 1 bolt missing
BH103									No Access - Covered by Roll on/off skip
BH104									No Access - New sorting facility conveyor in place
BH105									No Access - New Wood storage area (for chipping)
BH106	4.79	8.03	3.20				6.72		Clear sample - good condition
BH107	2.57	5.78	3.20	191			6.25	13.6	
BH108									Not Installed
BH109	2.07	4.50	2.40				2.66	12.4	Grey cloudy sample - good condition
BH110	2.92	6.55	3.60	241			4.41	15.7	Clear Sample - good condition
BH111									Not drilled
BH112									Not drilled
BH113	2.50	6.30	3.80	228			2.61	14.4	Cloudy sample - good condition
BH114	2.05	6.78	4.70				3.18	13.0	Clear sample - good condition - duplicate taken
BH115	2.90	5.90	3.00	181			5.77	12.3	Clear sample - good condition
BH116	2.92	5.78	2.80	151			6.07	12.3	Grey silty sample - good condition
BH117	2.79	7.05	4.20	252			4.91	12.2	Grey cloudy purge - good condition
BH118	3.52	5.68	2.10	12.6			5.29	11.8	Clear sample - good condition
BH119	3.58	5.95	2.40	151			4.46	13.7	Grey sample - good condition
BH120	3.70	7.10	3.40	211			3.38	12.9	Clear sample - good condition
BH121	3.95	6.20	2.20	13			2.70		Clear sample - decapitated
BH122	5.34	8.82	3.50	241			3.48	12.2	Clear sample - good condition
BH123	3.80	7.02	3.20	201			3.02		Clear sample - good condition
BH124	3.72	7.02	3.20	201			1.84		Clear sample - good condition
BH201									
BH202									
BH203									
BH204									

									Appendix C2
	Groundwater	Observations							
Project Numb	er:	29541		Site:	NI WA Edr	nonton - EP i	monitorina monitorina	Date:	23/01/2013
		20011		O.CO.	112117 ( Edi		l		20/01/2010
Monitoring Point	DTW	DTB	Water Column	Purge Vol	рН	EC	DO	Temp.	Notes
	(mbgl)	(mbgl)	(m)	(I)		(µS)	(mg/l)	(°C)	
BH101	2.78	6.95	4.17	25	9.52	1046	5.31	13.7	
BH102	3.70	7.80	4.10	24	9.58	961	4.02	12.8	
BH103									No access. Under skip.
BH104									No Access
BH105									Under wood pile
BH106	4.59	8.00	3.41	20	8.86	1066	4.53	9.7	
BH107	2.36	5.55	3.19	19	9.08	1235	5.02	10.4	
BH108									Not Installed
BH109	1.99	4.52	2.53	15	9.16	1184	4.51	10.1	
BH110	2.90	6.60	3.70	22	9.50	1492	4.22	13.3	
BH111									Not drilled
BH112									Not drilled
BH113	2.43	6.23	3.80	22	9.83	1483	5.11	13.2	
BH114	1.97	6.80	4.83	28					
BH115	2.65	7.02	4.37	26	9.03	1324	4.33	10.1	
BH116	2.85	5.76	2.91	17	9.20	1256	4.12	9.7	
BH117	2.82	5.98	3.16	19	9.14	1175	4.72	10.8	
BH118	3.33	5.70	2.37	14	8.82	1366	4.66	10.5	
BH119	3.53	5.95	2.42	14					Couldn't sample - under car
BH120	3.65	7.10	3.45	20	8.54	1508	4.64	12.1	
BH121	3.76	6.20	2.44	14	9.97	986	5.95	11.4	
BH122	5.19	8.60	3.41	20	9.07	1075	5.12	11.5	
BH123	-	-	-	-	-	-	-	-	Unable to locate in snow.
BH124	3.67	7.08	3.41	20	9.17	1021	4.58	10.1	Slight sulphur odour
BH201	5.95	22.00	16.05	95	10.05	599	7.52	10.4	1
BH202	2.60	20.00	17.40	102	10.85	1757	7.89	7.2	
BH203	6.89	17.11	-	-	-	-	-	-	Unable to sample.
BH204	8.45	11.00	2.55	15	10.14	983	6.81	10.9	·
				1					

									Appendix C2
	Groundwater	Observations							
Project Numl	er:	29541		Site:	NI WA Edi	monton - EP	monitoring	Date:	03/04/2013
		20011		Oito.	TTETTT EGI	HOHIOH EI	lionitoring	Duto.	00/01/2010
Monitoring Point	DTW	DTB	Water Column	Purge Vol	рН	EC	DO	Temp.	Notes
	(mbgl)	(mbgl)	(m)	(I)		(μS)	(mg/l)	(°C)	
BH101	2.82	6.88	4.06	24	8.72	1672	5.47	12.3	
BH102	3.70	7.77	4.07	24	8.48	1017	4.40	13.8	
BH103	2.38	6.83	4.45	26	7.00	1802	4.73	18.8	
BH104									No Access
BH105									No Access
BH106	4.63	7.98	3.35	20	7.66	1017	5.37	12.1	Sulphur Odour
BH107	2.39	5.54	3.15	19	7.51	1338	4.04	11.2	
BH108									Not Installed
BH109	2.05	4.54	2.49	15	7.61	556	6.13	10.2	
BH110	2.93	6.59	3.66	22	8.28	1197	4.79	12.4	
BH111									Not drilled
BH112									Not drilled
BH113	2.42	6.22	3.80	22	7.16	1320	4.56	15.3	
BH114	1.97	6.98	5.01	30	7.85	1452	4.28	10.8	
BH115	2.48	7.13	4.65	27	7.41	834	6.13	11.0	
BH116	2.79	5.77	2.98	18	7.76	976	5.90	11.1	
BH117	2.82	5.94	3.12	18	7.68	864	5.82	10.8	
BH118	3.37	5.67	2.30	14	8.00	1003	5.60	11.4	
BH119	3.52	6.02	2.50	15	8.49	1870	5.78	10.1	
BH120	3.66	7.09	3.43	20	7.99	1189	5.09	12.7	
BH121	3.80	6.27	2.47	15	8.04	880	5.48	11.1	
BH122	5.24	8.70	3.46	20	8.04	929	5.75	11.6	
BH123				1					Couldn't find, burried under concrete spill
BH124	3.70	7.05	3.35	20	8.27	938	6.27	10.1	, i
DU201	F 00	20.40	16 10	OF	7.50	E00	E 00	10.0	Pen Dry
BH201	5.92	22.10	16.18	95	7.53	583 1454	5.23	12.0	Ran Dry
BH202	2.57	20.00	17.43	103	7.36	1454	9.26	9.9	Ran Dry
BH203	6.95	23.85	16.90	100	0.00	000	0.40		Ran Dry - Waterra Lost
BH204	8.49	12.72	4.23	25	6.93	926	8.48	9.3	Ran Dry

	Groundwater	Observations							
Project Numl	er:	29541		Site:	NI WA Edr	nonton - EP	monitoring	Date:	29-30/07/13
		20011		O.CO.	1121171 201	TIOTROIT ET	l		20 00/01/10
Monitoring Point	DTW	DTB	Water Column	Purge Vol	рН	EC	DO	Temp.	Notes
	(mbgl)	(mbgl)	(m)	(I)		(μS)	(mg/l)	(°C)	
BH101	-	-	-	-	-	-	-	-	Unable to remove borehole cover
BH102	3.42	7.80	4.38	26	7.12	1012	7.81	14.2	Brown/cloudy water.
BH103	-	-	-	-	-	-	-	-	Beneath skip. No access.
BH104									No Access
BH105									No Access
BH106	-	-	-	-	-	-	-	-	Beneath car. No access.
BH107	2.52	5.56	3.04	18	7.43	1219	7.67	14.4	Brown/cloudy water.
BH108									Not Installed
BH109	1.95	4.52	2.57	15	7.12	1249	7.85	14.7	Brown/cloudy water.
BH110	2.74	6.60	3.86	23	7.66	1258	5.94	17.5	Clear water
BH111						•			Not drilled
BH112									Not drilled
BH113	2.26	6.26	4.00	24	7.78	1281	5.98	15.1	Brown/cloudy water.
BH114	1.85	6.82	4.97	29	7.75	1024	10.14	14.8	Brown/cloudy water. Duplicate sample.
BH115	2.71	7.07	4.36	26	7.63	1101	8.13	14.9	Brown/cloudy water.
BH116	-	-	-	-	-	-	-	-	Unable to locate in vegetation.
BH117	2.73	5.93	3.20	19	6.39	877	9.24	14.1	Brown/cloudy water.
BH118	3.41	5.68	2.27	13	7.82	1156	7.84	13.9	Clear water.
BH119	3.49	5.98	2.49	15	7.69	1103	7.51	14.2	Brown/cloudy water.
BH120	3.61	7.11	3.50	21	7.54	1366	7.46	14.6	Black/silty water.
BH121	3.83	6.26	2.43	14	7.73	780	7.69	13.5	Brown/cloudy water.
BH122	5.27	8.72	3.45	20	7.59	1080	8.59	15.3	Clear water.
BH123						,	•		Couldn't find, burried under concrete spill
BH124	3.72	7.04	3.32	20	7.72	816	7.84	13.3	Brown/cloudy water.
DI IOO 4	5.00	62.22	10.10		0.04	001	0.07		
BH201	5.88	22.00	16.12	95	8.21	891	9.67	15.1	Clear water.
BH202	2.57	20.00	17.43	103	8.33	834	10.01	14.4	Perged dry after 30l. Clear water
BH203	6.23	23.50	-	-	-	-	-	-	Unable to sample
BH204	8.50	12.50	4.00	24	7.41	875	9.55	15.0	Dark grey/sandy.

	Round 4 -	01/04/201	3	Round 5 - 0	01/07/201	3	Round 6 -	01/10/201	3	Round 7 - 0	01/01/2014	4
Monitoring	DTW	DTB	Notes	DTW	DTB	Notes	DTW	DTB	Notes	DTW	DTB	Notes
Point	(mbgl)	(mbgl)	=	(mbgl)	(mbgl)	_	(mbgl)	(mbgl)	<del>-</del>	(mbgl)	(mbgl)	=
BH101	2.82	6.88	Brown/cloudy water.	-	-	Unable to remove borehole cover	2.82	6.87	Slightly brown, turbid.	2.34	6.86	Clear
BH102	3.70	7.77	Brown/cloudy water.	3.42	7.80	Brown/cloudy water.	3.65	7.78	Clear with sl. brown tint.	-	-	Borehole destroyed, covered by concrete
BH103	2.38	6.83	Brown/cloudy water.	-	-	Beneath skip. No access.	-	-	Borehole located but found to be blocked.	-	-	Beneath skip. No access.
BH104			No Access			No Access			No Access			No Access
BH105			No Access			No Access			No Access			No Access
BH106	4.63	7.98	Sulphur Odour	-	-	Beneath car. No access.	4.78	8.03	Slightly brown, turbid.	4.15		Pale Yellow- grey Colour, Clear, Sulphur smell
BH107	2.39	5.54	Brown/cloudy water.	2.52	5.56	Brown/cloudy water.	2.54	5.54	Slightly brown, turbid.	1.92	5.56	Pale Yellow- grey Colour, Clear, Sulphur smell- damaged headworks
BH108			Not Installed			Not Installed			Not Installed			Not Installed
BH109	2.05	4.54	Brown/cloudy water.	1.95	4.52	Brown/cloudy water.	1.98	4.54	Brown, turbid.	1.56		Clear, Sulphur smell
BH110	2.93	6.59	Clear.	2.74	6.60	Clear water	2.77	6.56	Yellow tint.	2.48	6.61	
BH111			Not drilled			Not drilled			Not drilled			Not drilled
BH112			Not drilled			Not drilled			Not drilled			Not drilled
BH113	2.42	6.22	Brown/cloudy water.	2.26	6.26	Brown/cloudy water.	2.43	6.23	SI. hydrocarbon sheen. Grey, turbid with some sediment.	2.01		grey colour, sulphur smell
BH114	1.97	6.98	Brown/cloudy water.	1.85	6.82	Brown/cloudy water. Duplicate sample.	1.93	6.87	Clear.	1.53		Pale Yellow Colour, Clear, Sulphur smell
BH115	2.48	7.13	Brown/cloudy water.	2.71	7.07	Brown/cloudy water.	2.69	7.07	Clear.	2.20	7.13	Pale Yellow Colour, Clear, Sulphur smell
BH116	2.79	5.77	Grey cloudy.	-	-	Unable to locate in vegetation.	2.85	5.77	Grey sediment.	2.38	5.85	Pale Yellow Colour, Clear, Sulphur smell
BH117	2.82	5.94	Brown/cloudy water.	2.73	5.93	Brown/cloudy water.	2.79	5.97	Slightly brown, turbid.	2.38		Pale Yellow Colour, Clear, Sulphur smell
BH118	3.37	5.67	Slightly cloudy.	3.41	5.68	Clear water.	3.32	5.66	SI. white tint.	2.30	5.74	Pale Yellow Colour, Clear, Sulphur smell
BH119	3.52	6.02	Brown/cloudy water. Sulphur odour.	3.49	5.98	Brown/cloudy water.	3.43	5.96	Green / yellow tint.			No access- covered by trailor
BH120	3.66	7.09	Black/brown cloudy water.	3.61	7.11	Black/silty water.	3.54	7.11	SI. grey tint.	3.16	7.18	Pale Yellow Colour, Clear, Sulphur smell
BH121	3.80	6.27	Brown/cloudy water.	3.83	6.26	Brown/cloudy water.	3.69	6.20	Slightly brown, turbid.	3.23	6.25	
BH122	5.24	8.70	SI. brown cloudy water.	5.27	8.72	Clear water.	5.17	8.69	Slightly brown, turbid.	4.71	8.71	Clear, Sulphur smell DUPLICATE 1
BH123			Couldn't find, burried under concrete spill			Couldn't find, burried under concrete spill			Couldn't find, burried under concrete spill			Couldn't find, burried under concrete spill
BH124	3.70	7.05		3.72	7.04	Brown/cloudy water.	3.64	7.04	Sulphur odour. Milky colour, turbid.	3.18	7.06	Clear, Sulphur smell

Key: DTW DTB Depth to Water Depth to Base Borehole not monitored

	Groundwater Ob	servations							DO meter not operational
Day's at Name		00544			NII NA/A = 1		., .		20/04/2044
Project Numb	per:	29541		Site:	NLWA Edm	nonton - EP r	nonitoring	Date:	30/01/2014
Monitoring Point	DTW	DTB	Water Column	Purge Vol	рН	EC	DO	Temp.	Notes
	(mbgl)	(mbgl)	(m)	(I)		(µS)	(mg/l)	(°C)	
BH101	2.34	6.86	4.52	27	10.87	1403		13.2	Clear
BH102	-	-	-	-	-	-	-	-	Borehole destroyed
BH103	-	-	-	-	-	-	-	-	Cant find borehole
BH104									No Access
BH105									No Access
BH106	4.15	8.02	3.87	23		1212		13.1	Pale Yellow- grey Colour, Clear, Sulphur smell
BH107	1.92	5.56	3.64	22	10.16	1054		12.5	Pale Yellow- grey Colour, Clear, Sulphur smell- damaged headworks
BH108									Not Installed
BH109	1.56	4.57	3.01	18	9.41	1769		12.2	Clear, Sulphur smell
BH110	2.48	6.61	4.13	25	10.51	1467		13.8	
BH111									Not drilled
BH112									Not drilled
BH113	2.01	6.28	4.27	26	10.29	1267		15.2	grey colour, sulphur smell
BH114	1.53	6.69	5.16	31	9.33	1464		11.5	Pale Yellow Colour, Clear, Sulphur smell
BH115	2.20	7.13	4.93	30	9.22	1217		11.3	Pale Yellow Colour, Clear, Sulphur smell
BH116	2.38	5.85	3.48	21	9.45	1222		11.9	Pale Yellow Colour, Clear, Sulphur smell
BH117	2.38	5.93	3.55	21	9.53	1275		11.6	Pale Yellow Colour, Clear, Sulphur smell
BH118	2.30	5.74	3.44	21	9.07	899		11.2	Pale Yellow Colour, Clear, Sulphur smell
BH119									No access- covered by trailor
BH120	3.16	7.18	4.02	24	6.92	1534		12.3	Pale Yellow Colour, Clear, Sulphur smell
BH121	3.23	6.25	3.02	18	9.16	951		11.7	·
BH122	4.71	8.71	4.00	24	8.55	1043		12.4	Clear, Sulphur smell DUPLICATE 1
BH123									Couldn't find, burried under concrete spill
BH124	3.18	7.06	3.88		8.88	841		11.6	Clear, Sulphur smell
BH201	6.84	22.62	15.79	95	10.73	491			DUPLICATE 2. Purged 25I as well dried
BH202	2.77	20.09	17.32	104	10.19	1324			Grey cloudy, sulphur smell
BH203	5.50								Blocked - no sample
BH204	8.24	12.51	4.27	26	9.13	1062		11.0	

					I				/ ipperiant 02
	Groundwater (	Observations							
Project Numl	oer:	29541		Site:	NLWA Edi	 monton - EP n	nonitoring	Date:	29/05/2014 & 09/06/2014
Monitoring Point	DTW	DTB	Water Column	Purge Vol	рН	EC	DO	Temp.	Notes
	(mbgl)	(mbgl)	(m)	(I)		(μS)	(mg/l)	(°C)	
BH101	2.63	6.85	4.22	25	7.03	1154	1.66	16.4	
BH103									Can't locate, possibly buried
BH104	3.24	7.24	4.00	50	6.90	1810	2.17	14.9	Not sampled for a while, purged 6x volume
BH106	4.54	7.97	3.43	20	7.06	1510	3.24	13.9	
BH107	2.31	5.54	3.23	30	7.10	941	1.57	13.6	No headworks, has bung. Purged additional volume
BH109	1.91	4.55	2.64	16	7.03	1770	1.90	14.4	
BH110	2.76	6.60	3.84	23	7.01	1660	1.47	16.6	
BH113	2.24	6.24	4.01	24	6.99	1444	1.88	16.5	
BH114	1.80	6.80	5.01	29	6.98	1910	1.84	13.8	
BH115	2.60	7.14	4.54	27	6.76	1480	2.09	13.9	
BH116	2.71	5.82	3.12	18	6.77	1392	1.95	14.2	Sulphur/Decomposing Smell
BH117	2.68	5.97	3.30	19	6.86	1660	1.75	13.4	-
BH118	3.35	5.68	2.33	14	6.93	1600	1.98	14.2	
									Black water initially, insecure headworks. Purged 6x
BH119	3.45	5.97	2.52	30	6.89	2890	1.61	14.6	volume
BH120	3.56	7.12	3.56	21	6.48	1920	1.48	14.2	Sulphur/Decomposing Smell
BH121	3.76	6.30	2.55	15	6.76	1129	1.93	13.8	Sulphur/Decomposing Smell
BH122	5.17	9.73	4.56	27	5.56	1402	3.78	13.0	Sulphur/Decomposing Smell
BH123									Burried under concrete
BH124	3.62	7.04	3.42	20	6.30	863	2.93	12.9	Sulphur/Decomposing Smell. Duplicate 1
BH302	3.48	8.50	5.02	30	6.66	1771.00	1.43		Sampled on 9th of June 2014, installed 3rd June

	Groundwater	Observations							
Project Numl	ber:	29541		Site:	NLWA Edr	nonton - EP	monitoring	Date:	05/11/2014
Monitoring	DTW	DTB	Water Column	Purge Vol	pН	EC	DO	Temp.	Notes
Point	(mbgl)	(mbgl)	(m)	(I)		(µS)	(mg/l)	(°C)	
BH101	3.97	6.92	2.95	5.89	8.36	881	3.40	18.1	Purged from silty to clear
BH103									Destroyed - mapped in the location of new concrete
BH106	6.14	7.97	1.83	10.77	8.41	1254	4.41	12.90	Grey and silty
BH107	4.02	5.50	1.48	8.71	8.44	748	2.52	14.17	Purged grey to clear
BH109	2.82	4.59	1.77	10.42	8.30	1850	4.43	15.07	Woodlice in headworks
BH110	3.08	6.69	3.61	21.25	8.37	1162	2.42	17.06	Purged silty to clear
BH113	3.47	6.28	2.81	16.54	8.34	947	1.95	16.39	Silty brown, did not clear
BH114	3.09	6.85	3.76	22.14	8.47	893	2.15	15.17	Clear
BH115	3.64	7.11	3.47	20.43	8.41	984	2.57	12.15	Grey and silty
BH116	3.94	5.86	1.92	11.30	8.07	1420	4.40	12.72	
BH117	3.95	5.96	2.01	11.83	8.11	1510	3.93	12.99	Grey and silty
BH118	3.44	5.72	2.28	13.42	7.94	1167	2.66	13.11	Clear
BH119	3.67	6.02	2.36	13.87	8.00	2210	3.14	14.42	
BH120	3.72	7.15	3.44	20.22	7.57	1520	5.34	13.67	
BH121	3.81	6.29	2.49	14.63	7.82	765	2.86	12.85	
BH122	5.26	9.73	4.47	26.32	7.60	1139	3.22	12.38	
BH124	3.71	7.04	3.33	19.61	12.85	670	2.72	12.79	Grey and silty
BH302	4.58	8.47	3.90	22.93	8.39	905	2.91	17.98	
							·		

# Appendix D: Kempton Park Gravel numerical groundwater model

## **Technical note:**

## NLWA Edmonton EcoPark Energy Recovery Facility: Groundwater Flow Impacts in Kempton Park Gravels

## Introduction

The construction of excavated waste bunkers for the temporary storage of incoming waste prior to incineration is proposed as part of the Energy Recovery Facility (ERF).

The proposed floor level of these structures is at 2.5mAOD, approximately 10m below the existing ground level and as such, the excavations are likely to extend through the shallow site cover of Alluvium and Made Ground and into the underlying Kempton Park Gravels (35180rr010i3) which are designated as a secondary aquifer.

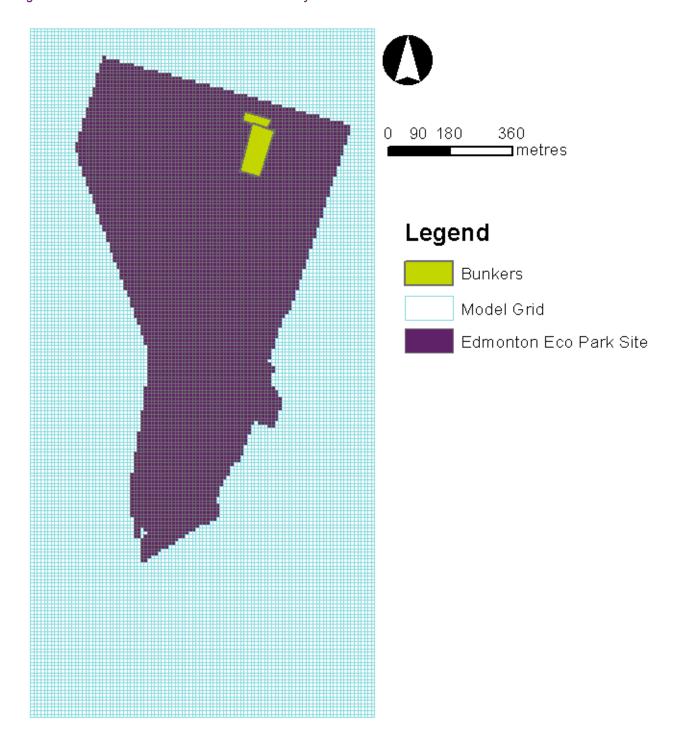
The precise design of the foundations for the bunker structures is not yet finalised, however, because of the saturated nature of the gravels an impermeable structure such as a coffer dam or sheet pile wall is likely to be necessary.

Construction of such a structure is likely to result in local modification of groundwater flow patterns and hydraulic gradients around the bunker structures which in turn may affect flows to surface water bodies such as the Lee Navigation, Enfield Ditch and Salmon's Brook which bound the site to the east and west.

In order to investigate and quantify the potential impacts upon groundwater flow around the bunker structures, a groundwater model has been developed of the Edmonton EcoPark Energy Recovery Facility site and surrounding area.

This technical note summarises the development of the groundwater model and the potential impacts upon groundwater flow patterns in the Kempton Park Gravels.

## Model Area and discretisation


The spatial extent of the model area is indicated in Figure 2.1. The model area comprises a 1000 by 500 m area centred upon the proposed ERF with the lower left corner located at NGR 53500 192000.

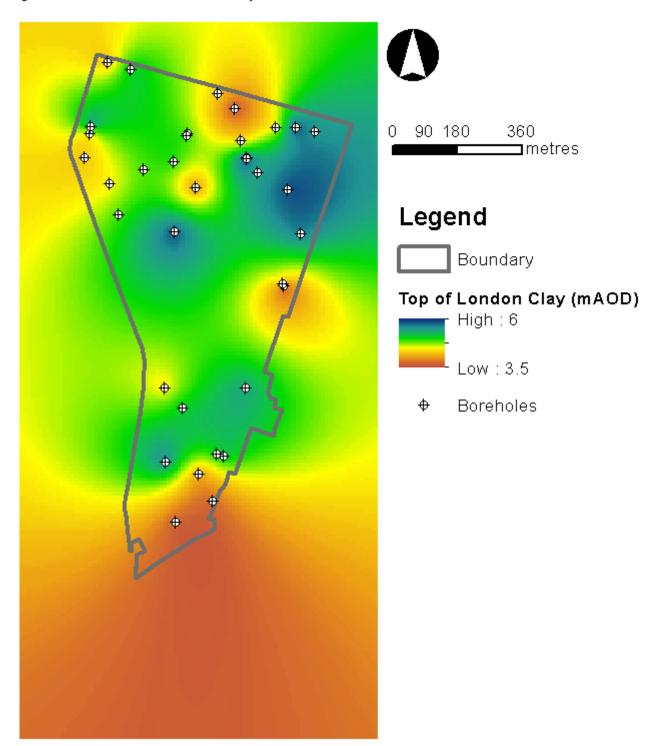
The model area was selected so that it covered the entire Edmonton EcoPark site and allowed for a buffer area so as to avoid potential boundary effects that might influence model results in the area of interest around the proposed waste bunkers.

The model has been developed using the USGS software MODFLOW-2005 version 1.9 (Harbaugh, 2005), which is an industry standard family of codes capable of modelling groundwater flow in porous media using a finite difference formulation. Extension packages allow a wide variety of boundary conditions and groundwater behaviours to be simulated.

A 5 m model grid has been assigned such that the model area comprises 200 rows and 100 columns to give a total of 20000 model cells in each model layer.

Figure 2.1 Model Area and NLWA site boundary




## 2.1 Vertical Discretisation

The groundwater model comprises two separate layers:

- ▶ An upper layer representing the Alluvium and Made Ground as delineated by topography and site investigation data; and
- ▶ A lower layer representing the Kempton Park Gravel aquifer, the base of which is delineated by the depth to London Clay as determined by intrusive site investigations

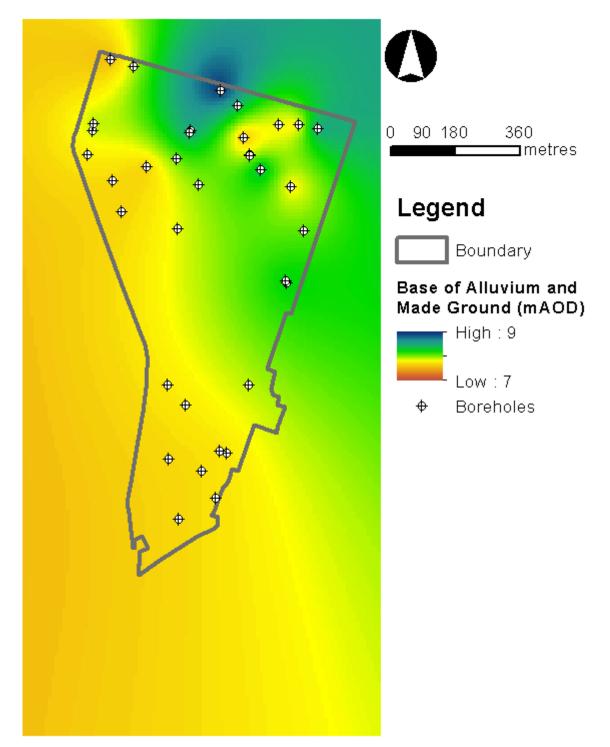

The elevation of the London Clay was determined by interpolation of depth to London Clay from the results of Amec Foster Wheeler site investigations between March 2011 and June 2014, using a simple Kriging technique. The results are given in Figure 2.2. It should be noted that this represents only one possible arrangement of the London Clay surface, which appears to laterally variable at this site.

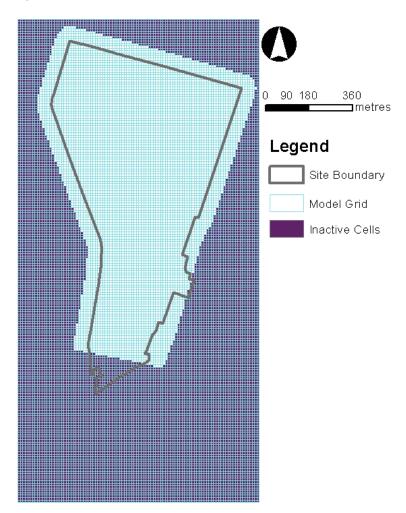
Figure 2.2 Elevation of the London Clay



Similarly, the top of the Kempton Park Gravels has also been constrained based upon site investigation data collected between March 2011 and June 2014. The interpretation (Figure 2.3) indicates a general fall in elevation of the top of the gravels towards the south western part of the site, though locally higher elevation areas occur in the vicinity of the proposed bunker area.

Figure 2.3 Base of Alluvium and Made Ground (top of Kempton Park Gravels)




## 3. Model active Area and Boundaries

Owing to uncertainties in the geological and hydrogeological conditions outside of the site boundary the active area of the model (i.e. the extent of cells in which groundwater levels and flows are calculated) has been limited.

To delineate the active model area a 30 m buffer radius was applied to the site boundary such that the active area broadly mirrored the shape of the site and was then subsequently smoothed and refined by hand to

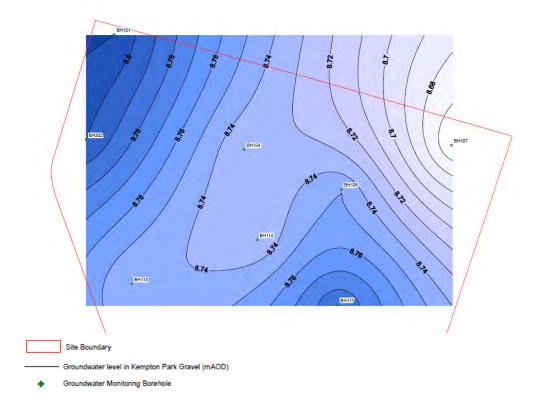

reduce complexity of the active cell geometry so as to avoid any potential boundary effects. The same extent of active model cells has been applied in both layers (Figure 3.1).

Figure 3.1 Active Groundwater Model Area



The active model boundaries were also adjusted to be more consistent with conditions of groundwater flow at the site. Interpretative contouring of groundwater levels within the Kempton Park Gravels for groundwater conditions in 2014 indicates that groundwater flow directions are generally to the south or south-southwest sub-parallel to the long axis of the site. In the north groundwater elevations indicate flow directions from the northwest and northeast are convergent upon the centre of the site.

Figure 3.2 Contoured Groundwater Levels in KPG (May 2014)



## 3.1 Boundary Conditions

No flow boundary conditions (i.e. conditions assumed to be parallel to groundwater flow lines) were initially assumed along the northern boundary of the active model area in recognition that groundwater levels indicated convergent flows from the north east and north-west.

No flow boundary conditions were also assigned along the western boundary of the active model area since groundwater contouring indicated flow directions approximately parallel to the site boundary.

In the north-west, where groundwater flows were considered to be entering the site area, a constant head boundary condition was assigned. Initially a fixed hydraulic head of 8.85 mAOD was assigned.

Owing to the cover of low permeability alluvium, direct recharge to the Kempton Park Gravels beneath the site has not been simulated. Therefore, the only groundwater inflows and outflows to the model occur via the general head boundaries.

## Model Hydraulic Properties

A series of aquifer tests in the Kempton Park Gravels were conducted in 8 No. monitoring wells across the site to determine aquifer properties. These comprised a series of short constant rate tests under low flow conditions with typical abstraction rates ranging from 0.1 to 0.16 l/s.

Groundwater elevations were measure prior to and following each test with the level within each borehole being record by a groundwater level logger running at a 1s frequency. Analysis of the test data was attempted using the Cooper-Jacob recovery method to estimate transmissivity and hydraulic conductivity.

Unfortunately, owing to very small drawdowns (<0.1m) and rapid recovery times, it was not possible to obtain robust measurements of the aquifer transmissivity using standard analysis techniques. Only a qualitative interpretation could be made that the rapid recovery and low drawdowns indicate a highly transmissive aquifer, which is consistent with a gravel formation.

Literature data for other aquifer tests in the Kempton Park Gravels indicate hydraulic conductivity in the range 0.3 – 30 m/d with transmissivity values up to 7200 m²/d (e.g. Bricker and Bloomfield, 2014; Viridor, 2014).

For the purposes of the groundwater model the hydraulic conductivity of each aquifer layer was assumed to be homogenous and isotropic such that it could be represented with a single value for each layer, as follows:

- ▶ The Alluvium/Made ground was assigned an initial hydraulic conductivity of 3m/d; and
- ▶ The Kempton Park Gravels were assigned an initial hydraulic conductivity of 30m/d.

The model was designed to be run in steady state mode reflecting long term average conditions. As a result specific yield and storativity cancel out of the model groundwater flow equations as there is no net change in the groundwater storage. However, since the model requires these as input parameters a value for specific yield of 20% and specific storage of 1 x 10⁻⁵ have been assigned and are consistent with a clayey gravel aquifer.

## 5. Model Time Stepping and initial conditions

There are insufficient time-series data with regard to both groundwater levels and recharge distributions to justify development of a transient groundwater model. Instead the model was run on a steady state basis and thus comprises a single stress period and time step. A uniform initial head of 8.7 mAOD was used, which is broadly consistent with observed groundwater levels across the site.

The model was executed in MODFLOW-2005 v 1.9 and took approximately 5 seconds to run.

### Model Refinement

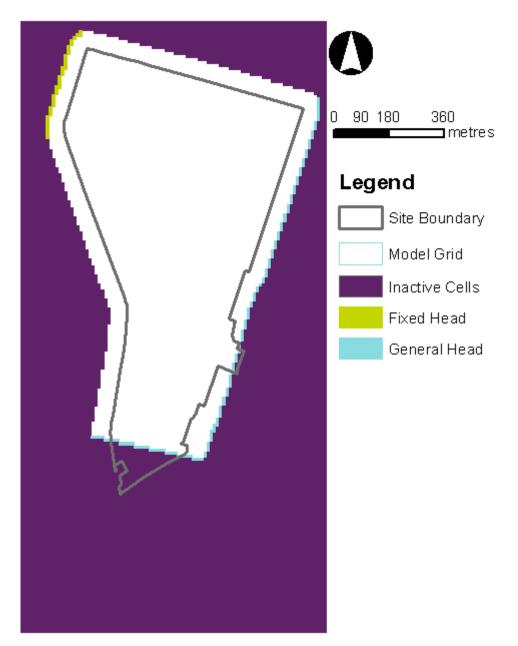
The model was iteratively refined by comparing simulated groundwater levels to the observed groundwater levels at the position of 8 No. monitoring wells within the Kempton Park Gravels. Model fit was also evaluated by the sum of square model errors to observation data during each refinement step.

The overall spatial pattern of groundwater flow was also compared with interpreted groundwater conditions to ensure flow directions were realistic and consistent with the site conceptual understanding.

A summary of the Key refinement steps is presented in Table 6.1

Table 6.1 Summary of Model Refinement Steps

Model Run	Refinement Adjustments	Effects of Adjustment	Sum of Square Errors
1	Initial model run	Good model fit (within 0.1m) but some dry cells, suggest rerunning with initial heads at top of model to allow more natural drying (since rewetting is not active)	1.30 x 10 ⁻²
2	Set initial heads to top of model	Almost the same fit as above suggesting initial heads have little impact	1.30 x 10 ⁻²
3	Increased K from 30m/d in the gravel to 50m/d	Fit degraded though spatial pattern of heads is similar. Boundary conditions may be forcing gradients too much?	1.33 x 10 ⁻²
4	Decreased K in gravel to 10m/d	Spatial pattern of heads similar, slightly improved overall residual fit	1.26 x 10 ⁻²
5	Keep Layer 2 K at 10m/d, lower layer 1 K from 3m/d to 0.3m/d		1.28 x 10 ⁻²


6	Revised GHB so that it reflects the fall in regional gradient to the south from ~8.7mAOD to 7.3mAOD,	General pattern of flows appears more realistic, though error to heads is greater, some further refinement of K (i./e. non uniform) might be required	9.81 x 10 ⁻¹
7	reduced K in made ground from 0.3 to 0.1m/d	Similar overall fit to the above suggesting that the model is not especially sensitive to the made ground value	9.85 x 10 ⁻¹
8	Increased GHB head by 0.4m to see if a better match to observed can be achieved (current match is a bit low)	Fit now pretty good, spatial pattern ok (generally similar to above and to mapped)	1.71 x 10 ⁻¹
9	New IBOUND (bas file) to represent proposed foundations		1.57 x 10 ⁻¹
10	Set K of Layer 2 (Gravels to 30m/d), all else unchanged	Sensitivity run to check hydraulic conductivity	1.55 x 10 ⁻¹
11	Set K of Layer 2 (Gravels) to 90m/d, all else unchanged	Sensitivity run to check hydraulic conductivity	1.47 x 10 ⁻¹
12	As Run 11 except reset BAS file to Run 002 (i.e. no bunkers)	Sensitivity run to check hydraulic conductivity	1.69 x 10 ⁻¹
13	As Run 10 except reset BAS file to Run 002 (i.e. no bunkers)	Sensitivity run to check hydraulic conductivity	1.72 x 10 ⁻¹

Following run 6 and in recognition that the general head boundary to the north west of the model may be having too strong of an influence on the groundwater levels, a number of changes were made to the arrangement of the general head boundary conditions. It was also recognised that the site may be hydraulic constrained between the Salmon's Brook in the west and north-west and by the Lee Navigation to the east. The general head boundaries were therefore modified such that new general head boundary condition was added along the eastern boundary of the active model area with assigned heads reflecting the regional flow direction in Kempton Park Gravels from north to south..

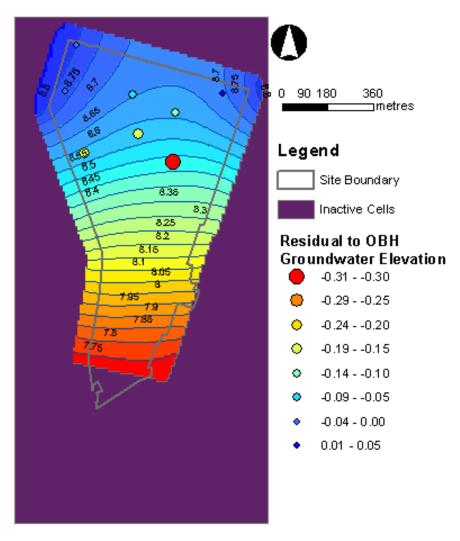
General Head boundary conditions are "Cauchy" second order boundary condition in which flux across the boundary is calculated dependent upon difference between the modelled groundwater head within the active area, the assigned boundary head and a conductance term which accounts for the hydraulic properties of the aquifer at the boundary. Such conditions allow flows to occur in either direction across the boundary. The conductance of the general head boundary conditions was calculated using the assigned hydraulic conductivity to each layer and the within cell thickness of the gravel and alluvial layers.

An additional general head boundary was also added at the southern extent of the active model area in order to allow groundwater flows to leave the model in this direction. The no flow boundary parallel to the Salmon's Brook, effectively assumed to be a flow line along the western border of the site was retained.

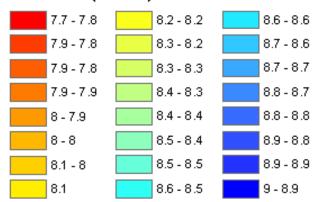
Figure 6.1 Refined Model Boundary Conditions



Whilst these changes resulted in an overall degradation of model the overall spatial pattern of flows remained consistent with interpreted flow directions.


During refinement the model showed the greatest sensitivity to the parametrisation of the general head boundary and limited sensitivity to changes to the gravel or Alluvium hydraulic conductivity. These changes to hydraulic conductivity did not result in large changes to overall model fit. It should be noted that some fits to borehole data improved whilst others degraded.

No attempt was made to locally refine hydraulic conductivity in order to improve model fit to data at individual observation boreholes. Only global changes to layer hydraulic conductivity were made throughout the refinement.


## 7. Results

Model run 08 (Figure 7.1) was considered to provide a good overall fit to observed groundwater levels and general groundwater flow patterns and was, therefore, used for assessing the impact of the bunker. The final hydraulic conductivity parameters were 0.1 m/d in the Made Ground and Alluvium and 10 m/d in the Kempton Park Gravels, which is within the range of literature parameters identified.

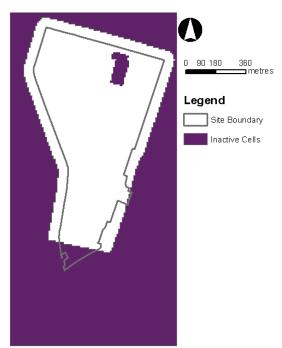
Figure 7.1 Model Run 08 Results



## Modelled Groundwater Elevation (mAOD)



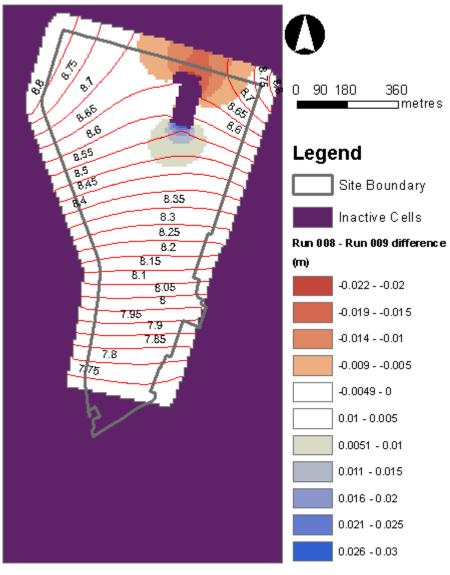
Modelled heads at observation boreholes are generally slightly below observed levels, and square residuals are larger further south suggesting that a slight reduction in hydraulic conductivity would probably improve overall fit and better match hydraulic gradients. However, overall residuals are small (<0.5m) and further improvements are unlikely to be substantial. The overall pattern of groundwater flows also matches reasonably well to interpreted patterns of flow.


In the absence of local refinement to hydraulic conductivity the achieved fit is considered to be acceptable for comparative assessment of changes to the modelled hydraulic gradient as a result of the construction of the bunker.

## 7.1 Assessment of changes to hydraulic gradient

To assess the impact of the bunker construction the bunkers were simulated as inactive model cells in both layers such that groundwater will be diverted around the structure. The inactive cells simulates that bunker extends to the base of the KPG. The arrangement of the inactive cells is indicated in Figure 7.2.

Since the model is a steady state scenario no attempt has been made to simulate the construction phase of the bunkers.






Following construction of the bunker structures (Figure 7.3) the model predicts that up-gradient groundwater levels will increase slightly by up to 0.02m in the area immediately north of the bunkers as a result of the backing up of water behind the structure. Conversely, groundwater levels to the south of the proposed bunkers are predicted to fall slightly by approximately the same amount.

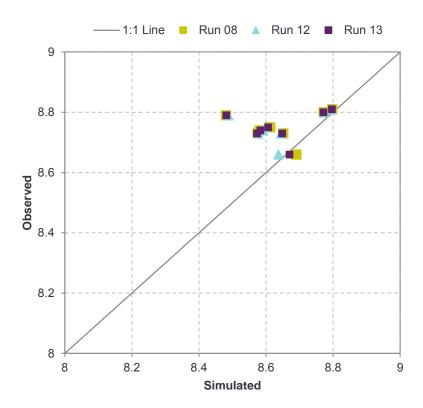
The changes to groundwater elevation are predicted to be local (<150 m) to the bunker and are of small magnitude (within the likely range of measurement error on groundwater elevations). Beyond this distance groundwater elevations are predicted to be essentially identical (<0.005m difference).

Figure 7.3 Predicted change to hydraulic gradients and groundwater elevations following bunker construction (Run 09)



Run 09 Modelled Groundwater Levels (mAOD)

## 7.2 Sensitivity Runs


In recognition that site specific measurements of transmissivity could not be obtained, sensitivity assessments were carried out at two higher values of hydraulic conductivity within the Kempton Park Gravels at 30m/d and at 90m/d.

Increasing hydraulic conductivity tended to result in lower magnitude changes to groundwater elevations (<0.2m) although the effects are predicted to occur over a wider area.

In terms of model fit, the low overall sensitivity to hydraulic conductivity is illustrated by Figure 7.4 which plots observed groundwater levels against simulated. This indicates only minor changes in model fit to observations at different values of hydraulic conductivity.

Figure 7.4 Model sensitivity to changes in hydraulic conductivity

## **Model Sensitivty to Hydraulic Conductivity**



## 8. Summary

A groundwater model using MODFLOW-2005 has been constructed for the Edmonton EcoPark Energy Recovery Facility and immediate surrounding area. The model comprises two layers; the upper layer represents the shallow cover of Alluvium and Made Ground, the lower layer representing the Kempton Park Gravel aquifer. Layer elevations were determined from interpolation of site investigation data. Groundwater inflows and outflows were simulated using constant head and general head boundary conditions, no direct recharge is simulated. Hydraulic parameters were informed by literature data and model refinement suggested final values of 10m/d in the Kempton Park Gravels and 0.1m/d in the Alluvium. The model achieves a good fit to observations of groundwater levels within the Kempton Park Gravels and the spatial distribution of modelled heads and flow directions is consistent with interpretations of field data.

Assessments of the impact of constructing deep waste bunkers into the Kempton Park Gravel aquifer indicate that groundwater levels hydraulic gradients will be modified by up to 0.02m in the area immediately surrounding the facility.



**Author** 

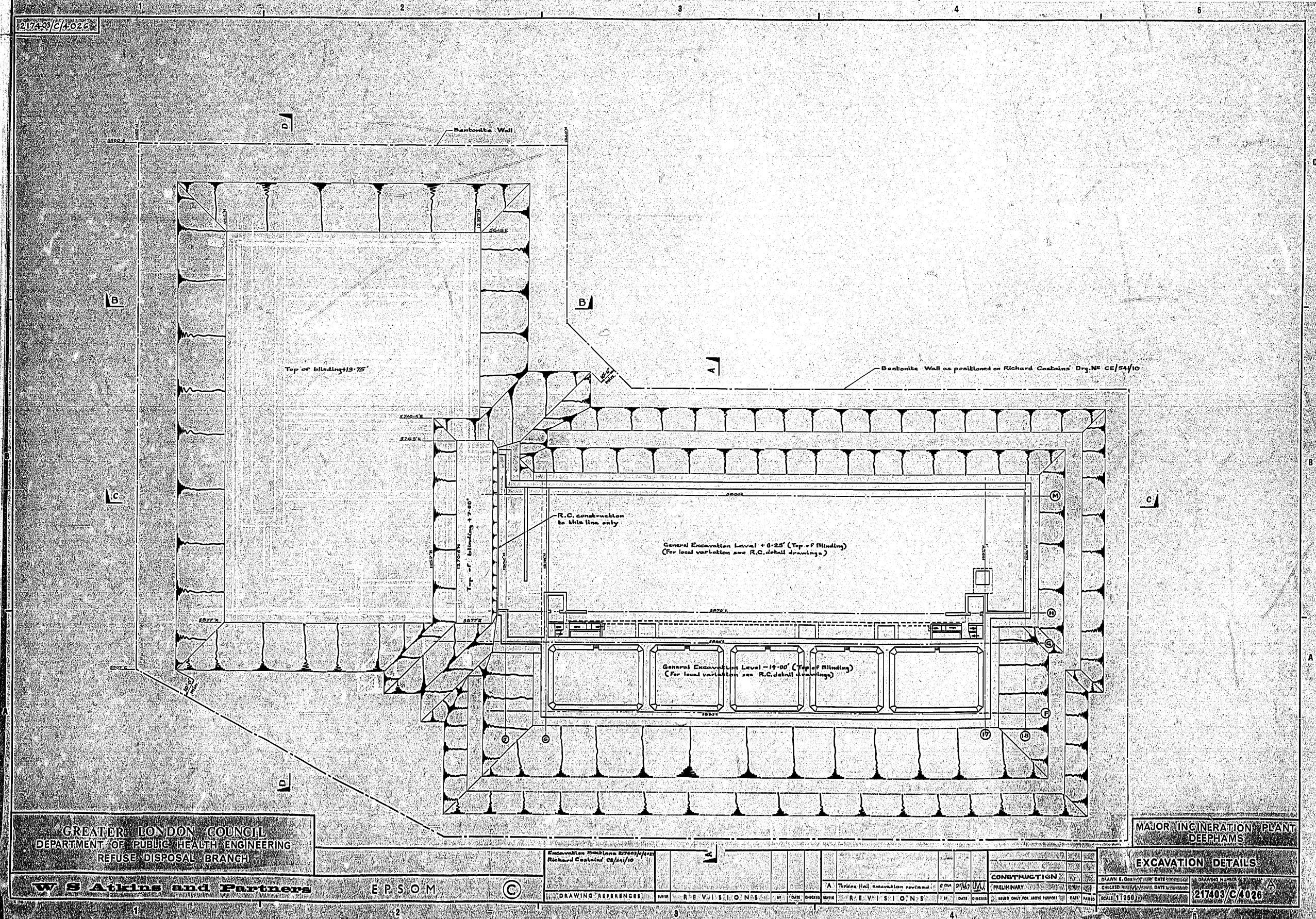
Simon Cook

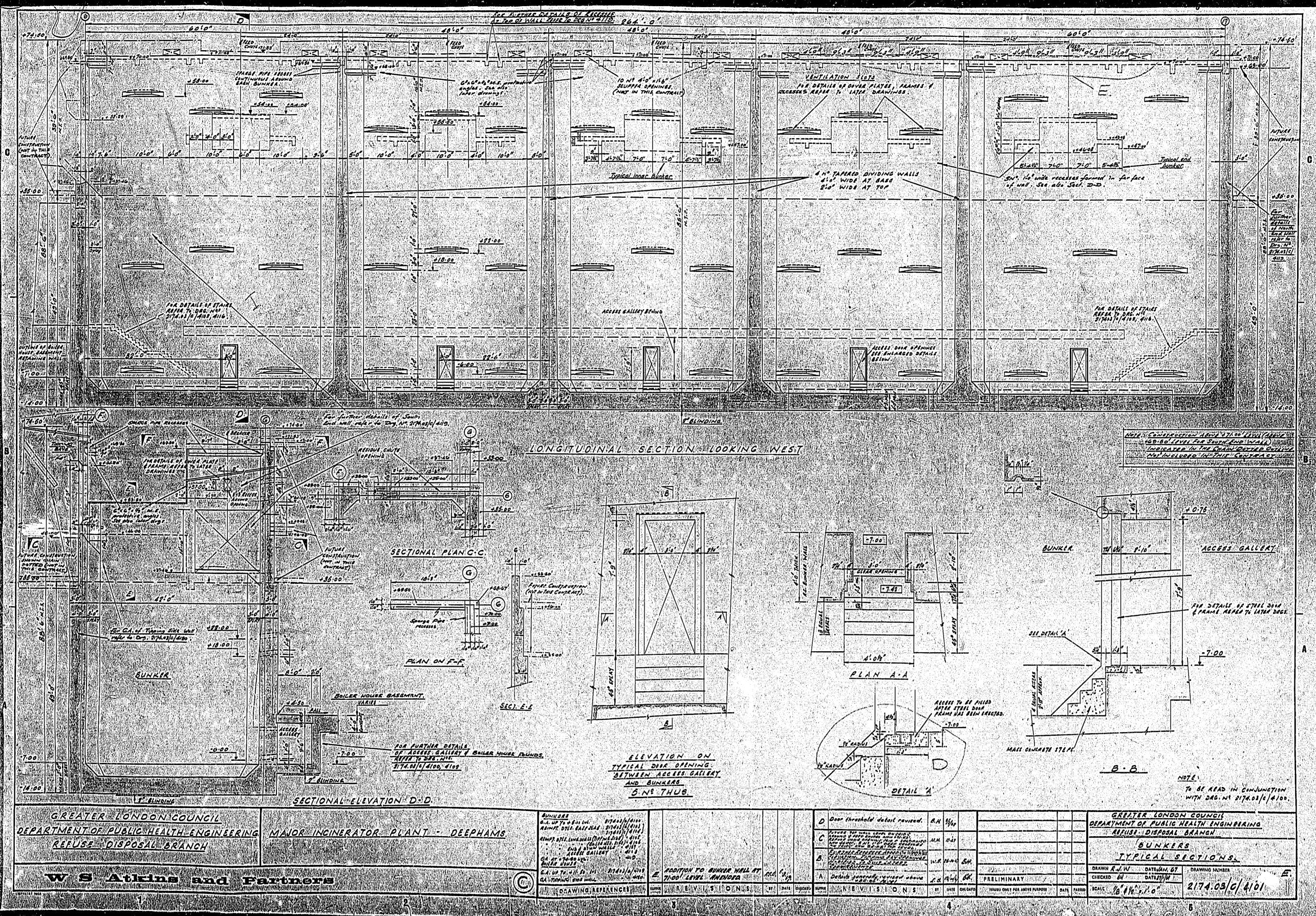
Reviewer

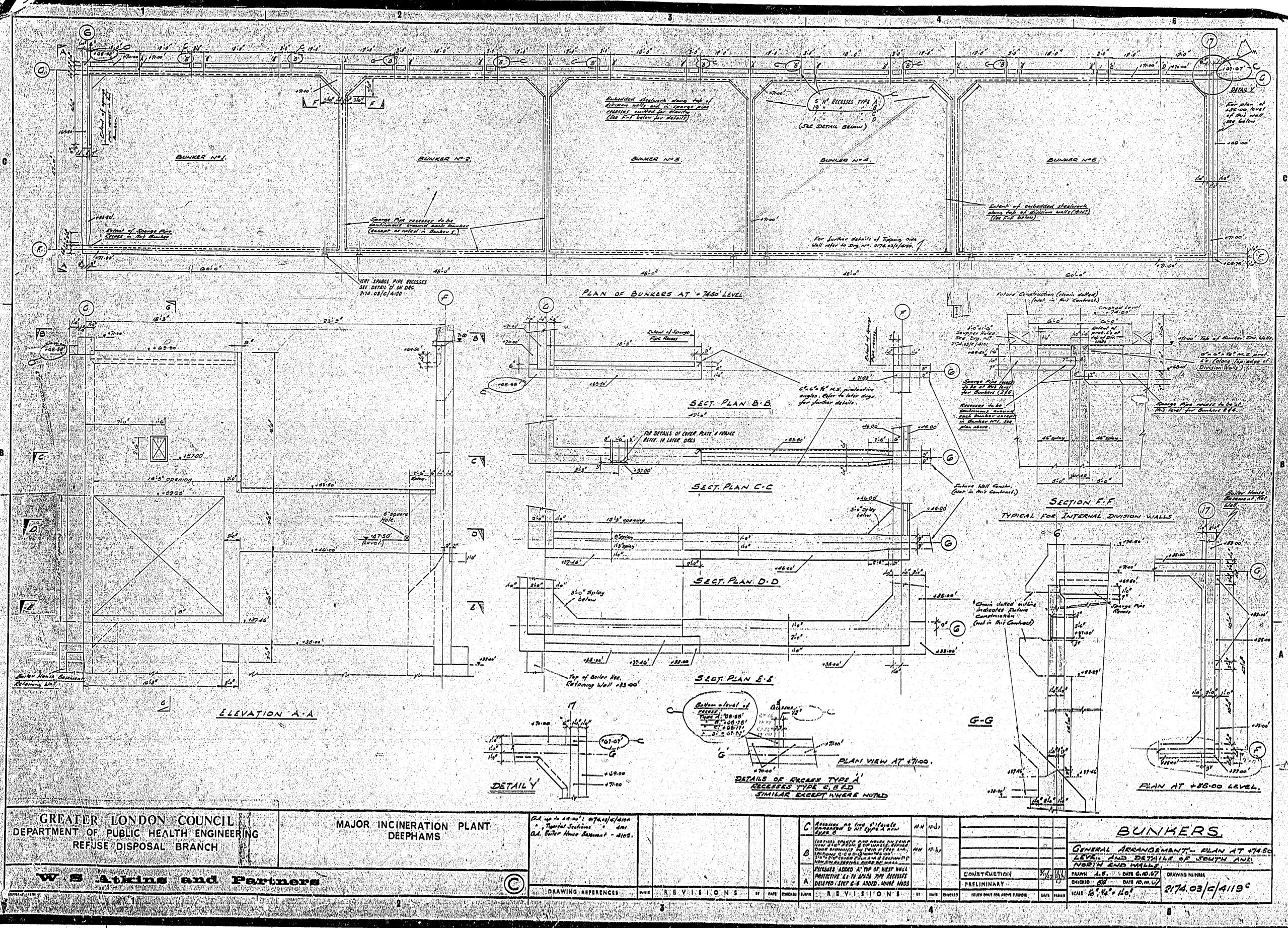
Ben Fretwell

## Copyright and non-disclosure notice

The contents and layout of this report are subject to copyright owned by Amec Foster Wheeler (© Amec Foster Wheeler Environment & Infrastructure UK Limited 2015), save to the extent that copyright has been legally assigned by us to another party or is used by Amec Foster Wheeler under licence. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of Amec Foster Wheeler. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.


### Third party disclaimer


Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by Amec Foster Wheeler at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. Amec Foster Wheeler excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.


## Management systems

This document has been produced by Amec Foster Wheeler Environment & Infrastructure UK Limited in full compliance with the management systems, which have been certified to ISO 9001, ISO 14001 and OHSAS 18001 by LRQA.

# Appendix E: Energy from Waste facility design drawings







# Appendix F: Initial groundwater risk assessment screening table

## TITLE: 20125 - NLWA - Edmonton - Emissions Hazard Identification (HAZID) from the AD Plant

#### This spreadsheet comprises the following worksheets

Worksheet

Node 1 HAZID for process water system

Node 2 HAZID for feedstock preparation

Node 3 HAZID for drainage system

Node 4 HAZID for gas system and hot water systems
Node 5 HAZID for Digestion and Pasteurisation System

Node 6 HAZID for rejects from pulper Node 7 HAZID for odour scrubbers

Risk Matrix and Notes Risk matrix and notes (e.g. consequence and likelihood scores)

Risk Look UP Lookup table that links node risk with risk matix

#### Copyright and Non-Disclosure Notice

The contents and layout of this report are subject to copyright owned by AMEC (@AMEC Environment & Infrastructure UK Limited 2011) save to the extent that copyright has been legally assigned by us to another party or is used by AMEC under licence. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report.

The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of AMEC. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.

#### Third Party Disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by AMEC at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. AMEC excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

							DRAFT						HAZID Worksheet
TITLE:	20125 - NLV	VA - Edmon	ton - Emissions	s Hazard Iden	tification (HAZID) fro	om the A	AD Plant						
Date:	29-Jul-11				,								
Description:		•			rated on site. Process water	is a low stre	ngth liquor.	T	T	T	1		T
Reference Documents			t Plan using the Relian n here would equally ap		comparable surrogate. ND.								
Drawings:		GMWD	A_ENP_G_6017_001,	002, 6013_001, 60	16		fore Safegua			ter Safeguar			
		Hazardous				Risk	- Scenario/	Event	Risk	- Ground V	Vater		
Hazard Category	Guide word	Scenario/	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
	Routine	Sampling causes spillage	Small quantity may be walked about	Impermeable surface.	Ensure adequate hosedown provision is made.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	SW	Residual risk to groundwater only arises if bund fails or overlops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Routine	Level controls incorrectly set causing overflow.	Significant quantity enters bund	Tiered level controls to provide safeguard. Overflows drain to bunded area.	Ensure adequate operator training.	E-Minor	3-Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Operational / Process Hazards	Non-routine	Pipe flushing to clear blockages	Small quantity of process water is spilled.	Impermable surface and contained drainage system.	Ensure screens/pulpers remove contrary material.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Process Upsets	Foaming causes spillage	Small quantity enters bund or inside of building.	or contained within building drainage system.	Ensure adequate operator training.	E-Minor	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Routine	Replacement of wear parts in pumps causes spillage.	Small quantity contained inside buildings	Impermable surface and contained drainage system.	Ensure adequate hosedown provision is made.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.  Residual risk to groundwater only arises if bund fails or overtops, leakage occurs
Maintenance / Mechanical Hazards	Routine	Mixers lifted out of tanks with process water attached.	Small quantity enters bund or inside of building.	Impermable surface and contained drainage system. Impermable	Ensure adequate hosedown provision is made.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	residual risk to groundwater only arises it build rais or overlops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.  Residual risk to groundwater only arises if bund fails or overlops, leakage occurs
	Reactive	Failed wetted item requires replacement, causing spillage	Small quantity contained inside buildings	surface and contained drainage system and/or within the bunded area.	Ensure adequate hosedown provision is made.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	through cracks/seals or leakage (exfiltration) from drainage system.
	Acute	Process water tank T-1701 ruptures	Large quantity of process water enters bunded area	Impermeable bund.	Check rainwater drainage system is interlocked to a spillage detection system.	B-Massive	2-Highly Unlikely	High	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Acute	External pipework ruptures	Large quantity of process water enters bunded area	Impermeable bund.	Check rainwater drainage system is interlocked to a spillage detection system.	C-Major	2-Highly Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Failures	Acute	Internal pipework ruptures	Large quantity of process water enters building	Impermable surface and contained drainage system.	Check building drainage system is sized to cope with this eventuality.	C-Major	2-Highly Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Chronic	Minor unrepaired leaks	Small quantity enters bund or inside of building.	Impermable surface and contained drainage system and/or within the bunded area.	Ensure adequate financial and staffing provision is made.	F-Slight	3-Unlikely	Low	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Chronic	Undetected underground leaks	Small quantity of process water enters groundwater	All pipework above ground. Tank bases designed and constructed to BSI standards.	Where tanks require bottom drains, ensure pipework is encased in the concrete base.	D- Moderate	1-Remote	Low	E-Minor	1-Remote	Low	GW	The consequence of this risk is that small quantities of process water enters the underlying geology and ultimately groundwater. The quantities involved would have to be immeasurably small, otherwise they would be detected during normal operation.
	Weather	Storm event coincides with catastrophic tank failure.	Bund is overwhelmed, releasing polluted water into unbunded areas.	Design bund rainwater drainage system for 1 in 100 year storm.	Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac roadways)			#N/A	E-Minor	2-Highly Unlikely	Low	SW/GW	Frequency assumes this combines likelihood of 1:100 storm and likelihood of catastrophic failure.
Location Hazards	Weather	Rainfall	Any depositions on the external bunds may cause contamination of the rainwater.	Some rainwater used in the process. Excess rainwater discharged to surface water sewer.	Control system required to differentiate between water suitable for surface water sewer discharge and contaminated water that needs to be treated on site. Operators to be trained and motivated to keep contamination to a minimum.  Consider integrating a SUDS system into the site.			#N/A		6-Highly Likely	Nil	sw/gw	Rainfall will dilute contaminants and correct design of drainage system will mean there is no impact.
	Traffic/Deliveries	Spillage during delivery	Contamination of rainwater.	Delivery areas separately bunded within main bund. Rainwater contamination control system and procedures.	Include oil interceptor on surface water drain connection. Ensure adequate operator training. Ensure tanker loading points drain back to the process water system.	E-Minor	4-Possible	Medium	E-Minor	1-Remote	Low	SW/GW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Chemicals	Polyelectrolyte spillage	Small quantity may be walked about	Impermeable surface.	Ensure adequate hosedown provision is made.	F-Slight	3-Unlikely	Low	F-Slight	1-Remote	Low	SW/GW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Subsidence/Heave	Causes a leak and breaches the impermeable surfaces	Small quantity enters bund or inside of building, but drains into subsoil.	All structures designed and constructed to BSI standards.	If ground conditions dictate, use a specialist design and build contractor.			#N/A	C-Major	1-Remote	Medium	GW	None of the materials that could leak into the groundwater could have more than a major effect on the groundwater.
Other Hazards	Any Other Hazards / Issues	Fire	Large amounts of water used which could be contaminated.		Include fire containment and sprinkler systems. Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac roadways)	C-Major	3-Unlikely	High	D- Moderate	1-Remote	Low	SW/GW	Direct risk to surface water, remote risk to groundwater.

TITLE:	20125 - NLV	VA - Edmont	on - Emissions	Hazard Ident	ification (HAZID) fro	m the Al	) Plant						
Date:	29-Jul-11		notion from Dono drum	s is washed aloon	dry colide are adjusted and sh	ıdan in staro	<u> </u>						
Description:					dry solids are adjusted and slucomparable surrogate.	lage is store	u. T				1		
Reference Documents		dered here could b	oe significantly different	t for a 'dry' MBT-AD	plant.	D ₀	fore Safegua	urde	Δ4	ter Safegua	rdo		
Drawings:			A_ENF_G_0011_002,	003, 004, 0013_00	2		- Scenario/			- Ground V			
Hazard Category	Guide word	Hazardous Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
	Routine	Sampling	Small quantity may be walked about	surface. ABPR requirements segregate clean	Ensure adequate hosedown provision is made and sludge sampling valves are approprately sized and located.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	sw	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Routine	Level controls incorrectly set causing overflow.	Significant quantity enters bund	Tiered level controls to provide safeguard. Overflows drain to bunded area.	Ensure adequate operator training.	E-Minor	3-Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Operational / Process Hazards	Routine	Feed conveyor spillages	Small quantities of high strengh material is spilled.	Impermeable surface.	Use enclosed conveyors where practicable.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Non-routine	Pipe flushing to clear blockages	Small quantity of high strengh material is spilled.	contained drainage system.	Ensure screens/pulpers remove contrary material.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Process Upsets	Foaming causes spillage	bund or inside of	All overflows run to bunded areas or contained within building drainage system.	Ensure adequate operator training.	E-Minor	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Routine	Replacement of wear parts in pumps causes spillage.	Small quantity enters bund or inside of building.	Impermable surface and contained	Ensure adequate hosedown provision is made.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Maintenance / Mechanical Hazards	Routine		Small quantity enters bund or inside of building.		Ensure adequate hosedown provision is made.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Reactive	Falied wetted item requires replacement, causing spillage	Small quantity enters bund or inside of building.		Ensure adequate hosedown provision is made.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Acute	Sludge buffer tank ruptures	Large quantity of thick sludge enters bunded area	Impermeable	Check rainwater drainage system is interlocked to a spillage detection system.	D-Moderate	2-Highly Unlikely	Medium	F-Slight	1-Remote	Low	sw	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Acute	External pipework ruptures	Large quantity of thick sludge enters bunded area		Check rainwater drainage system is interlocked to a spillage detection system.	D-Moderate	2-Highly Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Failures	Acute	Internal pipework ruptures	material enters	contained	Check building drainage system is sized to cope with this eventuality.	D-Moderate	2-Highly Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Tanbies	Chronic	Minor unrepaired leaks	Small quantity enters bund or inside of building.		Ensure adequate financial and staffing provision is made.	F-Slight	3-Unlikely	Low	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Chronic	Undetected underground leaks	Small quantity of thick sludge enters groundwater	designed and	Where tanks require bottom drains, ensure pipework is encased in the concrete base.	D-Moderate	1-Remote	Low	F-Slight	1-Remote	Low	GW	The consequence of this risk is that small quantities of sludge enters the underlying geology and ultimately groundwater. The immobility of this sludge means that only very small quantities can escape into the underlying geology.
Location Hazards	Weather	Storm event coincides with catastrophic tank failure.	Bund is overwhelmed, releasing polluted water into unbunded areas.	Design bund rainwater drainage system for 1 in	Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac roadways)			#N/A	F-Slight	1-Remote	Low	SW/GW	Frequency assumes this combines likelihood of 1:100 storm and likelihood of catastrophic failure.
Essaion mazarus	Subsidence/Heave	Causes a leak and breaches the impermeable surfaces	bund or inside of	All structures designed and constructed to BSI standards.	If ground conditions dictate, use a specialist design and build contractor.			#N/A	C-Major	1-Remote	Medium	SW/GW	None of the materials that could leak into the groundwater could have more than a major effect on the groundwater.
Other Hazards	Any Other Hazards / Issues	Fire	Large amounts of water used which could be contaminated.	impermeable	Include fire containment and sprinkler systems. Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac roadways)	C-Major	3-Unlikely	High	D- Moderate	1-Remote	Low	SW/GW	Direct risk to surface water, remote risk to groundwater.

TITLE:	20125 - NLW	/A - Edmoni	on - Emissions	Hazard Ident	ification (HAZID) fro	m the A	D Plant						
Date:	29-Jul-11												
Description:	Drainage system.	Receives variou	s low strength liquors a	and building washdo	owns								
Reference Documents			Plan using the Reliand		comparable surrogate.								
Drawings:	7 til concepto and c	Somments snown	GMWDA ENP	, ,	ь.	Re	efore Safegu	arde	Δ	fter Safegua	rde		
Drawings.			GWWDA_ENF_	G_0022			- Scenario			c - Ground V			
Hazard Category	Guide word	Hazardous Scenario/	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
Operational / Process Hazards	Routine	Event  Level controls incorrectly set causing overflow.	Significant quantity enters bund	Tiered level controls to provide safeguard. Overflows drain to bunded area.	Ensure adequate operator training.	E-Minor	3-Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Non-routine	None						#N/A			#N/A		
	Process Upsets	None						#N/A			#N/A		
Maintenance / Mechanical Hazards	Routine	Pumps lifted out of tanks with dranage water attached.	Small quantity enters bund or inside of building.	contained drainage system	Ensure adequate hosedown provision is made. Provide lay-dawn area above drainage sump.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Reactive	None						#N/A			#N/A		
Failures	Acute	Pump in sump fails, causing overlfow	Significant quantity enters bund	Duty standby pump system. Pump protection screen. All overflows run to impermeable bunded areas.	Ensure adequate operator training.	E-Minor	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Chronic	None						#N/A			#N/A		
	Chronic	Undetected underground leaks from pump sump	Small quantity of drainage water enters subsoil	Pump sump designed and constructed to BSI standards.	Regularly inspect sumps regarding cracks and structural integrity.	E-Minor	3-Unlikely	Medium	E-Minor	2-Highly Unlikely	Low	GW/SW	Fluids involved are likely to be very low in contamination.
Location Hazards	Weather	Excessive rainfall enters drainage sump.	Sump fills process water tank to excess and then overifows into bunded area.	Floor falls designed to minimise intrusive rain water. Bund adequately sized.	Consider rainwater removal from the bund and how this affects the drainage system.	E-Minor	3-Unlikely	Medium	E-Minor	1-Remote	Low	sw	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Subsidence/Heave	Breaches the impermeable sump.	Small quantity but drains into subsoil.	All structures designed and constructed to BSI standards.	If ground conditions dictate, use a specialist design and build contractor.	C-Major	1-Remote	Medium	C-Major	2-Highly Unlikely	Medium	GW/SW	None of the materials that could leak into the groundwater could have more than a major effect on the groundwater.
Other Hazards	Any Other Hazards / Issues	Fire	Large amounts of water used which could be contaminated.	Large parts of the site are bunded or	Include fire containment and sprinkler systems. Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac roadways)	C-Major	3-Unlikely	High	D- Moderate	1-Remote	Low	SW/GW	Direct risk to surface water, remote risk to groundwater.
	Power failure	Sump continues to fill by gravity flows.	Sump is overtopped	Overflows to bund. Alarm raised for power failure.	Ensure plc alarms out for power failure. Ensure operators have appropriate training.	E-Minor	4-Possible	Medium	F-Slight	3-Unlikely	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.

TITLE:	20125 - NLV	VA - Eamon	ton - Emission	s Hazard Iden	tification (HAZID) fro	om the A	AD Plant						
Date:	29-Jul-11												
Description:	Gas System and	hot water systems	s. Cleans and dries th	ne digester gas for s	supply to CHP and boiler plant	that provide	s process he	eat in the for	m of hot wate	r.			
Reference Documents			Plan using the Relian here would equally a		comparable surrogate.								
Orawings:			GMWDA_ENP_G_6	018_001, 002		Be	fore Safegua	ards	A ⁻	fter Safeguar	ds		
						Risk	<ul><li>Scenario/</li></ul>	Event	Risk	- Ground W	/ater		
Hazard Category	Guide word	Hazardous Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
Operational / Process Hazards	Routine	Release of condensate from gas lines at points outside the condensate sump	Condensate is spilled on pervious ground		Design gas lines to obviate the need for secondary drain points	F-Slight	4-Possible	Medium	F-Slight	2-Highly Unlikely	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occu through cracks/seals, leakage (exfiltration) from drainage system or leakage occurs from the short sections of gas lines that may be outside the bunded are Gas condensate is effectively distilled water with dissolved gases and minor contamination from digestate particulates and therefore poses little risk of contamination. Volumes are comparatively minute.
	Non-routine	None						#N/A					
	Process Upsets	Foam enters gas lines that then have to be washed out	Dirty water is spilled on pervious ground		Design gas lines so that washout points drain back to the site bund.	E-Minor	3-Unlikely	Medium	F-Slight	2-Highly Unlikely	Low		
Maintenance / Mechanical Hazards	Routine	Spillage during oil replacement on CHP.	Oil may land on pervious ground	CHP units are normally self bunded and/or are supplied with oil tanks to facilitate clean oil changes.	Specify CHP units with this requirement in mind.	E-Minor	3-Unlikely	Medium	E-Minor	2-Highly Unlikely	Low	GW	
	Reactive	None						#N/A					
Failures	Acute	Catastrophic failure of stored oil tank	Oil may land on pervious ground	Oil tanks are bunded.	Consider putting oil tanks in the bunded area.	D- Moderate	3-Unlikely	Medium	D- Moderate	1-Remote	Low	GW	
	Chronic	Unseen leak to condensate system	Condensate leaks onto pervious ground	Most gas lines are within the site bund.	Regular inspections of all gas lines.	F-Slight	4-Possible	Medium	F-Slight	2-Highly Unlikely	Low	GW	See above
	Weather	None						#N/A			#N/A		
Location Hazards	Subsidence/Heave	None						#N/A			#N/A		
Other Hazards	Any Other Hazards / Issues	Fire	Large amounts of water used which could be contaminated.	Large parts of the site are bunded or impermeable.	Include fire containment and sprinkler systems. Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac roadways)	C-Major	3-Unlikely	High	D- Moderate	1-Remote	Low	SW/GW	Direct risk to surface water, remote risk to groundwater.

TITLE:	20125 - NLV	VA - Edmon	ton - Emissions	Hazard Ident	tification (HAZID) fro	m the A	D Plant						
Date:	29-Jul-11		m. Troots foodstock s	sludgo biologically to	produce digester gas and dig	roctato hos	t troate the di	gostato to ki	Inathogons				
Description:	•					Jesiale, nea	i ireais irie ui	gestate to ki	ii patriogeris.	1			
Reference Documents			be significantly differer		comparable surrogate. ) plant.								
Drawings:		GMWDA_E	NP_G_6014_001, 002	& GMWDA_ENP_G	a_6015		fore Safegua			fter Safegua			
		Hazardous				Risk	- Scenario/	Event	Risk	- Ground V	Vater		
Hazard Category	Guide word	Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
	Routine	Sampling	Small quantity may be walked about	Impermeable surface within bund. Clean and dirty areas under ABPR requirements.	Ensure adequate hosedown provision is made.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	sw	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Operational / Process Hazards	Non-routine		Small quantity of digestate is spilled.	Impermeable surface within bund. Clean and dirty areas under ABPR requirements.	Ensure screens/pulpers remove contrary material to reduce risk of blockages ocurring.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Process Upsets	Foaming causes spillage	Potentially large quantity of sludge enters bund.	All overflows run to impermeable bunded areas.	Operate digester as designed to reduce the risk of foaming.	E-Minor	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Routine	Replacement of wear parts in pumps causes spillage.	Small quantity contained inside bunded area.	drainage system.	Ensure adequate hosedown provision is made.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Maintenance / Mechanical Hazards	Routine	Oil spillage during compressor maintenance.	Small quantity of oil enters bund.	Impermable surface and contained drainage system.	Provide oil soak-up material on site. Use biodegradable oil.	E-Minor	4-Possible	Medium	E-Minor	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Reactive	Failed wetted item requires replacement, causing spillage	Small quantity of digestate spilled into bunded area.		Ensure adequate hosedown provision is made.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Acute	Digestion tank ruptures.	Large quantity of digestate enters bunded area	Impermeable bund.	Check rainwater drainage system is interlocked to a spillage detection system.	B-Massive	2-Highly Unlikely	High	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occur through cracks/seals or leakage (exfiltration) from drainage system.
	Acute	External pipework ruptures	Large quantity of digestate enters bunded area	Impermeable bund.	Check rainwater drainage system is interlocked to a spillage detection system.	B-Massive	2-Highly Unlikely	High	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Failures	Chronic	Minor unrepaired leaks	Small quantity of digestate enters bund.	Impermable surface and contained drainage system and/or within the bunded area.	Ensure adequate financial and staffing provision is made.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	see comments for previous nodes
	Chronic	Undetected underground leaks	Small quantity of digestate enters groundwater	All pipework above ground. Tank bases designed and constructed to BSI standards. Digestate tends to self seal.	Where tanks require bottom drains, ensure pipework is encased in the concrete base.	D-Moderate	2-Highly Unlikely	Medium	F-Slight	1-Remote	Low	GW	The consequence of this risk is that small quantities of sludge enters the underlying geology and ultimately groundwater. The immobility of this digestate means that only very small quantities can escape into the underlying geology.
l a selfera l la senda	Weather	Storm event coincides with catastrophic tank failure.	Bund is overwhelmed, releasing polluted water into unbunded areas.	Design bund rainwater drainage system for 1 in 100 year storm.	Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac roadways)			#N/A	E-Minor	2-Highly Unlikely	Low	SW/GW	Frequency assumes this combines likelihood of 1:100 storm and likelihood of catastrophic failure.
Location Hazards	Subsidence/Heave	Causes a leak and breaches the impermeable surfaces	Small quantity enters bund or inside of building, but drains into subsoil.	All structures designed and constructed to BSI standards.	If ground conditions dictate, use a specialist design and build contractor.			#N/A	C-Major	1-Remote	Medium	GW	None of the materials that could leak into the groundwater could have more that major effect on the groundwater.
Other Hazards	Any Other Hazards / Issues	Fire	Large amounts of water used which could be contaminated.	Large parts of the site are bunded or impermeable.	Include fire containment and sprinkler systems. Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac	C-Major	3-Unlikely	High	D- Moderate	1-Remote	Low	sw/gw	Direct risk to surface water, remote risk to groundwater.

TITLE:	20125 - NI W	/Δ - Edmon	ton - Fmissions	s Hazard Iden	tification (HAZID) fro	om the A	\D Plant						
Date:	29-Jul-11	VA - Lamon	Ton - Linission	Tiazara iden	(Incation (IIAZID) III		l lant				ı		
Description:	Rejects from Pulp	er		•			•	•	•	•			
Reference Documents			t Plan using the Relian be significantly differer		comparable surrogate.								
Drawings:	The details consid		_G_6011_005, & GMV	•	•	Ве	fore Safegua	ards	A	I fter Safeguar	rds		
		Hazardous				Risk	- Scenario/	Event	Risk	- Ground V	Vater		
Hazard Category	Guide word	Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
	Routine	Sampling causes spillage	Small quantity of dirty paper/plastic/textile may be walked about	Impermeable surface within bund. Clean and dirty areas under ABPR requirements.	Ensure adequate hosedown provision is made.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	sw	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. Material is dirty but quite dry and does not flow.
	Routine	Feed conveyor spillages	Small quantity of dirty paper/plastic/textile is spilled.	Impermeable surface.	Use enclosed conveyors where practicable.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. Material is dirty but quite dry and does not flow.
Operational / Process Hazards	Non-routine	Pipe flushing to clear blockages	Small quantity of process water is spilled.	Impermable surface and contained drainage system.	Use purpose designed rejects handling equipment.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. Material is dirty but quite dry and does not flow.
	Routine	Level controls incorrectly set causing overflow.	Significant quantity is spilled.	Tiered level controls to provide safeguard. Spillage onto impermeable surface inside building. Overflows drain to bunded area.	Ensure adequate operator training.	E-Minor	3-Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. Material is dirty but quite dry and does not flow.
	Routine	Replacement of wear parts in pumps causes spillage.	Small quantity contained inside building.	Impermable surface and contained drainage system.	Ensure adequate hosedown provision is made.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. Material is dirty but quite dry and does not flow.
Maintenance / Mechanical Hazards	Routine	Oil spillage during hydraulic power pack maintenance.	Small quantity of oil is spilled on impervious building floor.	Impermable surface and contained drainage system.	Provide oil soak-up material on site. Use biodegradable oil.	E-Minor	4-Possible	Medium	E-Minor	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. Material is dirty but quite dry and does not flow.
	Reactive	Failed wetted item requires replacement, causing spillage	Small quantity of dirty paper/plastic/textile is spilled.	Impermeable surface within building Clean and dirty areas under ABPR requirements.	Ensure adequate hosedown provision is made.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. Material is dirty but quite dry and does not flow.
	Acute	Surge tank ruptures.	Large quantity of wet grit or screenings enters building.	Impermeable surface within building which sits in the bunded	Check rainwater drainage system is interlocked to a spillage detection system.	D- Moderate	2-Highly Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. Material is dirty but quite dry and does not flow.
Failures	Acute	Internal pipework ruptures	Large quantity of wet grit or screenings enters building.	area. Impermeable surface within building which sits in the bunded area	Check rainwater drainage system is interlocked to a spillage detection system.	D- Moderate	2-Highly Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. Material is dirty but quite dry and does not flow.
	Chronic	Minor unrepaired leaks	Small quantity of reject material enters building.	Impermable surface and contained drainage system and/or within the bunded area.	Ensure adequate financial and staffing provision is made.	E-Minor	3-Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. Material is dirty but quite dry and does not flow.
Location Hozordo	Weather	Storm event coincides with catastrophic tank failure.	Bund is overwhelmed, releasing polluted water into unbunded areas.	Design bund rainwater drainage system				#N/A	F-Slight	1-Remote	Low	SW/GW	Frequency assumes this combines likelihood of 1:100 storm and likelihood of catastrophic failure. Comparatively small volumes involved.
Location Hazards	Subsidence/Heave	Causes a leak and breaches the impermeable surfaces		All structures designed and constructed to BSI standards.	If ground conditions dictate, use a specialist design and build contractor.			#N/A	E-Minor	1-Remote	Low	GW	None of the materials that could leak into the groundwater could have more than a minor effect on the groundwater.
Other Hazards	Any Other Hazards / Issues		Large amounts of water used which could be contaminated.	site are bunded or	Include fire containment and sprinkler systems. Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac transways).	C-Major	3-Unlikely	High	D- Moderate	1-Remote	Low	SW/GW	Direct risk to surface water, remote risk to groundwater.

							DRAFI				1	1	HAZID Worksneet
TITLE:			ton - Emission	s Hazard Iden	tification (HAZID) fr	om the A	AD Plant	1		1	1		
Date: Description:	29-Jul-11 Odour scrubbers.			1			1						<u> </u>
Reference Documents			Plan using the Relian here would equally a		comparable surrogate.								
Drawings:			GMWDA_ENP_G	_6019_001			fore Safegua			ter Safeguar			
		Hazardous				Risk	- Scenario/	Event	Risk	- Ground V	Vater		
Hazard Category	Guide word	Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
	Non-routine	Leakage during tanker delivery or removal of acid	Small quantity of acid is spilled.	Delivery takes place within designated area within bund.	Ensure deliveries occur in designated area and follow best practice.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Operational / Process Hazards	Non-routine	Level controls incorrectly set causing overflow.	Small quantity enters bund		Ensure adequate operator/ delivery driver training.	E-Minor	3-Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. The quantity of acid held on site is small.
Maintenance / Mechanical	Routine	Replacement of wear parts in pumps causes spillage.	Small quantity contained inside bunded area.	Impermeable surface and contained drainage system.	Ensure adequate operator training. Ensure adequate hosedown provision is made. Ensure primary bund around acid tanks are suitable for acid containment.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. The quantity of acid held on site is small.
Hazards	Reactive	Failed wetted item requires replacement, causing spillage	Small quantity of acid spilled into bunded area.	Impermeable surface within bund.	Ensure adequate operator training. Ensure adequate hosedown provision is made. Ensure primary bund around acid tanks are suitable for acid containment.	F-Slight	4-Possible	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. The quantity of acid held on site is small.
	Acute	Acidic effluent tank ruptures.	Small quantity of acidic material enters bunded area	Impermeable bund.	Check rainwater drainage system is interlocked to a spillage detection system. Ensure primary bund for the acid tanks is large enough to deal with a rupture.	D- Moderate	2-Highly Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. The quantity of acid held on site is small.
Failures	Acute	External pipework ruptures	Small quantity of acidic material enters bunded area	Impermeable bund.	Check rainwater drainage system is interlocked to a spillage detection system.	D- Moderate	2-Highly Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. The quantity of acid held on site is small.
	Chronic	Minor unrepaired leaks	Small quantity of acidic material enters bunded area	Impermable surface and contained drainage system and/or within the bunded area.	Ensure adequate financial and staffing provision is made.	E-Minor	3-Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system. The quantity of acid held on site is small.
								#N/A			#N/A		
Location Hazards	Weather	coincides with catastrophic tank failure.	Primary and main bunds are overwhelmed, releasing polluted water into unbunded areas.	Design bund rainwater drainage system for 1 in 100 year storm.				#N/A	F-Slight	1-Remote	Low	SW/GW	Frequency assumes this combines likelihood of 1:100 storm and likelihood of catastrophic failure. Comparatively small volumes involved.
	Subsidence/Heave	Causes a leak and breaches the impermeable surfaces	Small quantity enters bund, but drains into subsoil.		If ground conditions dictate, use a specialist design and build contractor.			#N/A	D- Moderate	1-Remote	Low	GW	None of the materials that could leak into the groundwater could have more than a major effect on the groundwater.
Other Hazards	Any Other Hazards / Issues	Fire	Large amounts of water used which could be contaminated.		Include fire containment and sprinkler systems. Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac roadways)	C-Major	3-Unlikely	High	D- Moderate	1-Remote	Low	SW/GW	Direct risk to surface water, remote risk to groundwater.

#### Proposed Risk Matrix for NLWA Groundwater HAZID

	Risk Management Controls									
27 - 36	CRITICAL	Risks must be reduced for Controlled Waters and other Risks. Significant and urgent actions required.								
16 - 26	HIGH	Assess risk in more detail and look to reduce further, as appropriate. In accordance with the ALARP principle for HSE Risks, identification of management control measures and further safeguards.								
7 - 25	MEDIUM	Look to reduce further in accordance with the ALARP principle for HSE Risks, identification of management control measures and further safeguards.								
1-6	LOW	Continue to manage and monitor risksby effective Risk Management.								

	LIKELIHOOD										
Historical:		twice in the industry"	"Has occurred many times in the industry, but not in the Company"	"Has occurred once or twice in the Company"	"Has occurred frequently in the Company"	"Has occurred frequently at the location"					
Operation)		10 000 years at location	Once every 100 - 1,000 years at location	Once every 10 - 100 years at location	Once every 1 - 10 years at location	More than once a year at location or continuously					
Probability: (Single Activity)	1 in 100,000 - 1,000,000	1 in 10,000 - 100,000	1 in 1,000 - 10,000	1 in 100 - 1,000	1 in 10 - 100	> 1 in 10					

	People	Environment	Assets	Reputation	Legal Compliance		
	>20 Fatalities (or Permanent Total Disabilities)	IW. Large scale impact (100's m). Exceedance of drinking water standards in PWS boreholes with need to shut down supply or implement additional treatment. Long termipermanent impact. SW: Large scale impact (100's to 1000's m). Exceedance of drinking water in abstraction with need to shut down supply or implement additional treatment. Detentioation in ecological status of water body. Fish kill.	>£10m	International concern. Major ventures terminated. Company at stake	Criminal prosecution. Possible jall sentences for directors and senior officers. Heavy fines for the company		
ш	4-20 Fatalities (or Permanent Total Disabilities)	GW: Large Scale (10-100 m) impact on river gravel with exceedance of water quality standards, impact on deeper Terlainy and Chalk aquifiers with exceedance of driking water standards. Long term (months/years) Impact SW: Large scale (100's m) impact on surface water with exceedance of water quality standards. Fish kill in surface water. Potable abstractions need to be taken out of supply. Medium term impact (days/weeks)	£1-10m	Persistent national concern. Long term "brand" impact. Major ventures/asset operations severly restricted	Civil prosecution. Serious litigation, including class actions. Heavy fines.		
GENERAL (HUMAN) CONSEQUENCE	1-3 Fatalities (or Permanent Total Disabilities)	GW: Medium Scale (10's m) impact on river gravel aquifer with exceedance of water quality standards and impact on deeper Tertiary and Chalk aquifers with risk to groundwater abstractions. Medium term (months) impact SW: Medium term (months) impact on surface water with exceedance of water quality standards. Fish kill. Short term (days/weeks) impact	£500k-1m	Medium term national concern. Minor venture or minor asset operations restricted or curtalled.	Major break of regulation. Major litigation and fines.		
	GW: Medium Scale (10's impact on river gravel aquiler, exceedance of we quality standards: Short te (weeks/months) impact.  SW: Medium Scale (10's SW: Medium Scale (10's SW: Medium Scale (10's SW: Medium Scale (10's GW: Medium term (days/weeks/impact.)  GW: Localised (metres) impact on perched groundwater and/or sand and gravel aquiffer. Short term (days/weeks) impact to perched consumer terms of the medium standards. Short terms (days/weeks) impact on perched groundwater and/or sand and gravel aquiffer. Short terms (days/weeks) impact on surface water, to no exceedance of water quality standards. Short te (days) impact.		£100-500k	National bad mention. Short term regional concern. Close scrutiny of asset level operations/future processes.	Serious breach of regulation, Investigation by regulatory authorities. Possible litigation and fines.		
			£10-100k	Short term local concern. Some impact on asset level non-production activities.	Minor legal issues. Report provided to regulatory authorities. Low risk of litigation and fines.		
	Slight Injury/Illness. First Aid	GW: No or localised (immediate area) impact on perched groundwater. Temporary Impact (days) SW: No or localised impact on surface water quality, but no exceedance of water quality standards. Temporary impact (hrs)	<£10k	Local mentional only. Quickly forgotten. Freedom to operate unaffected.	Minimal legal issues. Little or no scrutinyby regulatory authorities. No risk of litigation or fines.		

		1	2	3	4	5	6
		Remote	Highly Unlikely	Unlikely	Possible	Likely	Highly Likely
А	Catastrophic	16	22	27	31	34	36
В	Massive	11	17	23	28	32	35
С	Major	7	12	18	24	29	33
D	Moderate	4	8	13	19	25	30
E	Minor	2	5	9	14	20	26
F	Slight	1	3	6	10	15	21

## To asssist in setting action priorities the following was used for determining them.

	ACTION PRIORITIES	MEANING
1	High	The team considered that these actions should be given the highest priority and would have the biggest impact on risk reduction when implemented
2	Medium	These actions were important to reduce risks but did not merit the higher category in terms of priority.
3	Low	These actions were lower on the list because it was considered that whilst they were worth implementing but the existing mitigation measures / operational practice was sufficiently good that the risk reduction over a longer period could be tolerated

### Risk Ranking

	1-Remote	2-Highly Unlikely	3-Unlikely	4-Possible	5-Likely	6-Highly Likely	
A-Catastrophic	High	High	Critical	Critical	Critical	Critical	
B-Massive	Medium	High	High	Critical	Critical	Critical	
C-Major	Medium	Medium	High	High	Critical	Critical	
D-Moderate	Low	Medium Medium		High	High	Critical	
E-Minor	Low	Low	Medium	Medium	High	High	
F-Slight	Low	Low	Low	Medium	Medium	High	

	1-Remote	2-Highly Unlikely	3-Unlikely	4-Possible	5-Likely	6-Highly Likely
A-Catastrophic	High	High	Critical	Critical	Critical	Critical
B-Massive	Medium	High	High	Critical	Critical	Critical
C-Major	Medium	Medium	High	High	Critical	Critical
D-Moderate	Low	Medium	Medium	High	High	Critical
E-Minor	Low	Low	Medium	Medium	High	High
F-Slight	Low	Low	Low	Medium	Medium	High

Consequence	Likelihood	Combination	Outcome
A-Catastrophic	1-Remote	A-Catastrophic1-Remote	High
B-Massive	1-Remote	B-Massive1-Remote	Medium
C-Major	1-Remote	C-Major1-Remote	Medium
D-Moderate	1-Remote	D-Moderate1-Remote	Low
E-Minor	1-Remote	E-Minor1-Remote	Low
F-Slight	1-Remote	F-Slight1-Remote	Low
A-Catastrophic	2-Highly Unlikely	A-Catastrophic2-Highly Unlikely	High
B-Massive	2-Highly Unlikely	B-Massive2-Highly Unlikely	High
C-Major	2-Highly Unlikely	C-Major2-Highly Unlikely	Medium
D-Moderate	2-Highly Unlikely	D-Moderate2-Highly Unlikely	Medium
E-Minor	2-Highly Unlikely	E-Minor2-Highly Unlikely	Low
F-Slight	2-Highly Unlikely	F-Slight2-Highly Unlikely	Low
A-Catastrophic	3-Unlikely	A-Catastrophic3-Unlikely	Critical
B-Massive	3-Unlikely	B-Massive3-Unlikely	High
C-Major	3-Unlikely	C-Major3-Unlikely	High
D-Moderate	3-Unlikely	D-Moderate3-Unlikely	Medium
E-Minor	3-Unlikely	E-Minor3-Unlikely	Medium
F-Slight	3-Unlikely	F-Slight3-Unlikely	Low
A-Catastrophic	4-Possible	A-Catastrophic4-Possible	Critical
B-Massive	4-Possible	B-Massive4-Possible	Critical
C-Major	4-Possible	C-Major4-Possible	High
D-Moderate	4-Possible	D-Moderate4-Possible	High
E-Minor	4-Possible	E-Minor4-Possible	Medium
F-Slight	4-Possible	F-Slight4-Possible	Medium
A-Catastrophic	5-Likely	A-Catastrophic5-Likely	Critical
B-Massive	5-Likely	B-Massive5-Likely	Critical
C-Major	5-Likely	C-Major5-Likely	Critical
D-Moderate	5-Likely	D-Moderate5-Likely	High
E-Minor	5-Likely	E-Minor5-Likely	High
F-Slight	5-Likely	F-Slight5-Likely	Medium
A-Catastrophic	6-Highly Likely	A-Catastrophic6-Highly Likely	Critical
B-Massive	6-Highly Likely	B-Massive6-Highly Likely	Critical
C-Major	6-Highly Likely	C-Major6-Highly Likely	Critical
D-Moderate	6-Highly Likely	D-Moderate6-Highly Likely	Critical
E-Minor	6-Highly Likely	E-Minor6-Highly Likely	High
F-Slight	6-Highly Likely	F-Slight6-Highly Likely	High

## **Appendix G: Hydrogeological Risk Assessment tables**

TITLE:	NLWA - Edmo	_WA - Edmonton - Hazard Identification (HAZID) & Risk Assessment											
Date:	05-Mar-15	05-Mar-15											
Description:	EfW Bunker												
Drawings:						Ве	fore Safegu	ards	At	fter Safegua	rds		
						Risk	- Scenario,	Event	Risk	- Ground V	Vater		
Hazard Category	Guide word	Hazardous Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
Maintenance / Mechanical Hazards	Routine	Spillage during cleaning or maintenance	Small quantity contained inside building	Impermeable surface and contained drainage system.	Ensure adequate operator training.	F-Slight	3-Unlikely	Low	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Failures	Chronic	Undetected underground leaks	Small quantity of process/waste water enters groundwater	Regular examination of bunker floor and walls which is part of SPMP and designed and constructed to BSI standards.	Structure examination and groundwater monitoring as detailed by the EPR SPMP	D- Moderate	3-Unlikely	Medium	E-Minor	1-Remote	Low	GW	The consequence of this risk is that small quantities of process water enters the underlying geology and ultimately groundwater. The quantities involved would have to be immeasurably small, otherwise they would be detected during normal operation.
Location	Subsidence/Heave	Subsidence/ Heave	breaches the impermeable	All structures designed and constructed to BSI standards.	If ground conditions dictate, use a specialist design and build contractor. Monitor bunker condition daily.	D- Moderate	3-Unlikely	Medium	D- Moderate	1-Remote	Low	GW	The consequence of this risk is that small quantities of process water enters the underlying geology and ultimately groundwater. The quantities involved would have to be immeasurably small, otherwise they would be detected during normal operation.
Post Demolition	Location	Ground returned to hydrogeological 'like for like' materials	Groundwater flow barrier removed in the KPG and flow returned. Possible local change in hydraulic gradients.	Restoration design will consider groundwater flow through the gravels	Groundwater level monitoring will be undertaken as part of the EPR SPMP	F-Slight	3-Unlikely	Low	F-Slight	3-Unlikely	Low	GW	Positive residual effect as barrier to flow is removed from the KPG.

TITLE:	NLWA - Edmonton - Hazard Identification (HAZID) & Risk Assessment												
Date:	05-Mar-15 ERF Bunker												
Description:	ERF Bunker												1
Drawings:		Ī	1	1	T		fore Safegua - Scenario			After Safegua k - <b>Ground V</b>			
Hazard Category	Guide word	Hazardous Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
Operational	Routine	Mounding of KPG groundwater behind the bunker	Change in hydraulic gradient in the KPG	Modelling and hydrogeological assessment before design to ensure significant change is not identified.		E-Minor	3-Unlikely	Medium	F-Slight	1-Remote	Low	GW/SW	No residual risk to groundwater identified with numerical modelling identifing small local change in groundwater levels
Construction	Construction	Dewatering during construction	Dewatering of KPG during construction and possible mobilisation of contaminants within the KPG and to the Salmon Brook	Best practice methodology and construction design to minimise effect on aquifer and dewatering volumes would be controlled and tested.	Monitoring of groundwater and surface water would be included in the COCP	E-Minor	4-Possible	Medium	E-Minor	2-Highly Unlikely	Low	GW/SW	Temporary construction activity with low risk therefore no residual effects considered.
Construction	Construction	Reducing the thickness of the London Clay	Possible vertical pathways created through the London Clay where its thinned allowing groundwater to reach the Lambeth group during construction and allowing potential pathway if bunker failure	Bunker has been located in an area where the London Clay is thickest and a minimum of 5m thickness of London Clay will be retained below the Bunker	Bunker is constructed in the northeast of the site.	C-Major	3-Unlikely	High	E-Minor	2-Highly Unlikely	Low	GW	Residual risk to groundwater is minimised due to location and construction design and methodology.
Construction	Construction		Potential pathway for contamination to the groundwater receptors	Bunker will be constructed to BSI standards for the site conditions	BSI standards and best practice construction methodology	D- Moderate	3-Unlikely	Medium	D- Moderate	1-Remote	Low	GW	Residual risk to groundwater is minimised as considered in the construction design and methodology.
Maintenance / Mechanical Hazards	Routine	Spillage during cleaning or maintenance	Small quantity contained inside buildings	Impermeable surface and contained drainage system.	Ensure adequate operator training.	F-Slight	3-Unlikely	Low	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Failures	Chronic	Undetected underground leaks	Small quantity of process/waste water enters groundwater	Regular examination of bunker base and walls which is part of SPMP and designed and constructed to BSI standards.	Structure examination and groundwater monitoring as detailed by the EPR SPMP	D- Moderate	3-Unlikely	Medium	D- Moderate	1-Remote	Low	GW	The consequence of this risk is that small quantities of process water enters the underlying geology and ultimately groundwater. The quantities involved would have to be immeasurably small, otherwise they would be detected during normal operation.
Location	Subsidence/Heave	Causes a leak and breaches the impermeable bunker walls	Small quantity enters groundwater	All structures designed and constructed to BSI standards.	If ground conditions dictate, use a specialist design and build contractor.  Monitor bunker condition daily.	D- Moderate	3-Unlikely	Medium	D- Moderate	1-Remote	Low	GW	Bunker would have considered subsidence and heave in its design and therefore the likelihood of the leak reaching groundwater is considered to be unlikely. If significant subsidence occurred this would be detected in the regular bunker examination and the source would therefore be removed before failure.

													HAZID Works
TTLE:	NLWA - Edr	monton - H	azard Identifica	tion (HAZID)	& Risk Assessment	<u> </u>							
ate:	05-Mar-15												
escription:	Ash Recycling Are	ea											
rawings:		_					fore Safegua			fter Safegua			
		Hazardous				Risk	- Scenario/	Event	Risk	- Ground V	Vater		
Hazard Category	Guide word	Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
Failures	Chronic	Cracks or breach in hardstanding	allow small quantity of process water to	wa mudan inana asta d	Ensure daily monitoring during periods of intensive rainfall.	E-Minor	4-Possible	Medium	E-Minor	1-Remote	Low	GW	This will be monitored as part of the site EPR
Location	Subsidence/Heave	Cause a leak and breaches the hardstanding	water Infiltrating through the ash may allow small quantity of process water to	and an element of the second	Ensure daily monitoring during periods of intensive rainfall.	E-Minor	3-Unlikely	Medium	E-Minor	1-Remote	Low	GW	This will be monitored as part of the site EPR

TITLE:	NLWA - Edi	monton - Ha	azard Identifica	tion (HAZID)	& Risk Assessment								
Date:	04-Mar-15												
Description:	Fuel Storage, pip	es and pumps	•	•	•	•	•		•	•	•		
						Ве	fore Safegua	ards	А	After Safeguards			
						Risk	- Scenario/	Event	Risk	c - Ground \	<b>Nater</b>		
Hazard Category	Guide word	Hazardous Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
		Pump use											Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Routine	accidental spill				F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	SW	
Operational		Spillage during	Contamination of	Delivery areas bunded Rainwater	Include oil interceptor on surface water drain connection. Ensure adequate operator								Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Traffic/Deliveries	delivery	rainwater.	contamination control system and procedures.	training. Ensure tanker loading points drain back to the process water system.	E-Minor	4-Possible	Medium	E-Minor	1-Remote	Low	SW/GW	
Maintenance / Mechanical Hazards	Routine	Maintenance of tank, pipes or pump causes spill	Small quantity enters bund or inside of building.	Impermeable surface and contained drainage system and/or within the bunded area.	Ensure adequate financial and staffing provision is made.	F-Slight	5-Likely	Medium	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
	Chronic	Minor unrepaired leaks	Small quantity enters bund or inside of building.	Impermeable surface and contained drainage system and/or within the bunded area.	Ensure adequate financial and staffing provision is made.	F-Slight	3-Unlikely	Low	F-Slight	1-Remote	Low	GW/SW	Residual risk to groundwater only arises if bund fails or overtops, leakage occurs through cracks/seals or leakage (exfiltration) from drainage system.
Failures	Chronic	Undetected underground leaks	Small quantity of process water enters groundwater	All pipework above ground. Tank bases designed and constructed to BSI standards.	Where tanks require bottom drains, ensure pipework is encased in the concrete base.	D- Moderate	1-Remote	Low	E-Minor	1-Remote	Low	GW	The consequence of this risk is that small quantities of process water enters the underlying geology and ultimately groundwater. The quantities involved would have to be immeasurably small, otherwise they would be detected during normal operation.
Location	Weather	Rainfall	Any depositions on the external bunds may cause contamination of the rainwater.	Some rainwater used in the process. Excess rainwater discharged to surface water sewer.	Control system required to differentiate between water suitable for surface water sewer discharge and contaminated water that needs to be treated on site. Operators to be trained and motivated to keep contamination to a minimum.			#N/A		6-Highly Likely	Nil	SW/GW	Rainfall will dilute contaminants and correct design of drainage system will mean there is no impact.
	Subsidence/Hea ve	Causes a leak and breaches the impermeable surfaces	Small quantity enters bund or inside of building, but drains into subsoil.	All structures designed and constructed to BSI standards.	If ground conditions dictate, use a specialist design and build contractor. Monitor bund condition daily.			#N/A	C-Major	1-Remote	Medium	GW	None of the materials that could leak into the groundwater could have more than a <i>major</i> effect on the groundwater because the failure mode of a properly constructed bund will be such that the volumes of material that could leak past the failed bund will be low.
Other Hazards	Any Other Hazards / Issues	Fire	Large amounts of water used which could be contaminated.	Large parts of the site are bunded or impermeable.	Include fire containment and sprinkler systems. Consider providing sealed surface and adequate drainage outside of bund (e.g. tarmac roadways)	C-Major	3-Unlikely	High	D- Moderate	1-Remote	Low	SW/GW	Direct risk to surface water, remote risk to groundwater.

	1	1	Т	1	1	•		_	1		1		TIAZID WOINSHER
TITLE:	NLWA - Edi	│ monton - Ha	l azard Identifica	l ition (HAZID)	l & Risk Assessment	<u> </u>							
Date:	12-May-15				<u> </u>	<u> </u>							
Description:	Perched Ground		ound	l.	L	1	1	1		1			
Drawings:						Ве	fore Safegua	ards	А	fter Safegua	rds		
						Risk	- Scenario/	Event		c - Ground \			
Hazard Category	Guide word	Hazardous Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
Construction	Construction	Dewatering during construction	Water storage and disposal leaks/discharge to sw/gw	Water storage and disposal to be undertaken using best practice and contaminated waters discharged within closed drainage system	Construction and design undertaken using the latest	E-Minor	3-Unlikely	Medium	E-Minor	2-Highly Unlikely	Low	GW/SW	Temporary construction activity with low risk therefore no residual effects considered.
Construction	Piling	Puncturing the Alluvium/Londo n Clay and allowing perched groundwater to flow to underlying aquifers	Potential source of contamination and highly vulnerable waters entering underlying aquifers	Piling design and installation using best practice installation methodology	Construction and design undertaken using the latest guidance: Piling and Penetrative Ground Improvement Methods on Land Affected by Contamination: Guidance on Pollution Prevention	B-Massive	3-Unlikely	High	E-Minor	2-Highly Unlikely	Low	GW	Residual risk to groundwater is minimised as risk considered in the pilling design and piling methodology.
Construction	Excavations and artificial pathways created along underground services	Puncturing the Alluvium/Londo n Clay and allowing perched groundwater to flow to underlying aquifers	Potential source of contamination and highly vulnerable waters entering underlying aquifers	Excavations and installation of services using best practice construction methodology	Construction and design undertaken using the latest environmental guidance	C-Major	3-Unlikely	High	E-Minor	2-Highly Unlikely	Low	GW	Residual risk to groundwater is minimised as risk considered in the design and construction methodology.
Construction		Puncturing the Alluvium, or groundworks in locations where no alluvium present, allowing perched groundwater to flow to KPG	Potential source of contamination and highly vulnerable waters entering KPG	Dewatering or flow barrier for Made Ground groundwater using best practice construction methodology	Construction and demolition methodology undertaken using the latest environmental guidance		3-Unlikely	High	E-Minor	2-Highly Unlikely	Low	GW	Residual risk to groundwater is minimised as risk considered in the construction methodology.

TITLE:	NLWA - Edi	NLWA - Edmonton - Hazard Identification (HAZID) & Risk Assessment												
Date:		05-Mar-15												
Description:	EfW infill soils													
Drawings:	Before Safeg							ards	А	fter Safegua	rds			
						Risk	<ul><li>Scenario/</li></ul>	Event	Risk	c - Ground \	Water			
Hazard Category	Guide word	Hazardous Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment	
Construction	Excavations and artificial pathways created along underground services	and leaching of possible	Small quantity of water Infiltrating through the Made Ground and entering groundwater.	Excavations and installation of services using best practice construction methodology	Construction design using the EA Prevention of Pollution Guideline and activities will be avoided where any potential for contamination cannot be controlled.	E-Minor	3-Unlikely	Medium	E-Minor	2-Highly Unlikely	Low		Residual risk to groundwater is minimised as risk considered in the design and construction methodology.	

	1			1	1	1	I	I	1	<del>, , , , , , , , , , , , , , , , , , , </del>		HAZID Worksheet
AU MA Fali			 	O Diele Assessment			<u> </u>			1		
		azaro identifica	tion (HAZID)	& Risk Assessment	T	T	T	1	T	1		
05-Mar-15 Groundwater in h		<u>l</u>	<u>l</u>			<u> </u>				1		
					Bet	fore Safegua	ards	l A	fter Safegua	rds		
						- Scenario/			- Ground \			
Guide word	Hazardous Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
Construction	Dewatering during construction	Water storage and disposal leaks/discharge to sw/gw	Water storage and disposal to be undertaken using best practice and contaminated waters discharged within closed drainage system	Construction and design undertaken using the latest environmental guidance	E-Minor	3-Unlikely	Medium	E-Minor	2-Highly Unlikely	Low		Temporary construction activity with low risk therefore no residual effects considered.
Piling	Puncturing the London Clay and allowing perched groundwater to flow to underlying aquifers	Potential source of contamination and highly vulnerable waters entering underlying aquifers	Piling design and installation using best practice installation methodology	Construction and design undertaken using the latest guidance: Piling and Penetrative Ground Improvement Methods on Land Affected by Contamination: Guidance on Pollution Prevention	B-Massive	3-Unlikely	High	E-Minor	2-Highly Unlikely	Low		Residual risk to groundwater is minimised as considered in the piling design and methodology.
Excavations and artificial pathways created along underground services	Puncturing the London Clay and allowing perched groundwater to flow to underlying aquifers	Potential source of contamination and highly vulnerable waters entering underlying aquifers	Excavations and installation of services using best practice construction methodology	Construction and design undertaken using the latest environmental guidance	B-Massive	3-Unlikely	High	E-Minor	2-Highly Unlikely	Low		Residual risk to groundwater is minimised as considered in the construction design and methodology.
Construction	Dewatering during construction	Dewatering of KPG during construction and possible	Best practice methodology and construction design to minimise effect on aquifer and dewatering volumes would be controlled and tested.	included in the COCP	E-Minor	4-Possible	Medium	E-Minor	2-Highly Unlikely	Low	GW/SW	Temporary construction activity with low risk therefore no residual effects considered.

TITLE:	NLWA - Ed	ILWA - Edmonton - Hazard Identification (HAZID) & Risk Assessment											
Date:	05-Mar-15												
Description:	Made Ground So	oils											
Drawings:							fore Safegua	ards	Α	fter Safegua	rds		
						Risk	- Scenario/	Event	Risk	- Ground \	Vater		
Hazard Category	Guide word	Hazardous Scenario/ Event	Consequences	Safeguards	Recommendations	Sev	Freq	Risk	Sev	Freq	Risk	Receptor (GW/SW)	Comment
Construction		Leaching and runoff from Surface stockpiling of soils	water Infiltrating through the stockpile may allow small quantity of	Best practice methodology for management of construction material and excavations following EA Prevention of Pollution Guidelines.	Stockpiling undertaken using the EA Prevention of Pollution Guideline and activities will be avoided where any potential for contamination cannot be controlled.	D- Moderate	4-Possible	High	E-Minor	2-Highly Unlikely	Low	GW/SW	Temporary construction activity with low risk therefore no residual effects considered.

NORTH LONDON WASTE AUTHORITY

# NORTH LONDON HEAT AND POWER PROJECT

ENVIRONMENTAL STATEMENT: VOLUME 2 APPENDIX 7.3 PILING RISK ASSESSMENT

AD06.02



# North London Waste Authority North London Heat and Power Project Piling Risk Assessment

35180-36-LEA-REP-025

Issue | October 2015

Amec Foster Wheeler Environment & Infrastructure UK Ltd.

This report takes into account the particular instructions and requirements of our client.

It does not in any way constitute advice to any third party who is able to access it by any means. Amec Foster Wheeler excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.





# **Contents**

			Page
Execut	ive S	ummary	1
1	Intro	duction	3
	1.1 1.2 1.3	Terms of reference and purpose of this report Summary of the proposed Project Sources of information	3 3 4
2	Site	location, descriptions and setting	7
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Site location and description Site topography and existing land use Adjacent land use Site history Regional geology and hydrogeology Site geology Made Ground Natural ground	7 7 8 8 8 9 10 11
3	Hydr	ogeology	13
	3.1	Groundwater levels	13
4	Sum gas	mary of groundwater quality, ground contamination and	ground 15
5	Pilin	g risk assessment	17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Introduction Piling methods Driven pre-cast concrete Continuous Flight Auger Continuous Helical Displacement Risk matrix Risk register	17 17 18 18 19 20 23
6	Cond	clusions	29
Tables	S		
Table 1 Table 2 Table 2 Table 5 Table 5 Table 5	1 2 1	Sources of information Regional geological summary and aquifer designation Site geological summary and aquifer designation Likelihood of an event Environmental consequence of an event Risk matrix	

Table 5.4 Piling risk reg	gister – piles terminating	g in the London Clay Formation
---------------------------	----------------------------	--------------------------------

# Table 5.5 Piling risk register – piles terminating in the Lambeth Group

# **Figures**

Figure 1	Site Location Plan
Figure 2	Site Layout Plan
Figure 3	Borehole Location Plan
Figure 4	Source Protection Zones
Figure 5	Thickness of the London Clay and Geological Cross Section Locations
Figure 6	Base of the London Clay
Figure 7	Surface of the London Clay
Figure 8	Cross Section A-A'
Figure 9	Cross Section B-B'
Figure 10	Groundwater Levels in Kempton Park Gravels May 2014
Figure 11	Groundwater Levels in Kempton Park Gravels November 2014

# **Executive Summary**

- i.i.i Amec Foster Wheeler Environment & Infrastructure UK Ltd (Amec Foster Wheeler) was commissioned by North London Waste Authority (the Application) to undertake a piling risk assessment at Edmonton EcoPark. The Applicant is seeking a Development Consent Order (DCO) for the North London Heat and Power Project (the Project), which includes a proposed Energy Recovery Facility (ERF) and associated infrastructure to replace the existing Energy from Waste (EfW) facility. As part of the DCO application, an Environmental Statement (ES) has been undertaken. The Environment Agency (EA) has identified a piling risk assessment as a requirement to support the ES.
- i.i.ii The Project consists of a proposed ERF in the northernmost section of the Edmonton EcoPark that will comprise:
  - a. a waste reception area;
  - b. a storage bunker;
  - c. the main combustion and boiler plant;
  - d. an ash recycling facility; and
  - e. a turbine, as well as administration buildings.
- i.i.iii The waste stream will be derived from domestic and business sources and will not include separately collected hazardous wastes. In the south and east, a one storey Recycling and Fuel Preparation Facility (RFPF) and two storey EcoPark House office building are proposed. As part of the construction of the new waste facility and associated structures, piles are required to be installed.
- i.i.iv The significant considerations from piling are:
  - a. introduction of new hazards at the Edmonton EcoPark;
  - creation of new pathways from sources of potentially polluting substances to the underlying Principal Aquifer (chalk) and public water abstraction from that aquifer (the Edmonton EcoPark lies within the inner Source Protection Zone (SPZ) for a public water abstraction); and
  - c. risk to sub-surface archaeology.
- i.i.v The Edmonton EcoPark is generally flat and low-lying. It has been used as a waste management site since the 1960s.
- i.i.vi The Edmonton EcoPark is underlain by Made Ground, a thin layer of Alluvium and then the Kempton Park Gravels (River Terrace Deposits), beneath this is the London Clay, Lambeth Group, Thanet Sands and Chalk.
- i.i.vii The Kempton Park Gravels, Thanet Sands and the sandier horizons in the Lambeth Group are Secondary Aquifers and the Chalk is a Principal Aquifer.
- i.i.viii The Edmonton EcoPark is within an inner (zone 1) and outer (zone 2) groundwater SPZ for a public water supply borehole at Chingford 400m east of the Edmonton EcoPark, which abstracts groundwater from the Chalk.
  - AD06.02 | Issue | October 2015 | Amec Foster Wheeler Environment & Infrastructure UK Ltd.

- i.i.x The low permeability layers in the Lambeth Group and the London Clay provide protection to the underlying Chalk by limiting downward movement of groundwater from the surface.
- i.i.x In the centre of the Edmonton EcoPark, the London Clay is absent where it was removed to permit construction of the existing EfW bunker.
- i.i.xi Groundwater is found at shallow depth in the Kempton Park Gravels and generally flows to the southwest.
- i.i.xii Groundwater quality in the Chalk is anticipated to be good, reflecting its use for potable water supply. The Thanet Sand is commonly found to be in hydraulic connectivity to the Chalk and therefore its water quality is also anticipated to be good.
- i.i.xiii There is some contamination in the Kempton Park Gravels and Lambeth Group (exceedences of water quality standards) for ammonium, chloride, sulphate, metals and metalloids (aluminium, arsenic, boron, cadmium, chromium, copper, mercury, iron, nickel, and selenium), phenols and vinyl chloride.
- i.i.xiv The assessment considered the risks associated with piling on the underlying ground water and the transportation of contaminated soils into the underlying Thanet Sands. The assessment considers the risks in generic terms as the method of installation, structural load and subsequent length of the piles are not known. Further detailed risk assessment will be required to be undertaken by the appointed piling contractor when these details are known.

#### 1 Introduction

## 1.1 Terms of reference and purpose of this report

- 1.1.1 Amec Foster Wheeler Environment & Infrastructure UK Ltd (Amec Foster Wheeler) has been commissioned by North London Waste Authority (the Applicant) to undertake a piling risk assessment at the Edmonton EcoPark.
- 1.1.2 The Applicant is seeking a Development Consent Order (DCO) for the North London Heat and Power Project (the Project), which includes a new Energy Recovery Facility (ERF) and associated infrastructure to replace the current Energy from Waste (EfW) facility. As part of the DCO application, an Environmental Statement (ES) has been undertaken. The Environment Agency (EA) has identified a piling risk assessment as a requirement to support the ES.
- 1.1.3 The DCO Application Site boundary includes a laydown area to the east and an area in the north-west related to the pump station pipework. This assessment has been undertaken for the Edmonton EcoPark only.
- 1.1.4 The report is primarily based on the Environment agency guidance detailed in Box 6.1 of National Groundwater and Contaminated Land Centre Report NC/99/73¹.

## 1.2 Summary of the proposed Project

- 1.2.1 The Project consists of a proposed ERF which will be developed in the northernmost section of the site and will comprise:
  - a. a waste reception area including a storage bunker;
  - b. the main combustion and boiler plant;
  - c. an ash recycling facility; and
  - d. a turbine, as well as administration buildings.
- 1.2.2 The waste stream will be derived from domestic and business sources and will not include separate hazardous wastes. The buildings currently in the north of the Edmonton EcoPark are to be demolished.
- 1.2.3 In the south of the Edmonton EcoPark a one storey Resource Recovery Facility (RRF) is proposed, and in the area to the east of the Edmonton EcoPark a two storey EcoPark House office building is proposed.
- 1.2.4 The existing EfW facility and below ground bunker will be demolished and backfilled, as well as the current Waste Water Treatment Plant once the proposed ERF is fully operational. Risk assessment and method statements for this aspect of the scheme will be dealt with under a separate report.
- 1.2.5 For the proposed construction, the significant considerations for groundwater are the creation of new pathways from sources of potentially polluting substances to the underlying Principal Aquifer (chalk) and public

¹ National Groundwater and Contaminated Land Centre Report (2001) Piling and penetrative ground improvement methods on land affected by contamination: Guidance on pollution prevention

³ AD06.02 | Issue | October 2015 | Amec Foster Wheeler Environment & Infrastructure UK Ltd.

water abstraction from the aquifer due to the introduction of piled foundations. The Edmonton EcoPark lies within the inner Source Protection Zone (SPZ) for the public water abstraction which indicates that groundwater underlying the Edmonton EcoPark is within 50 day travel time to the abstraction.

- 1.2.6 From consultation with the Environment Agency (EA), the Project raised the following considerations for groundwater protection:
  - a. changes in groundwater levels in the Kempton Park Gravels due to the installation of an impermeable ERF bunker structure;
  - b. disturbance of groundwater flow in the Kempton Park Gravels as a result of the construction of an underground waste bunker for the proposed ERF that will fully penetrate that aquifer;
  - c. maintaining the protection to underlying, sensitive aquifers provided by the low permeability London Clay. The EA require that a minimum thickness of London Clay (5m) is maintained beneath the waste bunker and other deep structures; and
  - d. The potential for foundation piles to create pathways for migration of contaminants from the surface into sensitive aquifers underlying the London Clay.

#### 1.3 Sources of information

1.3.1 This piling risk assessment is based on information contained in the reports listed in Table 1.1 and on publicly available sources of information. Previous reports comprise desk studies, site investigation reports and regulatory liaison.

Table 1.1 Sources of information

Table 1.		
Report reference number	Report title	
Site investigations		
29541rr009i2 (March 2011)	Entec (now Amec Foster Wheeler), 2011. North London Waste Authority. ISDS Baseline Geo-environmental Site Investigation Report.	This investigation comprised the drilling and installation of 22 boreholes, and drilling of 34 window sample holes (the majority of which were also installed as groundwater monitoring points). Six boreholes were progressed into the Lambeth Group. The depths to this stratum were found to vary between 11.2m bgl, (0.36m above Ordnance Datum (AOD)) in the south of the Edmonton EcoPark, and 24.2m bgl (-12.45m AOD), in the north, indicating a marked variation in the thickness of the London Clay.
29541rr036i3 (February 2012)	AMEC, 2013. North London Waste Authority. ISDS Baseline Geo- environmental Supplementary Site Investigation Report.	The 2012 investigation was designed to provide clarification of the profile of the upper surface of the Lambeth Group by means of four boreholes progressed to the Lambeth Group to aid interpretation of the geological structure.
35180r010i2 (June 2014)	AMEC, 2014. North London Waste Authority. Geotechnical Ground Investigation.	This investigation, comprised of 13 boreholes, which were designed to provide further clarification of the geological structure and geotechnical properties of the geology beneath the north of the Edmonton EcoPark. Groundwater monitoring standpipes were installed at five locations, four within the Lambeth Group and one within the Kempton Park Gravels to supplement the existing groundwater monitoring network.
29541rr084i2 (December 2014)	Amec Foster Wheeler, 2015. North London Waste Authority. Supplementary Ground Investigation - Energy for Waste Area.	This investigation was undertaken to confirm the geology in the vicinity of the existing EfW facility. Two boreholes were drilled to between 8 and 25m bgl.
29541rr086i2 (December 2014)	Amec Foster Wheeler, 2015. North London Waste Authority. Geoenvironmental Desk Study and Supplementary Ground Investigation - Wharf Area	This was undertaken to investigate baseline geo-environmental ground conditions in the Wharf Area which is located along the eastern Edmonton EcoPark margin. Two boreholes were drilled to 25m bgl, one borehole was installed in the Kempton Park Gravels.
PEIR Vol 1 Appendix 5.3	Arup, 2015 Archaeology Desk Based Assessment	This was undertaken to investigate the historic environment at the Application Site.

1.3.2 All boreholes in the above studies were drilled using cable percussive methodology with 2 hour and 24 hour bentonite and grout seal approved by

the EA, to ensure no pollutant pathways were created by the ground investigation boreholes.

# 2 Site location, descriptions and setting

2.1.1 The description provided in the following section is a summary to provide background information pertinent to this report. Further details are provided in the reports listed in Table 1.1.

# 2.1 Site location and description

Site Name and Address:	LondonWaste Ltd (LWL), EcoPark, Advent Way, Edmonton, London N18 3AG								
Grid Reference:	TQ 35750 92860 Site Area: 15.6 ha								
Current Site Use:	Waste operations comprising: existing EfW facility, ash recycling facility, composting plant, waste transfer station and bulky waste recycling facility. There is also a lorry park and open landscaped areas.								
Proposed Site Project:	Waste operations comprising: proposed ERF and associated infrastructure								

- 2.1.1 This assessment has been undertaken for the Edmonton EcoPark, as shown in Figure 1.
- 2.1.2 The Environmental Impact Statement has been undertaken for the Development Consent Order (DCO) Application Site, shown in Figure 1, which includes a laydown area to the east of the Edmonton EcoPark and an area in the northwest related to the pump station pipework. As the groundwater data available is for the Edmonton EcoPark and no groundworks are anticipated at the Temporary Laydown Area or pump station area, this assessment has been undertaken on the Edmonton EcoPark only.

# 2.2 Site topography and existing land use

- 2.2.1 The Edmonton EcoPark is generally flat and low lying at approximately 11m Above Ordnance Datum (AOD), with the exception of raised areas in the northeast at approximately 14m AOD. The south of the Edmonton EcoPark, where the main entrance is located, is generally landscaped areas with surfaced roads and car parks. The main process areas of the Edmonton EcoPark are in the centre and north and there are further landscaping in the east. The main process plant can be divided into four operational areas:
  - a. Existing EfW Facility in the centre of the Edmonton EcoPark. It comprises a large building incorporating a tipping hall, waste storage bunkers and waste treatment technology;
  - b. Ash recycling facility to the north of the EfW area. It comprises a sheds and an open area of ash storage;
  - c. Composting plant in the north west of the Edmonton EcoPark. This area comprises several storage and composting sheds; and

- d. Waste transfer station in the north eastern corner of the Edmonton EcoPark. It comprises storage areas for combustible waste (used to fuel the existing EfW facility), recyclables and non-recyclables.
- 2.2.2 The existing Edmonton EcoPark layout is shown on Figure 2.

# 2.3 Adjacent land use

2.3.1 The Edmonton EcoPark is in a commercial/industrial setting. Land uses adjoining the Edmonton EcoPark are outlined below:

Direction	Land uses
North	Immediately north of the Edmonton EcoPark are commercial/light industrial properties. Beyond these is the Deephams Sewage Treatment Works.
East	The Enfield Ditch borders the majority of the Edmonton EcoPark. Beyond this is 'Lee Park Way', an access road which forms part of National Cycle Route 1. The River Lee Navigation is immediately to the east of this road, then there is an area used for recycling construction and demolition wastes.
South	The North Circular (A406) is immediately to the south. Beyond this are commercial properties and the planned Meridian Water development scheme.
West	Salmon's Brook is immediately to the west. Beyond this is the Eley Industrial Estate.

# 2.4 Site history

2.4.1 This Edmonton EcoPark has been used as a waste management site since the late 1960s. The Edmonton EcoPark had very limited use prior to its current function, although the northern part of the Edmonton EcoPark was formerly occupied by sludge beds. The surrounding area, particularly to the south and west, has had significant industrial development from at least 1896.

# 2.5 Regional geology and hydrogeology

2.5.1 The British Geological Survey (BGS) boreholes and regional mapping record the geological sequence identified in Table 2.1 at the Edmonton EcoPark as Made Ground overlying natural deposits in the vicinity of the Edmonton EcoPark. The Edmonton EcoPark is mapped as London Clay overlain by superficial deposits of Alluvium. The published data indicates London Clay is approximately 7.5 to 10m bgl (below ground level). The thickness of the Lambeth Group and Thanet Sands is not identified for the Edmonton EcoPark, although BGS borehole records to the south-west of the Edmonton EcoPark identify the base of the Lambeth Group at 22m bgl and base of the Thanet Sand at 27m bgl. BGS borehole logs in the vicinity

of Edmonton EcoPark record Chalk between 32.5m bgl and 36m bgl, whilst a borehole to the east of the Edmonton EcoPark identifies Chalk at 43m bgl.

Table 2.1 Regional geological summary and aquifer designation

Strata	Typical constituents	Estimated thickness	Aquifer status
Made Ground	Variable historic demolition rubble, including ash and clinker	Generally <5m	Not Applicable
Alluvium	Silty clay	Absent to <3m	Secondary Aquifer
Kempton Park Gravels (River Terrace Deposits)	Variably sandy, silty and clayey gravels	<5m	Secondary Aquifer
London Clay	Grey, occasionally sandy or silty clay	7.5-10m	Unproductive Strata
Lambeth Group (formerly known as the Woolwich & Reading Beds)	Grey, sandy clay	Unknown	Secondary Aquifer
Thanet Sand	Silty or clayey sand	Unknown	Secondary Aquifer
Upper Chalk	Off-white carbonaceous limestone with flints	>30m	Principal Aquifer

- 2.5.2 The Edmonton EcoPark falls within an EA-designated inner (zone 1) and outer (zone 2) groundwater Source Protection zone (SPZ) for a public water supply borehole at Chingford 400m east of the Edmonton EcoPark, as shown in Figure 4. The public water supply source abstracts groundwater from the Chalk aquifer which is defined as a principal aquifer by the EA. This aquifer is overlain by the Thanet Sands, Lambeth Group and London Clay. The low permeability layers in the Lambeth Group and the London Clay provide protection to the underlying Chalk by limiting downward movement of groundwater from the surface.
- 2.5.3 There are no licensed groundwater abstractions within 250m of the Edmonton EcoPark but four abstractions between 250m and 500m from the Application Site. In addition to the Chingford public water supply there is also a private potable water supply borehole located approximately 400m to the east. Three sites related to water bottling with a further site for general use are all located to the west within 500m of the Application Site.

# 2.6 Site geology

2.6.1 A summary of the ground conditions at the Edmonton EcoPark based on data obtained in ground investigations undertaken at the Edmonton EcoPark between March 2011 and December 2014 is provided in Table 2.2. Borehole logs are provided as appendices to the Hydrogeological Risk Assessment and a borehole location plan is presented as Figure 3.

Table 2.2 Site geological summary and aguifer designation

Strata	Typical constituents	Approximate thickness	Aquifer status
Made Ground	Variable historic demolition rubble, including ash and clinker	1.0 -7.5m	NA
Alluvium	Silty clay	Absent to 3.8m	Secondary Aquifer
Kempton Park Gravels (River Terrace Deposits)	Variably sandy, silty and clayey gravels	1.1 - 4.6m	Secondary Aquifer
London Clay	Grey, occasionally sandy or silty clay	0.7 - 18.1m	Unproductive Strata
Lambeth Group (formerly known as the Woolwich and Reading Beds)	Grey, mottled brown, sandy clay	Unknown	Secondary Aquifer
Thanet Sand	Silty or clayey sand	Unknown	Secondary Aquifer
Upper Chalk	Off-white carbonaceous limestone with flints	>50m	Principal Aquifer

- 2.6.2 Site investigation has confirmed the geological sequence. A thin layer of Alluvium was identified across much of the Edmonton EcoPark overlying the Kempton Park Gravels (River Terrace Deposits) but at a number of locations the Alluvium was absent. No water strikes were encountered in the Alluvium.
- 2.6.3 The Kempton Park Gravels underlies the Alluvium. They have a thickness of 1.1 to 4.6m (average 3m). The base of the Kempton Park Gravels (top of the London Clay) was between 3.5 and 7.9m AOD.
- 2.6.4 The London Clay was found to be a stiff to hard grey/brown silty clay with occasional flint gravel. The base of the London Clay falls from 3.2m AOD, in the south at BH402 to -12.5m AOD in the north of the Edmonton EcoPark at BH116); a difference of 15.6m over a distance of approximately 400m. This variation suggests a more complex structure than typically anticipated at the interface between these strata.
- 2.6.5 The Lambeth Group comprised very dense clayey sand and sandy clay with shell fragments with sandy silt and clay bands. The base of this stratum was not proven in exploratory holes. Sand layers were identified within the Lambeth Group and were often associated with water strikes.

#### 2.7 Made Ground

2.7.1 Made Ground was encountered at all intrusive locations to a depth that varied between 6.9 and 9.5m AOD. All boreholes were drilled through hardstanding of asphalt or concrete, followed by hardcore and gravel. Beneath this Made Ground generally comprised clayey sand or gravelly, sandy clay, with brick and concrete. Asphalt and clinker were encountered in several boreholes and asbestos may be associated with these demolition materials. There was very little visual/olfactory evidence of contamination in the Made Ground, although hydrocarbon odours were noted in BH301

and BH308. Boreholes drilled within the EfW bunker excavation found Made Ground down to 2.1 to 4.5m AOD, which is much deeper than elsewhere on-site. This thickness is a result of the backfilling of the bunker after construction.

#### 2.8 Natural ground

#### **Alluvium**

2.8.1 Alluvium was encountered beneath the Made Ground in the majority of locations but was absent at BH109, BH304, BH312, BH403 and BH404. It generally consisted of very soft to soft, silty, frequently organic clay, with soft fibrous peat present. The base of the alluvium where present, was at 6.4 to 9.0m AOD.

#### **Kempton Park Gravels**

2.8.2 This comprised medium dense silty, gravelly sand and silty sandy gravel. Gravels were predominantly flint. It was encountered at all locations with the exception of BH403 and BH404 in the existing EfW bunker area. The base was between 3.5 to 7.9m AOD.

#### **London Clay**

- 2.8.3 This stratum comprised firm to stiff clay with local laminations, silty clay and slightly sandy clay. The base varied from 3.2 to -12.5m AOD. Generally the London Clay is thickest in the northeast of the Edmonton EcoPark, varying from 10.8m at BH301 in the northwest to 17.9m at BH313 in the northeast. The London Clay thins to the south to 3.1m at BH124 and 0.7 m at BH402 in the Wharf area in the southeast, Figures 6 and 7 indicate the surface and base levels of the London Clay across the site.
- 2.8.4 Contours of the upper and lower surfaces of the London Clay, as well as the thickness of London Clay, are shown in Figures 5, 6 and 7. Geological cross-sections from south-southwest to north-north-east through the Edmonton EcoPark (Section A A') and from west to east across the proposed ERF area in the north of the Edmonton EcoPark (Section B B') are provided as Figure 8 and Figure 9 respectively. The location of the cross-sections is shown in Figure 5.
- 2.8.5 Cross section A A' shows that the base of the London Clay is shallowest in the southwest and deepest in the northeast.
- 2.8.6 Cross section B B' shows that the thickness of the London Clay is greatest towards the eastern Edmonton EcoPark boundary.

#### **Lambeth Group**

2.8.7 The Lambeth Group comprises very dense clayey sand and sandy clay with shell fragments, with some stiff to very stiff sandy silt bands. Boreholes were not sunk to the base of the stratum to prevent the creation of potential pathways to the Chalk aquifer. From the geological sequence identified from borehole logs to the southwest of the Edmonton EcoPark, the thicknesses of the Kempton Park Gravels and London Clay are similar to

those recorded in the south of the Edmonton EcoPark. The off-site boreholes identify the base of the Lambeth Group at approximately 22m bgl (-11m AOD assuming a ground level of 11m AOD) and therefore its base may be at a similar depth to that in the south of the Edmonton EcoPark. Figures 8 & 9 show the significant variation in thickness of the Lambeth Group across the site, varying from approximately 17m towards the south of the site to approximately 7m towards the north. As the London Clay thickens in the north of the Edmonton EcoPark, the base of the Lambeth Group is anticipated to be at a lower elevation there. The borehole logs indicated that the Lambeth Group had increased sand content with depth, which could indicate an increased hydraulic conductivity and a possible hydraulic connection with the underlying Thanet Sands.

# 3 Hydrogeology

#### 3.1 Groundwater levels

#### Made Ground

3.1.1 The Made Ground is not designated as an aquifer. There were several water strikes within the Made Ground. These are likely to be perched water in waterbearing strata overlying the clays and low permeability peaty silt layers within the Alluvium. These water-bearing Made Ground layers are laterally discontinuous and are not in hydraulic connection with the Kempton Park Gravel Aquifer.

#### **Alluvium**

3.1.2 The Alluvium is a Secondary A Aquifer. No water strikes were encountered in the Alluvium at the Edmonton EcoPark. Due to the low permeability of the peaty silts, this layer does not appear to transfer water but rather act as an aquiclude or aquitard and is likely to provide some protection to the underlying aquifer, where present.

#### **Kempton Park Gravels**

- 3.1.3 The Kempton Park Gravels is also a Secondary A Aquifer. They have been identified in all boreholes as water bearing, with the exception of BH403 and BH404 where it is believed that the gravels were removed to permit excavation for the existing EfW bunker. Groundwater levels are between 7.12 and 9.45m AOD. Groundwater level data for 2012 to 2014 has been interpreted to understand flow directions. Flow was generally in a southerly to south-south-westerly flow direction. The flow direction in November 2014 showed a change due to a decrease in water levels across the north of the Edmonton EcoPark and was to the north across the northern part of the Edmonton EcoPark, but a general south-south-westerly flow direction in the southern half of the Edmonton EcoPark. This indicates flow off-site through the northern boundary at that time. Groundwater contours for May 2014 and November 2014 are shown in Figure 10 and Figure 11.
- 3.1.4 The Kempton Park Gravels are absent around the existing EfW bunker. It is believed that they were excavated during construction of the bunker and that the resulting void was backfilled with gravelly clay and clayey sand and gravel. Water strikes in BH403 and BH404 in the backfill were at a similar level to groundwater level in the Kempton Park Gravel. This may indicate a hydraulic connection between the Kempton Park Gravel and backfill. No further water strikes or groundwater inflows were recorded below this depth.

#### **London Clay**

- 3.1.5 The London Clay is categorised as Unproductive Strata. No water strikes or water bearing strata were identified within the London Clay on-site.
- 3.1.6 The results of laboratory permeability testing indicate that the London Clay has a low permeability (mean value 2.9 x 10⁻¹¹m/s) across the Edmonton EcoPark. The London Clay is therefore an aquitard that provides protection to the underlying aquifers by limiting vertical movement of groundwater.
  - 13 AD06.02 | Issue | October 2015 | Amec Foster Wheeler Environment & Infrastructure UK Ltd.

3.1.7 The London Clay thins from the north to the south of the Edmonton EcoPark. The areas where the London Clay is thickest provide the greatest protection to the underlying aquifers. In the existing EfW bunker excavation area, the London Clay is absent. It is believed that the London Clay was excavated in this location.

#### **Lambeth Group**

- 3.1.8 The Lambeth Group is a Secondary A Aquifer. Beneath the Edmonton EcoPark it consists of clayey sand and sandy clay and sandy silt layers. Water strikes were encountered in the sandy silt layers. However, the sand layers do not appear to be laterally continuous across the Edmonton EcoPark.
- 3.1.9 Groundwater level monitoring in the Lambeth Group is limited to four boreholes (BH201, BH202, BH203 and BH204) for which data is available for 2011 and 2012. Groundwater levels are recorded between 8.6m AOD and 3.61m AOD. These boreholes monitor groundwater at different depths but are all within sandy silt layers. There does not appear to be any consistency in the levels, suggesting that there is not any lateral hydraulic connectivity across the Edmonton EcoPark in this stratum. However, this interpretation is based on a limited data set. The base of the Lambeth Group has not been proven on-site.
- 3.1.10 The results of laboratory permeability testing on samples of silty clay found low hydraulic conductivity (mean 9.02 x 10⁻¹¹m/s), similar to the London Clay. These results indicate that the Lambeth Group clays are likely to provide protection to underlying aquifers, where present.

#### **Chalk and Thanet Sand Formations**

3.1.11 No site-specific information is available for the Thanet Sand or Chalk Formations. These formations are believe to be in hydraulic connection with each other. Groundwater flow directions within the deeper Chalk aquifer are likely to be towards abstraction wells to the east.

# 4 Summary of groundwater quality, ground contamination and ground gas

#### Introduction

4.1.1 The groundwater quality, ground contamination and ground gas assessment was undertaken as part of the hydrogeological risk assessment, the summary provided below is extracted from Amec Foster Wheeler report 35180-16/LON-REP-006 NLWA Hydrogeogical risk assessment, dated May 2015.

#### **Groundwater quality**

- 4.1.2 Groundwater monitoring has been undertaken at the site during site investigations and as part of Environmental Permitting to characterise groundwater quality and establish baseline concentrations for potentially polluting substances.
- 4.1.3 Site-specific groundwater quality monitoring data is limited to the Kempton Park Gravels and the Lambeth Group.
- 4.1.4 Groundwater quality in the deeper aquifers (Thanet Sands and Chalk) is anticipated to be good, reflecting its use for potable water supply.
- 4.1.5 Groundwater quality in the Kempton Park Gravels is the most likely to have been affected by contamination from the existing site operations and from neighbouring sites due to its proximity to surface activities.

#### **Ground contamination**

#### **Made Ground**

4.1.6 Leachate samples for Made Ground soils were screened against the Drinking Water Standards (DWS) and fresh water Environmental Quality Standards (EQS). Concentrations of ammonium, dissolved metals (aluminium, arsenic, boron, iron, lead, mercury and nickel) and total cyanide exceeded DWS and dissolved metals (cadmium, chromium, copper and zinc) exceeded the fresh water EQS. This is consistent with the parameters that exceeded these standards in the Kempton Park Gravel aquifer and indicate Made Ground may be a source of contamination to shallow groundwater.

#### **Kempton Park Gravels**

4.1.7 Ammonium, chloride, sulphate, metals and metalloids (aluminium, arsenic, boron, cadmium, chromium, copper, mercury, iron, nickel, and selenium), phenols and vinyl chloride have been found above DWS and/or EQS. There is no drinking water standard for total Polycyclic Aromatic Hydrocarbons PAH but they were detected above in two samples.

#### **Lambeth Group**

15

4.1.8 Groundwater in the Lambeth Group shows water quality standard exceedances of ammonium in every sample and some exceedances for sulphate, chloride, aluminium, chromium, iron and selenium.

4.1.9 The concentration of ammonium is highest in the northeast which may imply an off-site source to the north. However, these concentrations may represent a natural baseline and may indicate that groundwater in the Lambeth Group is under reducing (low quantity of oxygen) conditions.

#### **Ground gas**

- 4.1.10 A ground gas assessment was conducted in 2011 covering up to 33 locations across the Edmonton EcoPark over nine monitoring rounds.
- 4.1.11 A semi-quantitative approach was adopted for the assessment of ground gas data, following CIRIA C665. In order provide a conservative assessment, a Gas Screening Values (GSV) for the Edmonton EcoPark have been calculated by taking the maximum borehole flow rate (I/hr) (including peak flow) and multiplying it with the maximum gas concentration (per cent) at each location. The calculation is carried out for both methane and carbon dioxide and the worst case GSV adopted. The GSV is used to determine the Characteristic Situation (CS), as detailed in the guidance document.
- 4.1.12 Elevated carbon dioxide and/or methane concentrations were recorded in locations WS110, WS111, WS117, WS122, WS124 and WS130. CS2 typically applies at these locations (see Figure 3 for monitoring locations).
- 4.1.13 As a result of the presence of methane and carbon dioxide in some areas of the Edmonton EcoPark, the risk assessment identified that CS2 applies, or should be applied, in some areas of the Edmonton EcoPark. This classification provides guidance on the requirement for gas protection measures in future buildings.

# 5 Piling risk assessment

#### 5.1 Introduction

- 5.1.1 This piling risk assessment only deals with piling operations at the Edmonton EcoPark in general terms as the method of construction has not yet been defined; a further assessment will be required once the method of piling is determined. This piling risk assessment should be used to inform the most appropriate method. The piling risk assessment considers two scenarios.
  - a. Piling into the London Clay terminating the toe of the pile above the base of the London Clay and above the deeper aquifers; and
  - b. Piling through the London Clay and terminating in the underlying Lambeth group.
- 5.1.2 The piling risk assessment considers the six potential pollution scenarios defined in EA (EA) report NC/99/73 Piling and penetrative ground improvement methods on land affected by contamination: Guidance on pollution prevention. Method specific risk assessments will be undertaken by the piling Contractor prior to the commencement of piling on site as this is beyond the scope of this report. The six EA potential pollution scenarios are:
  - creation of preferential pathways, through a low permeability layer (aquitard), to allow potential contamination of an underlying aquifer;
  - creation of preferential pathways, through a low permeability surface layer, to allow upward migration of landfill gas, soil gas or contaminant vapours to the surface;
  - direct contact of the site workers and others with contaminated soil arisings which have been brought to the surface;
  - direct contact of the piles or engineered structures with contaminated soil or leachate causing degradation of pile materials (where the secondary effects are to increase the potential for contaminant migration);
  - the driving of solid contaminants down into an aquifer during pile driving; and
  - 6 contamination of groundwater and, subsequently, surface waters by concrete, cement paste or grout.
- 5.1.3 Furthermore the piling risk assessment will assess the potential impact of the piling operations on the sub-surface archaeology.

# 5.2 Piling methods

5.2.1 For the purposes of the risk assessment Driven pre-cast concrete, Continuous Flight Auger (CFA) and Continuous Helical Displacement (CHD) piles have been reviewed.

## 5.3 Driven pre-cast concrete

- 5.3.1 Driven pre-cast concrete piles are manufactured off-site with reinforcement as required for the appropriate design situation in standard lengths. These reinforced concrete sections are driven into the ground using a hydraulic hammer until the required design length or design resistance is achieved. Where depths greater than the standard lengths are required driven pre-cast piles can be jointed. Figure 5.1 below details the installation process.
- 5.3.2 Pre-cast piles are essentially a displacement type pile with no appreciable arisings.

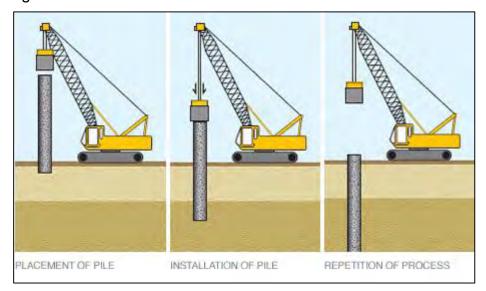



Figure 5.1 Driven Pile installation process (source: www.dutchfoundation.com)

# 5.4 Continuous Flight Auger

- 5.4.1 CFA piles are formed by drilling a CFA into the ground. The sides of the hole are supported at all times by the soil-filled auger, eliminating the need for temporary casing or bentonite slurry. Upon reaching the required depth, sand-cement grout or concrete is pumped down the hollow stem as the auger is steadily withdrawn. Reinforcement is placed immediately after withdrawal of the auger.
- 5.4.2 When the grout head is established, extraction is commenced at a rate consistent with grout supply. Positive rotation of the auger is necessary to retain the drilling spoil and to ensure that the grout fills the entire pile cross section. The grout pressure must be sufficiently high and the auger must not be extracted too fast. Otherwise, drilling spoil can enter into the freshly placed grout, resulting in a soil-contaminated pile shaft.
- 5.4.3 The CFA pile is essentially a non-displacement type pile i.e. material needs to be removed from the ground in order for the pile to be constructed. Hence, there is limited risk of damage to adjacent foundations or underground utilities from ground displacement or densification of loose sands, as can occur with displacement piles. Another advantage is that CFA piles can be installed with little vibrations or noise. Should problems

occur during pile construction, it is relatively simple to re-drill and install the pile at the same location, thereby eliminating the need to redesign the pile group or the pile caps. Figure 5.2 below details the installation process.

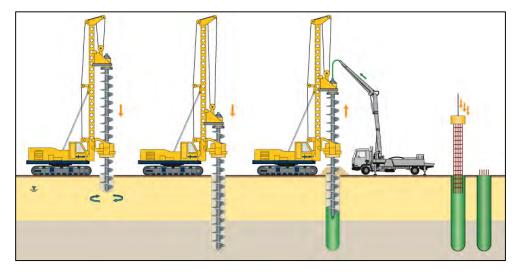



Figure 5.2 CFA Pile Installation Process (source: www.kellerholding.com)

# 5.5 Continuous Helical Displacement

- 5.5.1 CHD piles are bored piles which displace the soil through which it is constructed with no appreciable arisings.
- 5.5.2 The multi-flight shaft is drilled to the design depth and concrete is then pumped through the hollow stem of the shaft whilst the auger is reverse rotated and withdrawn forming a fluid concrete multi-flight shaft to ground level. Figure 5.3 below details the installation process.
- 5.5.3 Reinforcement is placed immediately after withdrawal of the auger.

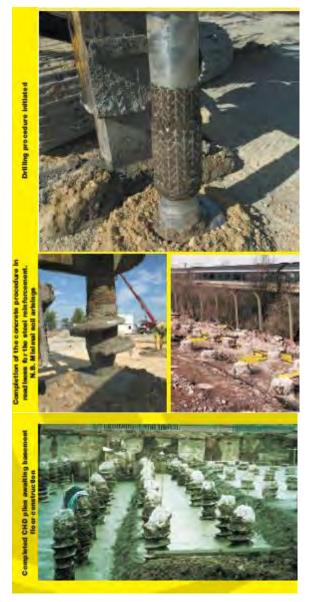



Figure 5.3 CHD Installation Process (source: www.roger-bullivant.co.uk)

#### 5.6 Risk matrix

- 5.6.1 The risk matrix combines the likelihood of a hazard event occurring with the impact of the event to derive an overall risk. The likelihood and impact categories are summarised below.
- 5.6.2 The risk register is a means of documenting perceived risks and their importance and recording actions taken to manage them. The key elements of a geotechnical risk register are as follows:
  - a. identify the geotechnical risks;
  - b. identify the methods of construction that may be incorporated into the project;
  - c. scale the risks according to severity and impact;
  - d. based on the severity of each risk, decide on the type of action;
  - e. identify how each risk should be managed;

- f. record the actions taken to manage the risk;
- g. reassess the severity of each risk taken after action has been taken; and
- h. review the risk register at regular intervals and communicate.
- 5.6.3 The risk register is a live document and should be reviewed on a regular basis and at the end of each stage of the project.
- The risk matrix combines the likelihood of a hazard event occurring with the consequence of the event to derive an overall risk (low, moderate, high, critical). The likelihood and consequence categories are summarised in Table 5.1 and 5.2 respectively and the combined risk table is set out in Table 5.3.

Table 5.1 Likelihood of an event

	Likelihood					
	1	2	3	4	5	6
	Remote	Highly unlikely	Unlikely	Possible	Likely	Highly likely
Historical:	'Unheard of in the industry'	'Has occurred once or twice in the industry'	'Has occurred many times in the industry, but not in the Company'	'Has occurred once or twice in the Company'	'Has occurred frequently in the Company'	'Has occurred frequently at the location'
Frequency: (continuous operation)	Once every 10,000 - 100,000 years at location	Once every 1,000 - 10,000 years at location	Once every 100 - 1,000 years at location	Once every 10 - 100 years at location	10 - 100   1 - 10 years at	
Probability: (single activity)	1 in 100,000 - 1,000,000	1 in 10,000 - 100,000	1 in 1,000 - 10,000	1 in 100 - 1,000	1 in 10 - 100	> 1 in 10

Table 5.2 Environmental consequence of an event

Con	sequence	Description
Α	Catastrophic	GW: Large scale impact (100s m). Exceedance of DWS in PWS boreholes with need to shut down supply or implement additional treatment. Long term/permanent impact.
В	Massive	SW: Large scale impact (100s to 1,000s m). Exceedance of drinking water in abstraction with need to shut down supply or implement additional treatment. Deterioration in ecological status of water body. Fish kill.
С	Major	GW: Large Scale (10-100m) impact on river gravel with exceedance of water quality standards, impact on deeper Tertiary and Chalk aquifers with exceedance of DWS. Long term (months/years) impact.
D	Moderate	SW: Large scale (100s m) impact on surface water with exceedance of water quality standards. Fish kill in surface water. Potable abstractions need to be taken out of supply. Medium term impact (days/weeks).
E	Minor	GW: Medium Scale (10s m) impact on river gravel aquifer with exceedance of water quality standards and impact on deeper Tertiary and Chalk aquifers with risk to groundwater abstractions. Medium term (months) impact.
F	Slight	SW: Medium scale (100s m) impact on surface water with exceedance of water quality standards. Fish kill. Short term (days/weeks) impact.

Table 5.3 Risk matrix

		0 0.0 1 (10)( 11					
		1	2	3	4	5	6
		Remote	Highly Unlikely	Unlikely	Possible	Likely	Highly Likely
A	Catastrophic	16	22	27	31	34	36
В	Massive	11	17	23	28	32	35
U	Major	7	12	18	24	29	33
D	Moderate	4	8	13	19	25	30
E	Minor	2	5	9	14	20	26
F	Slight	1	3	6	10	15	21

#### Risk Management Controls

27 - 36	CRITICAL	Risks must be reduced for Controlled Waters and other Risks. Significant and urgent actions required.
16 - 26	HIGH	Assess risk in more detail and look to reduce further, as appropriate. In accordance with the ALARP principle for HSE Risks, identification of management control measures and further safeguards.
7 - 25	MEDIUM	Look to reduce further in accordance with the ALARP principle for HSE Risks, identification of management control measures and further safeguards.
1 - 6	LOW	Continue to manage and monitor risksby effective Risk Management.

# 5.7 Risk register

Table 5.4 Piling risk register – piles terminating in the London Clay Formation

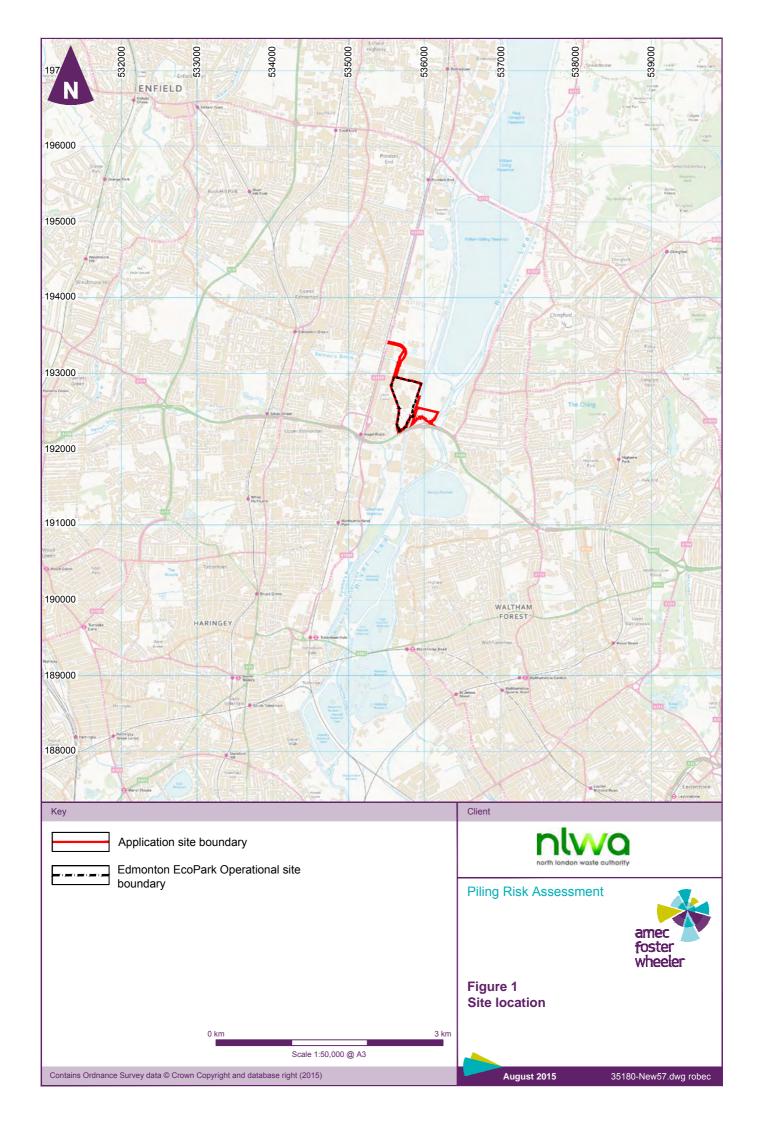
Stage	Risk no.	Hazard		to RCM	alion	Risk Control Measure (RCM)	After RCM		
			Probability (P)	Impact (I)	Risk (PXI)		Probability (P)	Impact (I)	Risk
Driven Piling in to London Clay	01	Creation of preferential pathways, through a low permeability layer (aquitard), to allow potential contamination of an underlying aquifer	4	E	14	Piles are to be terminated in the low permeability London clay with no interaction with the underlying aquifer with a minimum cover depth from the toe of the pile to the top of the Lambeth group.	2	Е	5
Driven Piling in to London Clay	02	Creation of preferential pathways, through a low permeability surface layer, to allow upward migration of landfill gas, soil gas or contaminant vapours to the surface.	3	F	6	No landfills noted across the site, however risk from made ground a potential issue, monitoring during construction to be undertaken.	2	F	3
Driven Piling in to London Clay	03	Direct contact of the site workers and others with contaminated soil arisings which have been brought to the surface	4	E	14	Driven piles to be utilised, displacing the soil, therefore no appreciable soil arisings are anticipated.	1	E	1
Driven Piling in to London Clay	04	Direct contact of the piles or engineered structures with contaminated soil or leachate causing degradation of pile materials (where the secondary effects are to increase the potential for contaminant migration).	3	F	6	Piles to be designed in accordance with BRE SD-1 Concrete in aggressive ground.	2	F	3
Driven Piling in to London Clay	05	The driving of solid contaminants down into an aquifer during pile driving	5	E	20	Piles are to be terminated in the low permeability London clay with no interaction with the underlying aquifer.	2	E	5
Driven Piling in to London Clay	06	Contamination of groundwater and, subsequently, surface waters by concrete, cement paste or grout	4	E	14	Piles are to be pre-cast concrete no wet concrete to be used.	1	E	2
Driven Piling in to London Clay	07	Disturbance/damage to sub-surface archaeology.	4	E	14	A targeted borehole survey to determine the likelihood of archaeology in the alluvium. Use an alternative method of piling to reduce the radial influence from the piling process.	2	Е	5
CFA piling in to London Clay	08	Creation of preferential pathways, through low a low permeability layer (aquitard), to allow potential contamination of an underlying aquifer.	4	E	14	Piles are to be terminated in the low permeability London clay with no interaction with the underlying aquifer.	2	E	5

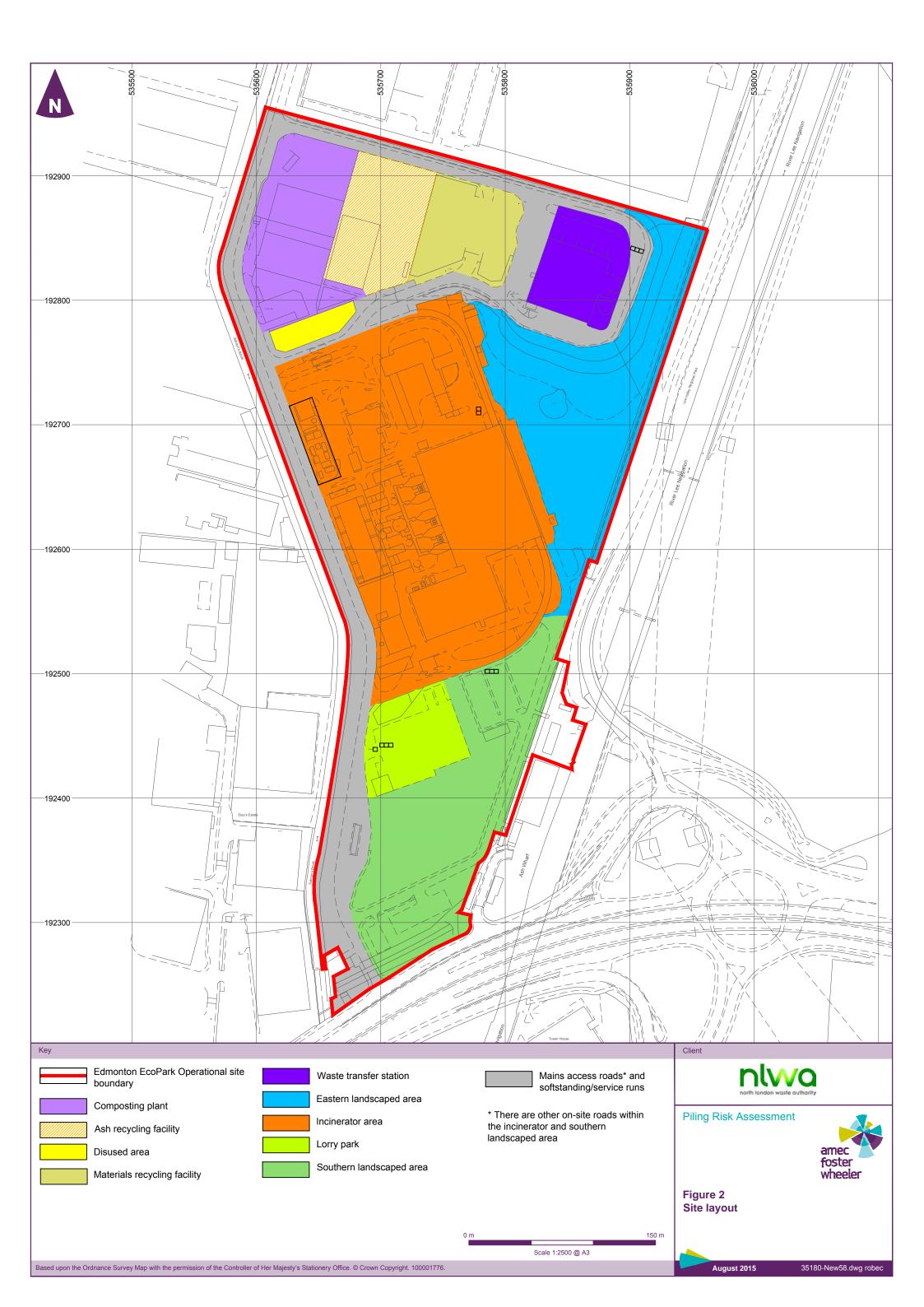
Stage	Risk no.	Hazard	Prior	Prior to RCM		Risk Control Measure (RCM)	After RCM		
			Probability (P)	Impact (I)	Risk (PXI)		Probability (P)	Impact (I)	Risk
CFA piling in to London Clay	09	Creation of preferential pathways, through a low permeability surface layer, to allow upward migration of landfill gas, soil gas or contaminant vapours to the surface.	3	F	6	No landfills noted across the site, however risk from made ground a potential issue, monitoring during construction to be undertaken.	2	F	3
CFA piling in to London Clay	10	Direct contact of the site workers and others with contaminated soil arisings which have been brought to the surface	4	Е	14	All site personnel to be briefed on contamination risk and appropriate PPE to be worn.	2	Е	5
CFA piling in to London Clay	11	Direct contact of the piles or engineered structures with contaminated soil or leachate causing degradation of pile materials (where the secondary effects are to increase the potential for contaminant migration).	3	F	6	Piles to be designed in accordance with BRE SD-1 Concrete in aggressive ground.	2	F	3
CFA piling in to London Clay	12	The driving of solid contaminants down into an aquifer during pile driving.	5	E	20	CFA piles replace the soil column as material is removed from the pile bore, no material should be transported down the pile as the pile shaft remains supported throughout the construction. Piles are to be terminated in the low permeability London Clay.	2	Е	5
CFA piling in to London Clay	13	Contamination of groundwater and, subsequently, surface waters by concrete, cement paste or grout.	4	E	14	Piles are to be terminated in the low permeability London Clay.	1	Е	2
CFA piling in to London Clay	14	Disturbance/damage to sub-surface archaeology.	4	Е	14	A targeted borehole survey to determine the likelihood of archaeology in the alluvium.	2	Е	5
CHD pilling in to London Clay	15	Creation of preferential pathways, through low a low permeability layer (aquitard), to allow potential contamination of an underlying aquifer.	4	E	14	Piles are to be terminated in the low permeability London clay.	2	Е	5
CHD piling in to London Clay	16	Creation of preferential pathways, through a low permeability surface layer, to allow upward migration of landfill gas, soil gas or contaminant vapours to the surface.	3	F	6	No landfills noted across the site, however risk from made ground a potential issue, monitoring during construction to be undertaken.	2	F	3
CHD piling in to London Clay	17	Direct contact of the site workers and others with contaminated soil arisings which have been brought to the surface	4	E	14	CHD piles densify the soils and displace as the auger is rotated creating little to no arisings.	1	Е	1
CHD piling in to London Clay	18	Direct contact of the piles or engineered structures with contaminated soil or leachate causing degradation of pile	3	F	6	Piles to be designed in accordance with BRE SD-1 Concrete in aggressive ground.	2	F	3

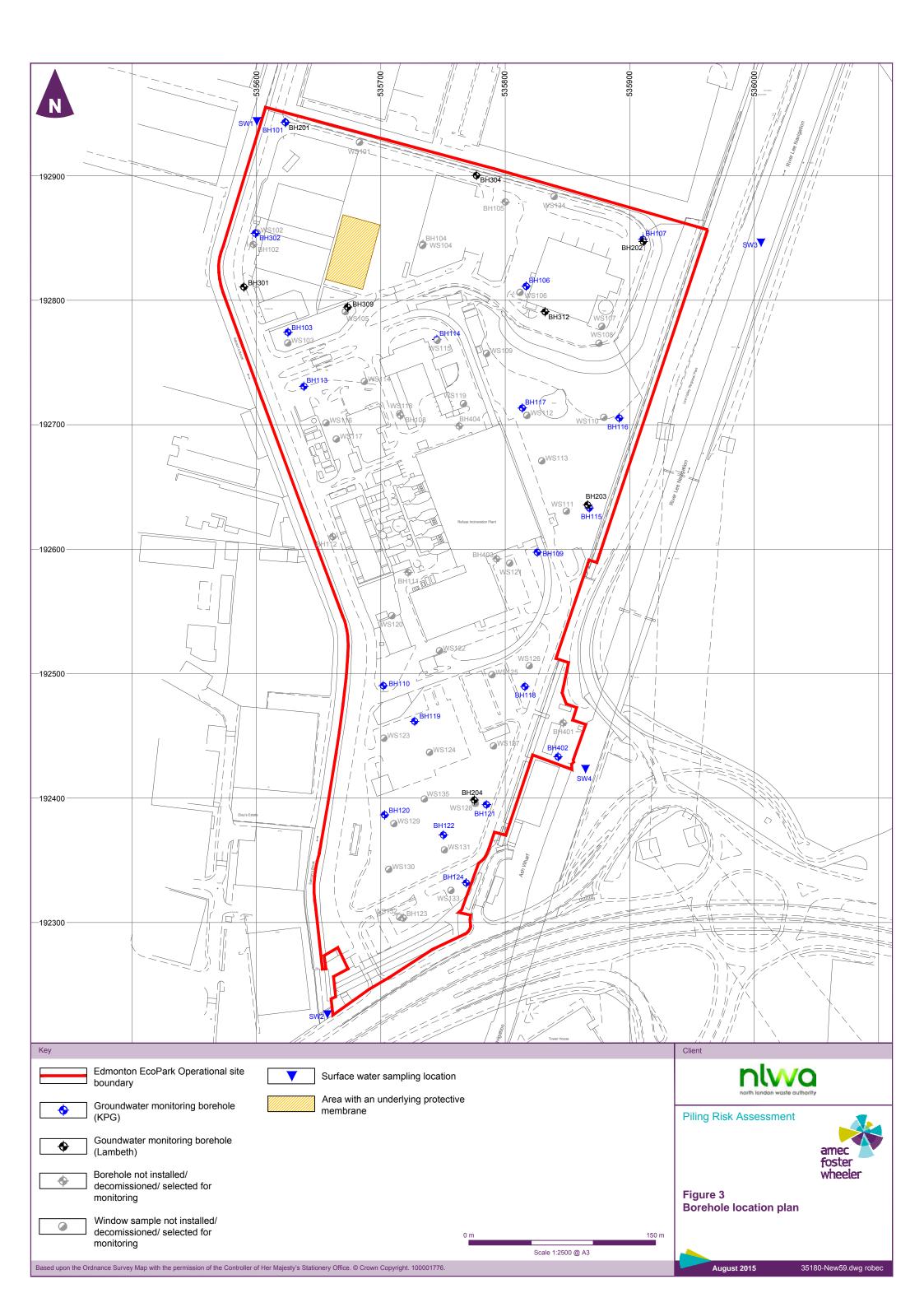
Stage	Risk no.	Hazard	Prior	Prior to RCM		Risk Control Measure (RCM)	After RCM		
			Probability (P)	Impact (I)	Risk (PXI)		Probability (P)	Impact (I)	Risk
		materials (where the secondary effects are to increase the potential for contaminant migration).	_	_	_		_	_	_
CHD piling in to London Clay	19	The driving of solid contaminants down into an aquifer during pile driving.	5	E	20	CHD piles to terminate in the London Clay above the aquifer.	2	E	5
CHD piling in to London Clay	20	Contamination of groundwater and, subsequently, surface waters by concrete, cement paste or grout.	4	E	14	Piles are to be terminated in the low permeability London Clay.	1	E	2
CHD piling in to London Clay	21	Disturbance/damage to sub-surface archaeology.	4	E	14	A targeted borehole survey to determine the likelihood of archaeology in the alluvium.	2	E	5

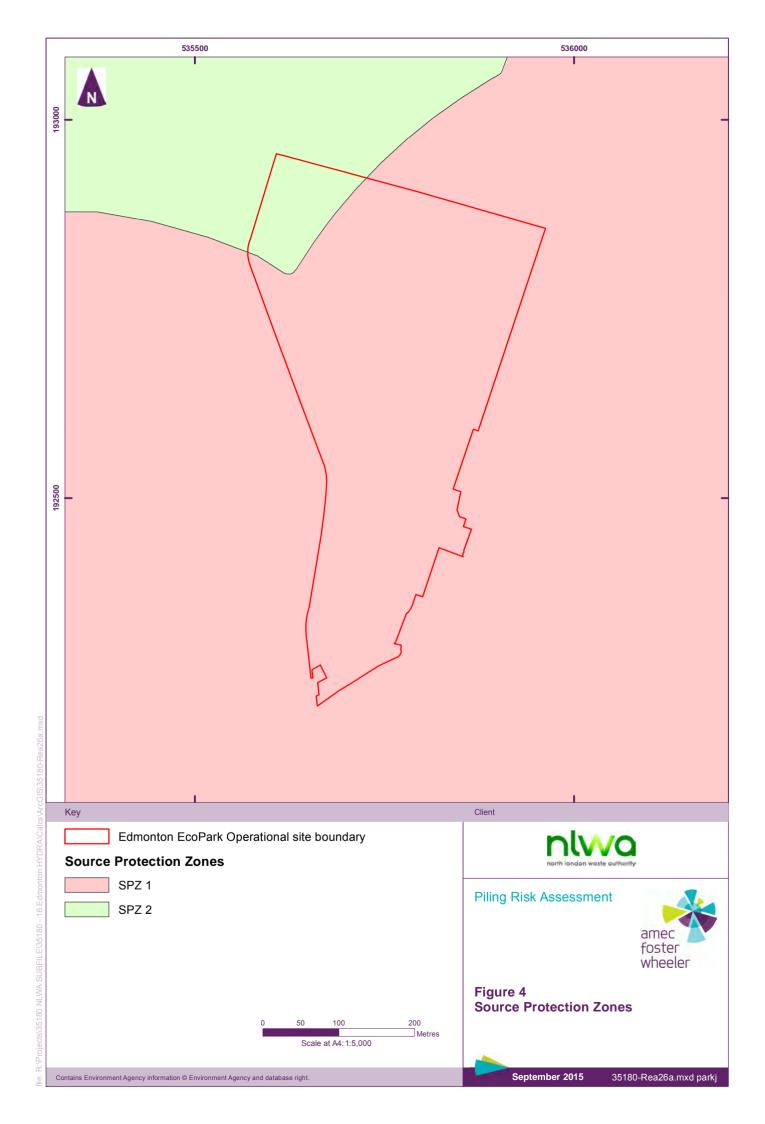
Table 5.5 Piling risk register – piles terminating in the Lambeth Group

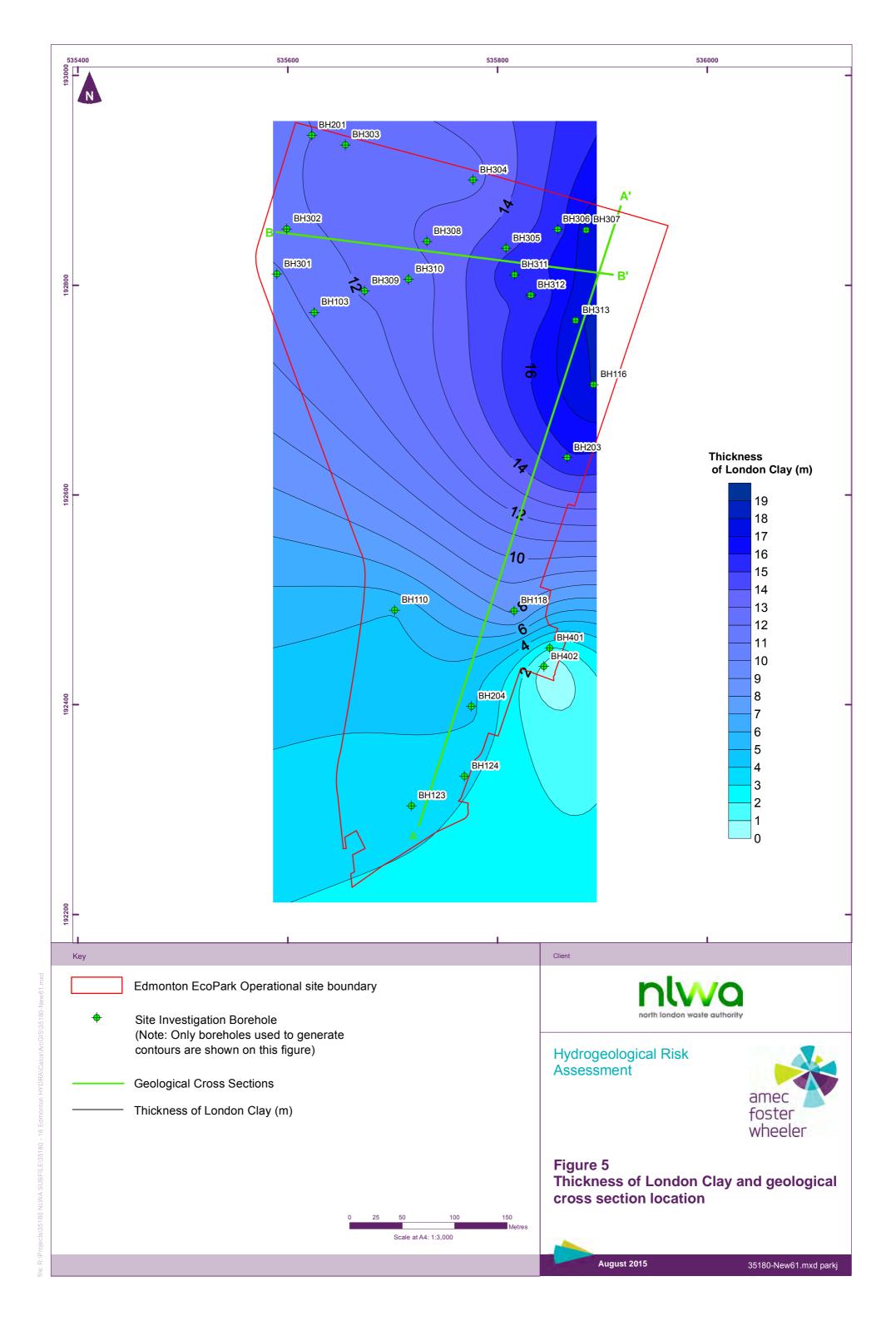
Stage	Risk No	Hazard	Prior to RCM			Risk Control Measure (RCM)	After	RCM	
			Probability (P)	Impact (I)	Risk (PXI)		Probability (P)	mpact (l)	Risk
Driven Piling through London Clay	22	Creation of preferential pathways, through low a low permeability layer (aquitard), to allow potential contamination of an underlying aquifer.	4	Ē	14	Driven piles have the potential to transport contaminants beneath to toe of the pile that has been driven through the contaminated ground. Use an alternative piling method, CFA/CHD	2	Ē	5
Driven Piling through London Clay	23	Creation of preferential pathways, through a low permeability surface layer, to allow upward migration of landfill gas, soil gas or contaminant vapours to the surface.	3	F	6	No landfills noted across the site, however risk from made ground a potential issue, monitoring during construction to be undertaken.	2	F	3
Driven Piling through London Clay	24	Direct contact of the site workers and others with contaminated soil arisings which have been brought to the surface.	4	E	14	Driven piles to be utilised, displacing the soil, therefore no appreciable soil arisings are anticipated.	1	E	1
Driven Piling through London Clay	25	Direct contact of the piles or engineered structures with contaminated soil or leachate causing degradation of pile materials (where the secondary effects are to increase the potential for contaminant migration).	3	F	6	Piles to be designed in accordance with BRE SD-1 Concrete in aggressive ground.	2	F	3
Driven Piling through London Clay	26	The driving of solid contaminants down into an aquifer during pile driving.	5	Е	20	Alternative method of piling required, CFA or CHD.	2	E	5
Driven Piling through London Clay	27	Contamination of groundwater and, subsequently, surface waters by concrete, cement paste or grout.	4	Е	14	Piles are to be pre-cast concrete no wet concrete to be used.	1	E	2
Driven Piling through London Clay	28	Disturbance/damage to sub-surface archaeology.	4	E	14	A targeted borehole survey to determine the likelihood of archaeology in the alluvium.	2	E	5
CFA piling through London Clay	29	Creation of preferential pathways, through low a low permeability layer (aquitard), to allow potential contamination of an underlying aquifer.	4	E	14	Sleeve piles through made ground and sealing into the London Clay.	2	E	5
CFA piling through London Clay	30	Creation of preferential pathways, through a low permeability surface layer, to allow upward migration of landfill gas, soil gas or contaminant vapours to the surface.	3	F	6	No landfills noted across the site, however risk from made ground a potential issue, monitoring during construction to be undertaken.	2	F	3
CFA piling through London Clay	31	Direct contact of the site workers and others with contaminated soil arisings which have been brought to the surface.	4	E	14	All site personnel to be briefed on contamination risk and appropriate PPE to be worn.	2	E	5

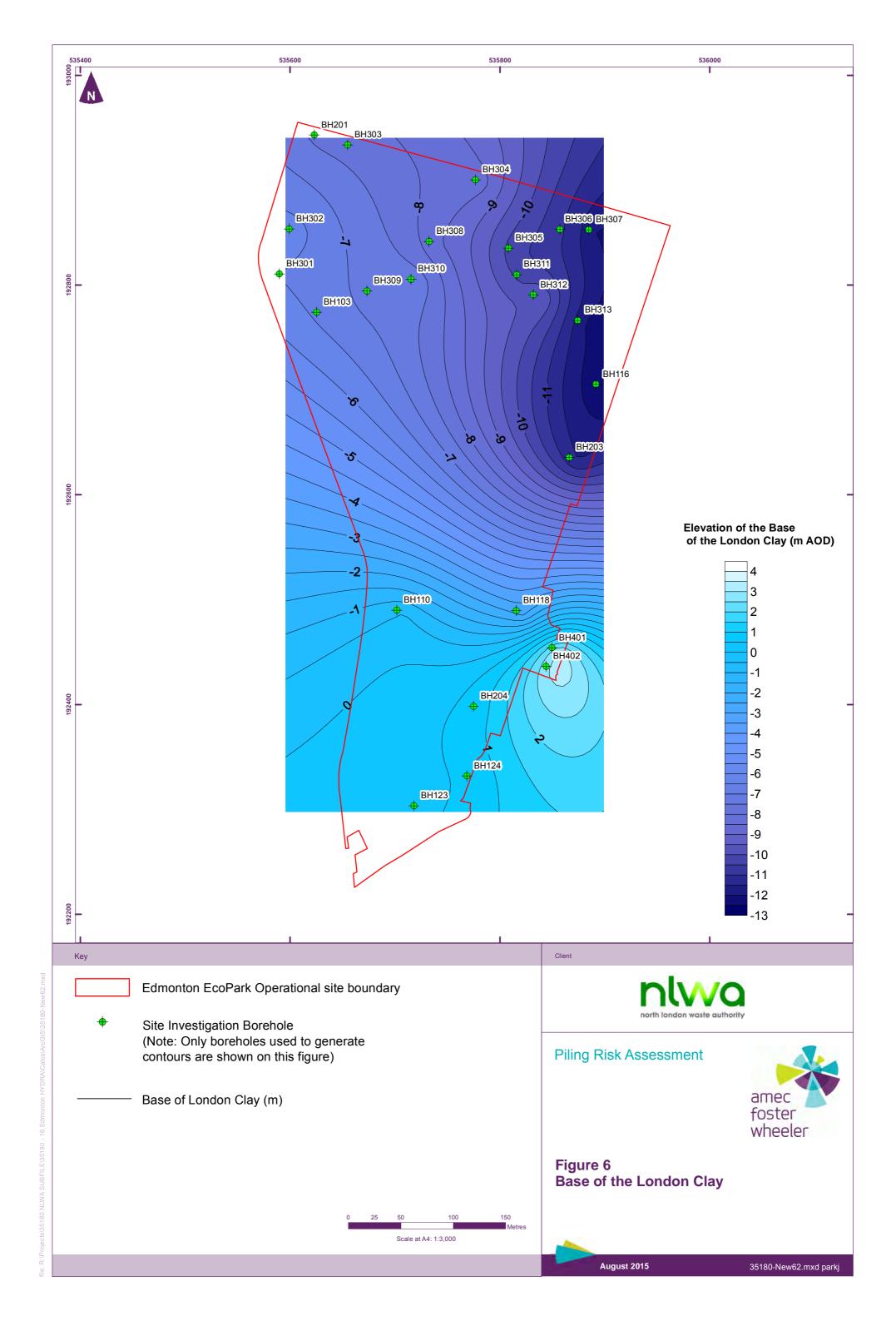

Stage	Risk No	Hazard	Prior to RCM			Risk Control Measure (RCM)	After	RCM	
			Probability (P)	Impact (I)	Risk (PXI)		Probability (P)	Impact (I)	Risk
CFA piling through London Clay	32	Direct contact of the piles or engineered structures with contaminated soil or leachate causing degradation of pile materials (where the secondary effects are to increase the potential for contaminant migration).	3	F	6	Piles to be designed in accordance with BRE SD-1 Concrete in aggressive ground.	2	F	3
CFA piling through London Clay	33	The driving of solid contaminants down into an aquifer during pile driving	5	E	20	Unlike driven piling CFA piles do not produce down drag of materials. Good on site control and monitoring to reduce the likelihood of flighting (a process where upper material is drawn into the pile bore from the surrounding ground from over rotation of the auger).	2	E	5
CFA piling through London Clay	34	Contamination of groundwater and, subsequently, surface waters by concrete, cement paste or grout.	4	Е	14	Monitoring of grout/concrete volumes during construction and an appropriate mix to be detailed.	1	E	2
CFA piling through London Clay	35	Disturbance/damage to sub-surface archaeology.	4	Е	14	A targeted borehole survey to determine the likelihood of archaeology in the alluvium.	2	Е	5
CHD piling through London Clay	36	Creation of preferential pathways, through low a low permeability layer (aquitard), to allow potential contamination of an underlying aquifer.	4	Е	14	Sleeve piles through potentially contaminated made ground.	2	E	5
CHD piling through London Clay	37	Creation of preferential pathways, through a low permeability surface layer, to allow upward migration of landfill gas, soil gas or contaminant vapours to the surface.	3	F	6	No landfills noted across the site, however risk from made ground a potential issue, monitoring during construction to be undertaken.	2	F	3
CHD piling through London Clay	38	Direct contact of the site workers and others with contaminated soil arisings which have been brought to the surface.	4	Е	14	CHD piles densify the soils and displace as the auger is rotated creating little to no arisings.	1	Е	1
CHD piling through London Clay	39	Direct contact of the piles or engineered structures with contaminated soil or leachate causing degradation of pile materials (where the secondary effects are to increase the potential for contaminant migration).	3	F	6	Piles to be designed in accordance with BRE SD-1 Concrete in aggressive ground.	2	F	3
CHD piling through London Clay	40	The driving of solid contaminants down into an aquifer during pile driving.	5	E	20	Unlike driven piling CHD piles do not produce down drag of materials. Good on site control and monitoring to reduce the likelihood of flighting (a process where upper material is drawn into the pile bore from the surrounding ground from over rotation of the auger).	2	E	5

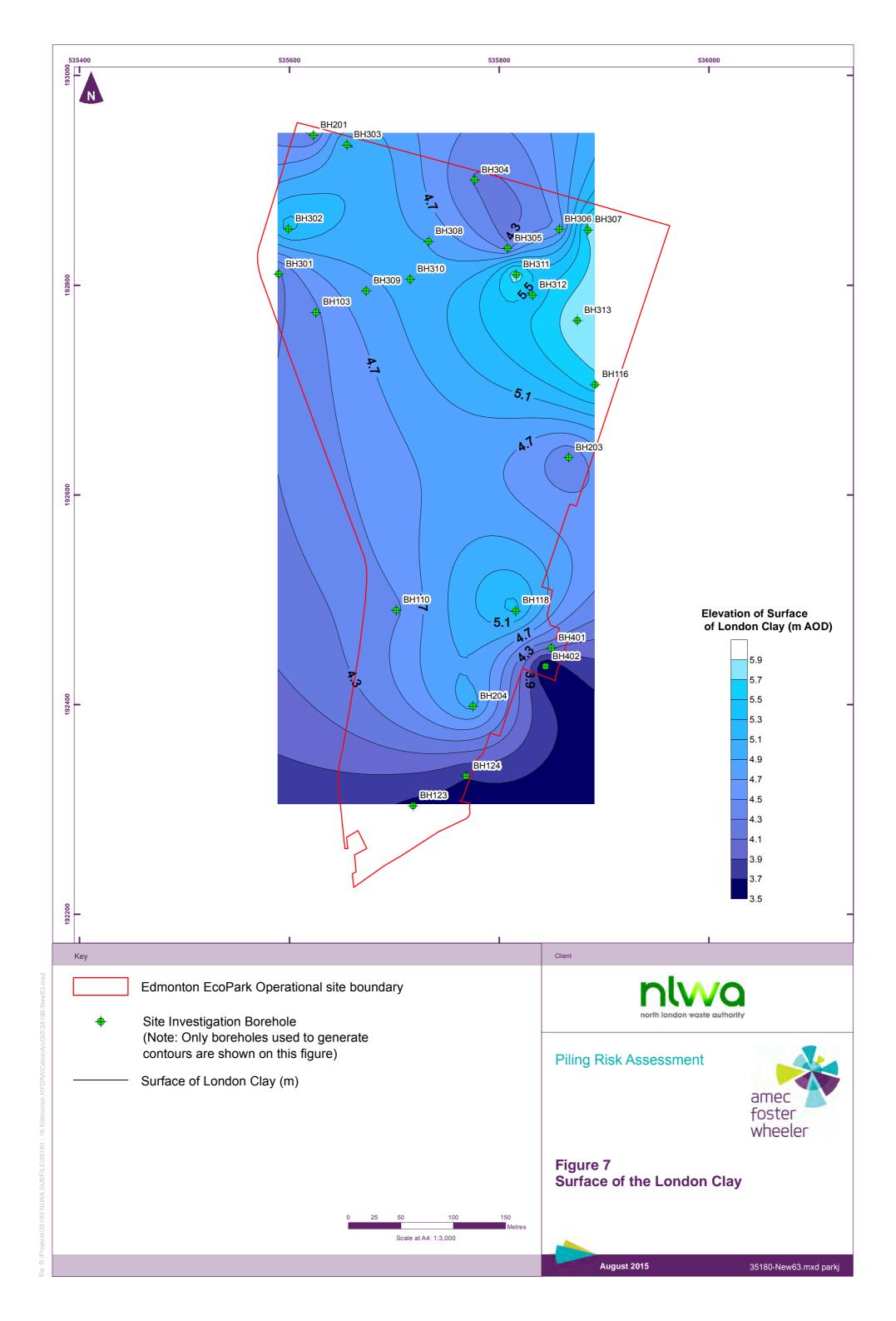

Stage	Risk No	Hazard	Prior	Prior to RCM		Risk Control Measure (RCM)	After RCM		
			Probability (P)	Impact (I)	Risk (PXI)		Probability (P)	Impact (I)	Risk
CHD piling through London Clay	41	Contamination of groundwater and, subsequently, surface waters by concrete, cement paste or grout.	4	E	14	Monitoring of grout/concrete volumes during construction and an appropriate mix to be detailed.	1	E	2
CHD piling through London Clay	42	Disturbance/damage to sub-surface archaeology.	4	E	14	A targeted borehole survey to determine the likelihood of archaeology in the alluvium.	2	Е	5

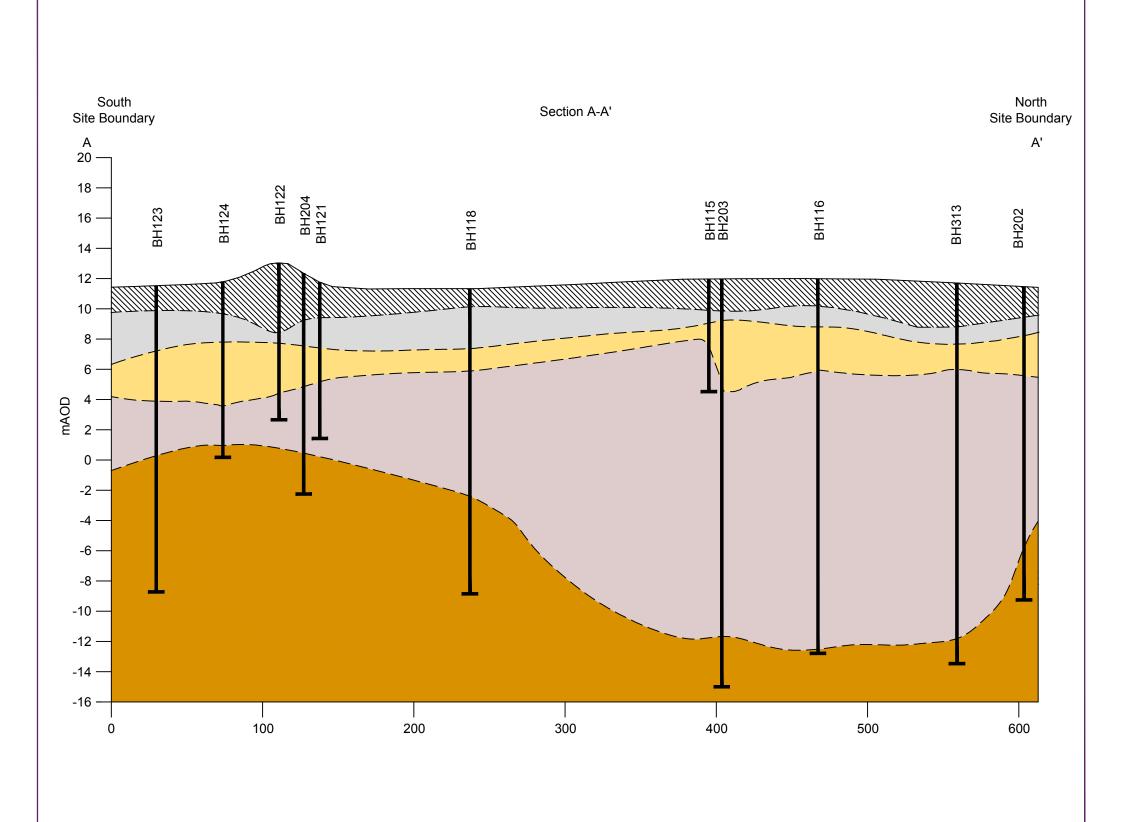

## 6 Conclusions

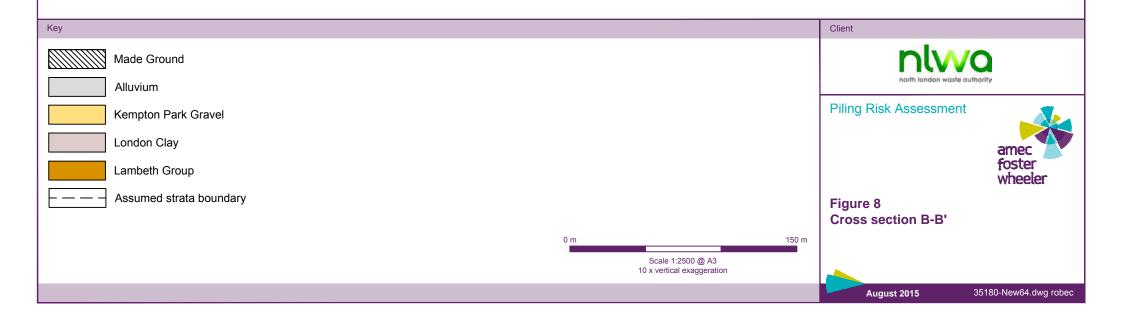

- 6.1.1 As detailed in Section 5 the piling risk register has consider the six potential pollution scenarios defined in EA for piles terminating within the London Clay Formation and for piles constructed through the London Clay Formation but terminating in the Lambeth Group.
- The risk register indicates that for the six EA defined potential pollution scenarios for piles terminating in the London Clay formation piling is a potential low risk foundation solution, furthermore driven pre-cast, CFA and CHD piles are all low risk operations. Although still low risk, CFA piles have a higher risk than the other methods of potential contaminants reaching ground surface and contacting with site staff as it is a replacement not a displacement system.
- 6.1.3 The risk register indicates that there is an increased risk of potentially transporting contaminated material and creating a preferential pathway when utilising a driven pre-cast pile and terminating in the Lambeth Group and this is therefore not a recommended piling method for this scenario however the remaining two piling methods remain low risk.
- 6.1.4 It is therefore recommended that where possible the piles are to be terminated in the London Clay formation. Where potentially high structural loads are to be supported additional piles with a larger nominal diameters may be required in order to achieve this, as overall this is the considered the lowest risk. If piles are to be constructed within the Lambeth group then CFA and CHD piling methods offer the lowest risk.
- 6.1.5 This report is undertaken to give general risks associated with the piling works and is to be used to help inform on the preferred piling method, however a detailed risk assessment will need to be undertaken by the piling contractor when structural loads are known and the need for piling through the London Clay Formation has been determined through detailed design.

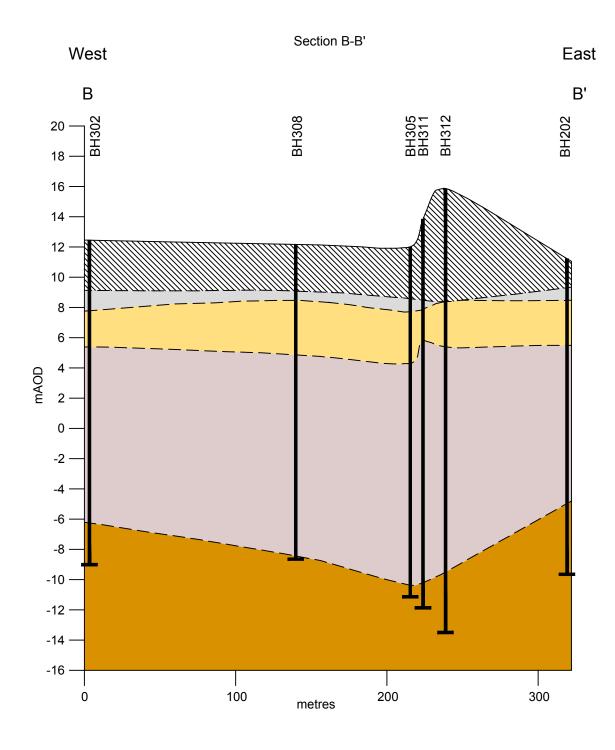

## **Figures**



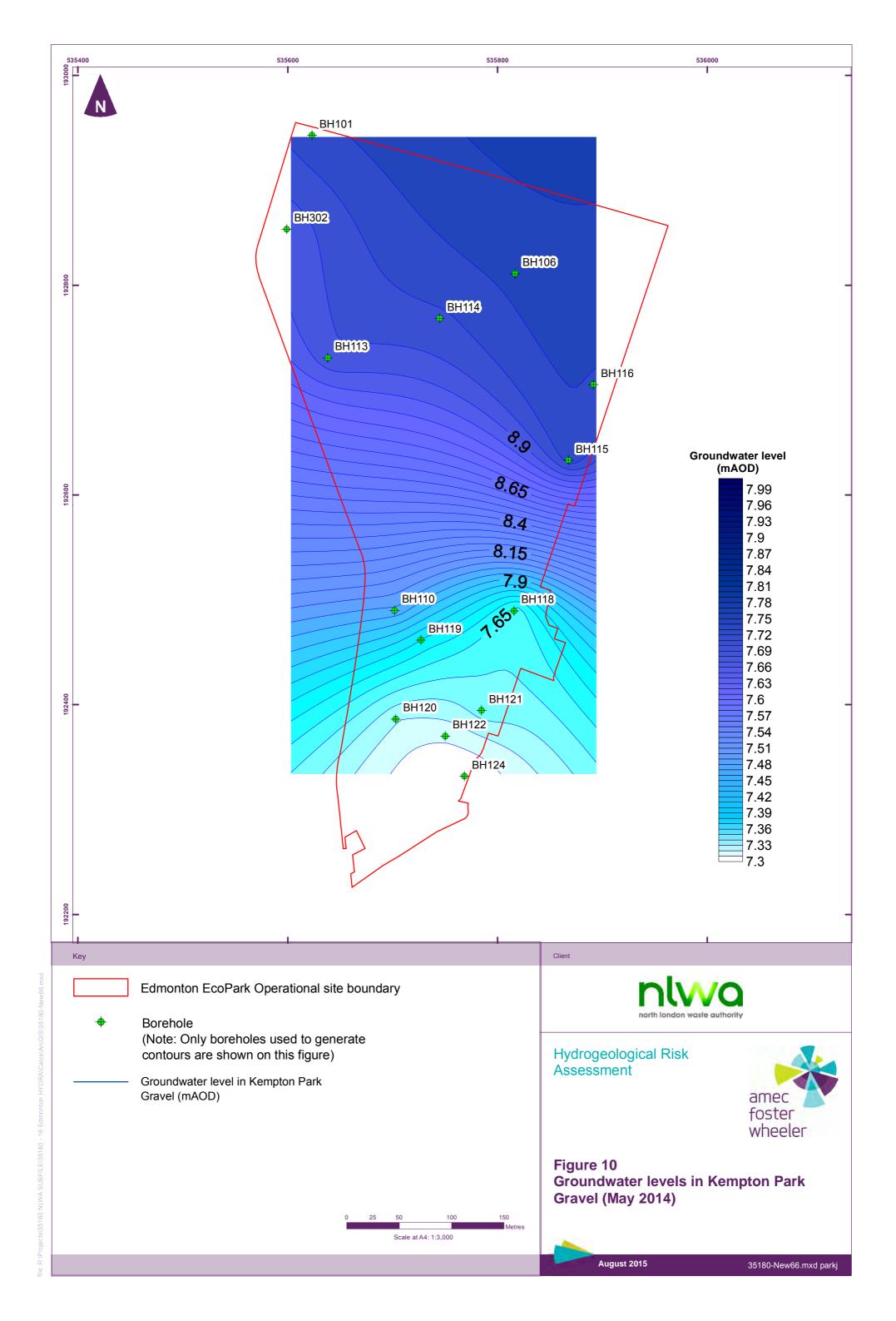



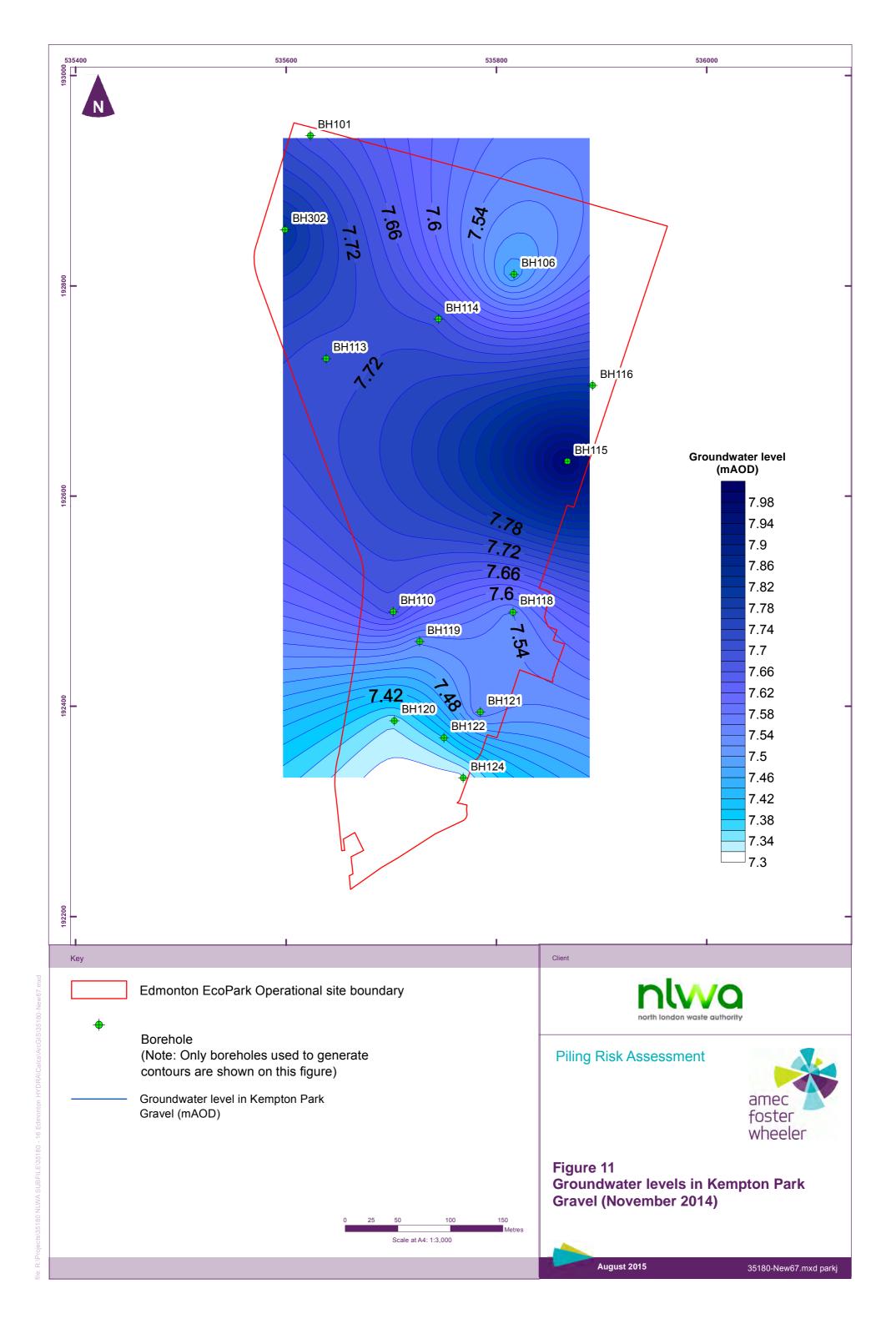
















## NORTH LONDON WASTE

AUTHORITY 1b Berol House, 25 Ashley Road Tottenham Hale N17 9LJ

Telephone: 020 8489 5730 Fax: 020 8365 0254

Email: project@northlondonheatandpower.london

